\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf Generalized Akiyama-Tanigawa Algorithm for \\ \vskip .1in Hypersums of Powers of Integers} \vskip 1cm \large Jos\'{e} Luis Cereceda \\ Distrito Telef\'onica, Edificio Este 1 \\ 28050 Madrid \\ Spain\\ \href{mailto:jl.cereceda@movistar.es}{\tt jl.cereceda@movistar.es} \end{center} \vskip .2 in \begin{abstract} In this paper we consider the hypersum polynomials, $P_k^{(m)}(n) = \sum_{r=0}^{k+m+1} c_{k,m}^{r} n^r$, and give an explicit formula for the coefficients $c_{k,m}^{r}$. We show that the $c_{k,m}^{r}$'s satisfy a generalized Akiyama-Tanigawa recurrence relation, thus extending some previous results due to Inaba. We also give a number of identities involving the Stirling numbers of the first and second kinds, as well as Bernoulli and harmonic numbers. \end{abstract} \section{Introduction} \label{sec:1} Akiyama and Tanigawa, in the course of their investigation of multiple zeta values at non-positive integers \cite{AT}, found an algorithm to calculate the Bernoulli numbers in a manner similar to Pascal's triangle for binomial coefficients. The Akiyama-Tanigawa algorithm, as reformulated by Kaneko \cite{kaneko} and Chen \cite{chen}, is described by the sequence $a_{k,m}$ defined recursively by \begin{equation*} a_{k,m} = (m+1) (a_{k-1,m} - a_{k-1,m+1}), \quad k\geq 1, m\geq 0, \end{equation*} for a given initial sequence $a_{0,m}$, $m=0,1,2,\ldots\,$. If we start with $a_{0,m} = 1/(m+1)$, then it can be shown \cite{kaneko} that the leading element $a_{k,0}$ is the $k$-th Bernoulli number $B_k$ (with $B_1 = \tfrac{1}{2}$). Later, Inaba \cite{inaba} considered hypersums of powers of integers and found that the coefficient of the first-degree term in the hypersum polynomial coincides with the element $a_{k,m}$ of the Akiyama-Tanigawa matrix. In this paper (Section \ref{sec:2}) we give an explicit expression for the coefficients of the hypersum polynomials in terms of the Stirling numbers of the first and second kinds. Moreover, in Section \ref{sec:3}, we derive a recursive relationship for the hypersums. Based on this relationship, in Section \ref{sec:4} we show that the coefficients of the hypersum polynomials satisfy a generalized Akiyama-Tanigawa recurrence relation. Further, in Section \ref{sec:5}, as an illustration of the general theory, we give a detailed treatment of the coefficient of the second-degree term in the hypersum polynomial, and provide the general result for the third-degree term. We conclude in Section \ref{sec:6} with a brief historical account of the work of Johann Faulhaber on power sums. \section{Hypersums of powers of integers} \label{sec:2} Using Inaba's notation \cite{inaba}, the hypersums of powers of integers are defined recursively as \begin{equation*} P_k^{(m)}(n) = \sum_{j=1}^n P_k^{(m-1)}(j), \qquad m\geq 1, \end{equation*} where $P_k^{(0)}(n)$ is the sum of the first $n$ positive integers each raised to the integer power $k \geq 0$, $P_k^{(0)}(n) = 1^k +2^k +3^k +\cdots +n^k$. There exist several formulations for $P_k^{(0)}(n)$ (see, for instance, \cite{kotiah}). A convenient formula for our purposes is given in terms of the Stirling numbers of the second kind $S(k,i)$ (Sloane's \seqnum{A008277} \cite{sloane}) \begin{equation*} P_k^{(0)}(n) = \sum_{i=1}^k i! {n+1 \choose i+1} S(k,i), \qquad k \geq 1, \end{equation*} with ${n+1 \choose i+1} =0$ for $n