\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \DeclareMathOperator{\id}{Id} \DeclareMathOperator{\re}{Re} \DeclareMathOperator{\im}{Im} \newcommand{\N}{\mathbb {N}} \newcommand{\Z}{\mathbb {Z}} \newcommand{\R}{\mathbb {R}} \newcommand{\C}{\mathbb {C}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf An Alternating Sum Involving the Reciprocal of Certain Multiplicative Functions \\ } \vskip 1cm \large Olivier Bordell\`es\\ 2, all\'{e}e de la Combe\\ 43000 Aiguilhe\\ France\\ \href{mailto:borde43@wanadoo.fr}{\tt borde43@wanadoo.fr} \\ \ \\ Benoit Cloitre\\ 19, rue Louise Michel\\ 92300 Levallois-Perret\\ France\\ \href{mailto:benoit7848c@yahoo.fr}{\tt benoit7848c@yahoo.fr} \ \\ \vskip .5in \textit{\begin{small} \textit{To the memory of Patrick Sargos} \end{small}} \end{center} \vskip .2 in \begin{abstract} We establish an asymptotic formula for an alternating sum of the reciprocal of a class of multiplicative functions. The proof is straightforward and uses classical convolution techniques. Numerous examples are given. \end{abstract} \section{Introduction and main results} \label{s1} In 1900, E. Landau \cite{lan} proved that $$\sum_{n \leq x} \frac{1}{\varphi(n)} = \frac{\zeta(2) \zeta(3)}{\zeta(6)} \left( \log x + \gamma - \sum_p \frac{\log p}{p^2 - p + 1} \right) + O \left( \frac{\log x}{x} \right)$$ where $\varphi$ is the classic Euler totient function and $\gamma$ is Euler's constant, but it seems that in the usual literature there is not any similar result for the alternating sum $$\sum_{n \leq x} \frac{(-1)^n}{\varphi(n)}.$$ It is fairly easy to show that there exists an absolute constant $c>0$ such that this sum is $> c \, \log x + O(1)$, and therefore the question of an asymptotic formula arises naturally. It should be mentioned that Landau's result could eventually provide such an asymptotic formula via the simple identity $$\sum_{n \leq x} \frac{(-1)^n}{\varphi(n)} = \sum_{n \leq x} \frac{1}{\varphi(n)} - 2 \sum_{\substack{n \leq x \\ (n,2)=1}} \frac{1}{\varphi(n)}$$ and the use of known estimates as in \cite[Theorem~1]{woo}, but this method does not seem to be easily generalized to a larger class of multiplicative functions than that of \cite{woo}. In this article, we will follow a slightly different approach working with the set of non-zero complex-valued multiplicative functions $f$ satisfying the following assumptions: there exist constants $\lambda_1 >0$ and $0 \leq \lambda_2 < 2$ such that, for each prime power $p^\alpha$, we have \begin{alignat}{1} p^2 \left | \frac{1}{f(p)} - \frac{1}{p} \right | \leq \lambda_1 \quad \text{and} \quad p^{2 \alpha - 1} \left | \frac{1}{f \left( p^\alpha \right)} - \frac{1}{p f \left( p^{\alpha-1} \right)} \right | \leq \lambda_1 \lambda_2^{\alpha - 1} \quad \left( \alpha \geq 2 \right). \label{e1} \end{alignat} It will be convenient to set \begin{alignat}{1} \lambda := \frac{\lambda_1(2+\lambda_2)}{2-\lambda_2}. \label{e2} \end{alignat} For any prime number $p$, define \begin{alignat}{1} S_f(p) := \sum_{\alpha=1}^{\infty} \frac{1}{f(p^\alpha)} \quad \mathrm{and} \quad s_f(p) := \sum_{\alpha=1}^{\infty} \frac{\alpha}{f(p^\alpha)} \label{e3} \end{alignat} and set \begin{alignat}{1} \mathcal{P}_f := \prod_p \left( 1 - \frac{1}{p} \right) \left( 1 + \sum_{\alpha=1}^{\infty} \frac{1}{f(p^\alpha)} \right) \label{e4} \end{alignat} where the product is absolutely convergent. We are now in a position to state our main result. \begin{theorem} \label{t} Let $f$ be a non-zero multiplicative function satisfying \eqref{e1}. Then, for $x \geq e$, we have $$\sum_{n \leq x} \frac{(-1)^n}{f(n)} = \frac{S_f(2) -1}{S_f(2) +1} \, \mathcal{P}_f \log x + C_f + O \left( \frac{(\log x)^{\lambda + 1}}{x} \right)$$ where $$C_f := \frac{S_f(2) -1}{S_f(2) +1} \, \mathcal{P}_f \left( \gamma + \sum_p \log p \left( \frac{1}{p-1} - \frac{s_f(p)}{1+S_f(p)} \right) - \frac{2 s_f(2) \log 2}{S_f(2)^2-1} \right)$$ and $S_f(p)$, $s_f(p)$ and $\mathcal{P}_f$ are given in \eqref{e3} and \eqref{e4}. \end{theorem} \begin{corollary} \label{co1} Let $f$ be a non-zero multiplicative function satisfying \eqref{e1} and assume that, for any prime $p$ and any integer $\alpha \geq 1$, $f \left( p^\alpha \right) = p^{\alpha - 1} f(p)$. Then, for $x \geq e$, we have \begin{eqnarray*} \sum_{n \leq x} \frac{(-1)^n}{f(n)} &=& \frac{2-f(2)}{2+f(2)} \prod_p \left( 1 - \frac{1}{p} + \frac{1}{f(p)}\right) \left( \log x + \gamma + \sum_p \frac{\left( f(p) - p\right) \log p}{(p-1)f(p) + p} - \frac{8 f(2) \log 2}{4 - f(2)^2}\right) \\ & & {} + O \left( \frac{(\log x)^{\lambda_1 + 1}}{x} \right). \end{eqnarray*} \end{corollary} \begin{remark} \label{re} If $S_f(2)=1$ in Theorem~\ref{t}, i.e. $f(2)=2$ in Corollary~\ref{co1}, then the constant $C_f$ reduces to $$C_f = - \mathcal{P}_f \, s_f(2) \, \log \sqrt{2}.$$ \end{remark} \begin{corollary} \label{co2} For $x \geq e$, the following estimates hold. \begin{enumerate} \item[{\rm (i)}] $$\sum_{n \leq x} \frac{(-1)^n}{\varphi(n)} = \frac{\zeta(2) \zeta(3)}{3 \zeta(6)} \left( \log x + \gamma - \sum_{p} \frac{\log p}{p^2-p+1} - \frac{8 \log 2}{3} \right) + O \left( \frac{(\log x)^3}{x} \right).$$ \item[{\rm (ii)}] Let $\chi$ be a non-principal Dirichlet character modulo $q > 2$ and $\varphi(n,\chi)$ be the twisted Euler function attached to $\chi$ given in \eqref{e6}. Then \begin{eqnarray*} \sum_{n \leq x} \frac{(-1)^n}{\varphi(n, \chi)} &=& \frac{\chi(2) L(1,\chi)}{4-\chi(2)} \prod_{p} \left( 1 - \frac{\chi(p)}{p} + \frac{\chi(p)}{p^2} \right) \Biggl ( \log x + \gamma \\ & & {} \left. - \sum_p \frac{\chi(p) \log p}{p^2-p \chi(p) + \chi(p)} - \frac{8(2-\chi(2)) \log 2}{\chi(2)(4-\chi(2))} \right) + O \left( \frac{(\log x)^3}{x} \right). \end{eqnarray*} \item[{\rm (iii)}] Let $\Psi$ be the Dedekind arithmetic function defined in \eqref{e5}. Then \begin{eqnarray*} \sum_{n \leq x} \frac{(-1)^n}{\Psi(n)} &=& - \frac{1}{5} \prod_p \left( 1 - \frac{1}{p(p+1)} \right) \left( \log x + \gamma + \sum_{p} \frac{\log p}{p^2+p-1} + \frac{24 \log 2}{5} \right) \\ & & {} + O \left( \frac{(\log x)^2}{x} \right). \end{eqnarray*} \item[{\rm (iv)}] Let $\gamma(n) := \prod_{p \mid n} p$ be squarefree kernel of $n$. Then \begin{eqnarray*} \sum_{n \leq x} \frac{(-1)^n \gamma(n)}{\varphi(n)^2} &=& \frac{5}{11} \prod_p \left( 1+ \frac{p^2+p-1}{p(p+1)(p-1)^2} \right) \Biggl ( \log x + \gamma \\ & & {} \left. - \sum_p \frac{\left( p^3-2p^2-p+1 \right) \log p}{(p^2-1)(p^4-p^3+2p-1)} - \frac{64 \log 2}{55} \right) + O \left( \frac{(\log x)^7}{x} \right). \end{eqnarray*} \item[{\rm (v)}] Let $\sigma$ be the sum-of-divisors function. Then \begin{eqnarray*} \sum_{n \leq x} \frac{(-1)^n}{\sigma(n)} &=& \frac{S_{\sigma}(2)-1}{S_{\sigma}(2)+1} \prod_p \left( 1-\frac{1}{p} + \frac{(p-1)^2}{p}\sum_{\alpha = 2}^\infty \frac{1}{p^{\alpha}-1} \right) \Biggl ( \log x + \gamma \\ & & {} \left. + \sum_p \log p \left( \frac{1}{p-1} - \frac{s_\sigma(p)}{1+S_\sigma(p)} \right) + \kappa \log 2 \right) + O \left( \frac{(\log x)^4}{x} \right) \end{eqnarray*} where $\kappa \doteq 3.6$. Note that the leading constant is $\doteq - 0.16 \, 468$. \item[{\rm (vi)}] Let $\sigma^*$ be the sum-of-unitary-divisors function. Then \begin{eqnarray*} \sum_{n \leq x} \frac{(-1)^n}{\sigma^*(n)} &=& \frac{S_{\sigma^*}(2)-1}{S_{\sigma^*}(2)+1} \prod_p \left( 1-\frac{1}{p} + \frac{p-1}{p}\sum_{\alpha = 1}^\infty \frac{1}{p^{\alpha}+1} \right) \Biggl ( \log x + \gamma \\ & & {} \left. + \sum_p \log p \left( \frac{1}{p-1} - \frac{s_{\sigma^*}(p)}{1+S_{\sigma^*}(p)} \right) + \nu \log 2 \right) + O \left( \frac{(\log x)^4}{x} \right) \end{eqnarray*} where $\nu \doteq 8.04$. Note that the leading constant is $\doteq - 0.10 \, 259$. \end{enumerate} \end{corollary} \section{Notation} \label{n} The celebrated M\"{o}bius function is as always denoted by $\mu$, $\id(n)=n$, $\varphi$ is the Euler totient function, $\Psi$ is the Dedekind function defined by \begin{alignat}{1} \Psi(n) = n \prod_{p \mid n} \left( 1 + \frac{1}{p} \right) \label{e5} \end{alignat} and, for each fixed non-principal Dirichlet character $\chi$ modulo $q> 2$, the $\chi$-twisted Euler function $\varphi(n,\chi)$ recently introduced in \cite{kac} is defined by \begin{alignat}{1} \varphi(n,\chi) = n \prod_{p \mid n} \left( 1 - \frac{\chi(p)}{p} \right). \label{e6} \end{alignat} For any two arithmetic functions $u$ and $v$, $u \star v$ is the usual Dirichlet convolution product of $u$ and $v$ defined by $$(u \star v)(n) = \sum_{d \mid n} u(d) v(n/d).$$ The \textit{Eratosthenes transform} of $u$ is the arithmetic function $u \star \mu$. Finally, $f$ is a non-zero multiplicative function satisfying \eqref{e1} and $g$ is the Eratosthenes transform of $\id f^{-1}$. Note that the assumption \eqref{e1} can be written as \begin{alignat}{1} p |g(p)| \leq \lambda_1 \quad \textrm{and} \quad p^{\alpha-1} \left | g \left( p^\alpha \right) \right | \leq \lambda_1 \lambda_2^{\alpha - 1} \quad \left( \alpha \geq 2 \right). \label{e7} \end{alignat} \section{Tools} \label{s2} \begin{lemma} \label{le1} Let $\delta > 0$. The Dirichlet series of the arithmetic function $g(n)$ is absolutely convergent in the half-plane $\sigma > \delta$. \end{lemma} \begin{proof} Let $s = \delta + it \in \C$ with $\delta > 0$. The function $g$ is multiplicative and using \eqref{e7} we get for all $z \geq e$ \begin{eqnarray*} \sum_{p \leq z} \sum_{\alpha = 1}^\infty \left | \frac{g \left( p^\alpha \right)}{p^{s \alpha}} \right | &=& \sum_{p \leq z} \left( \frac{|g(p)|}{p^\delta} + \sum_{\alpha = 2}^\infty \left | \frac{g \left( p^\alpha \right)}{p^{s \alpha}} \right | \right) \\ & \leq & \lambda_1 \left( \sum_{p \leq z} \frac{1}{p^{\delta+1}} + \sum_{p \leq z} \frac{1}{p^\delta} \sum_{\alpha = 2}^\infty \left( \frac{\lambda_2}{p^{\delta +1}} \right)^{\alpha-1} \right) \\ &=& \lambda_1 \sum_{p \leq z} \left( \frac{1}{p^{\delta+1}} + \frac{\lambda_2}{p^{\delta} (p^{\delta+1} - \lambda_2)} \right) \\ & \leq & \lambda_1 \sum_{p \leq z} \left( \frac{1}{p^{\delta+1}} + \frac{2\lambda_2}{p^{\delta} (2 - \lambda_2)} \, \frac{1}{p^{\delta+1}} \right) \\ & \leq & \lambda \sum_{p \leq z} \frac{1}{p^{\delta+1}} \end{eqnarray*} where we used the inequality $$\frac{1}{p^\theta - \lambda_2} \leq \frac{2}{2-\lambda_2} \, \frac{1}{p^\theta} \quad \left( \theta \geq 1 \right).$$ This implies the asserted result. \end{proof} \begin{lemma} \label{le2} For all real numbers $z \geq e$ and $a \in \{0,1 \}$ \begin{eqnarray*} \mathrm{(i)} &:& \sum_{n \leq z} |g(n)| \ll \left( \log z \right)^{\lambda}. \\ & & \\ \mathrm{(ii)} &:& \sum_{n > z} \frac{|g(n)| (\log n)^a}{n} \ll z^{-1} \left( \log z \right)^{\lambda + a}. \end{eqnarray*} \end{lemma} \begin{proof} \begin{enumerate} \item[] \item[{\rm (i)}] As in the proof of Lemma~\ref{le1}, we get for all $z \geq e$ \begin{eqnarray*} \sum_{n \leq z} |g(n)| & \leq & \exp \left\{ \sum_{p \leq z} |g(p)| + \sum_{p \leq z} \sum_{\alpha = 2}^\infty \left | g \left( p^\alpha \right) \right | \right\} \\ & \leq & \exp \left\lbrace \lambda_1 \left( \sum_{p \leq z} \frac{1}{p} + \sum_{p \leq z} \sum_{\alpha = 2}^\infty \left( \frac{\lambda_2}{p} \right)^{\alpha - 1} \right) \right\rbrace \\ & \leq & \exp \left\lbrace \lambda_1 \left( \sum_{p \leq z} \frac{1}{p} + \frac{2 \lambda_2}{2-\lambda_2} \sum_{p \leq z} \frac{1}{p} \right) \right\rbrace \\ & = & \exp \left( \lambda \sum_{p \leq z} \frac{1}{p} \right) \ll (\log z)^{\lambda} \end{eqnarray*} as asserted. \item[{\rm (ii)}] Follows from Lemma~\ref{le1},~(i) and partial summation. We leave the details to the reader. \\ \end{enumerate} The proof is complete. \end{proof} \begin{lemma} \label{le3} For any real number $x \geq 1$ and any integer $1 \leq d \leq 2x$, we have $$\sum_{\substack{n \leq x \\ d \mid 2n}} \frac{1}{n} = \frac{\rho(d)}{d} \left( \log \frac{\rho(d) x}{d} + \gamma \right) + O \left( \frac{1}{x} \right)$$ where \begin{equation} \rho(d) := \begin{cases} 2, & \text{if $d$ is even; } \\ 1 , & \text{if $d$ is odd}. \end{cases} \label{e8} \end{equation} \end{lemma} \begin{proof} Let $S(x,d)$ be the sum of the left-hand side. If $x < d \leq 2x$, then $$S(x,d) = \frac{2}{d} < \frac{2}{x}.$$ If $d \leq x$ is odd, then by Gauss's theorem we have $$S(x,d) = \sum_{\substack{n \leq x \\ d \mid n}} \frac{1}{n} = \frac{1}{d} \sum_{1 \leq k \leq x/d} \frac{1}{k} = \frac{1}{d} \left( \log \frac{x}{d} + \gamma + O \left( \frac{d}{x} \right) \right)$$ as required. \\ \item[] Now assume that $d$ is even. If $\frac{2x}{3} < d \leq x$, then $\frac{x}{d} - \frac{1}{2} < 1$ and therefore \begin{eqnarray*} S(x,d) &=& \sum_{\substack{n \leq x \\ d \mid n}} \frac{1}{n} + \sum_{\substack{n \leq x \\ n \equiv d/2 \ (\textrm{mod} \, d)}} \frac{1}{n} \\ &=& \frac{1}{d} \sum_{1 \leq k \leq x/d} \frac{1}{k} + \frac{1}{d} \sum_{0 \leq k \leq x/d-1/2} \frac{1}{k+1/2} \\ &=& \frac{1}{d} \left( \log \frac{x}{d} + \gamma + O \left( \frac{d}{x} \right) \right) + \frac{2}{d} \\ &=& \frac{1}{d} \left( \log \frac{x}{d} + \gamma \right) + O \left( \frac{1}{x} \right) \end{eqnarray*} since the assumption $d > \frac{2x}{3}$ implies $\frac{2}{d} < \frac{3}{x}$. On the other hand, since $1 \leq \frac{x}{d} < \frac{3}{2}$, we have $$\left | \frac{2}{d} \log \frac{2x}{d} + \frac{\gamma}{d} - \frac{1}{d} \log \frac{x}{d} \right | \leq \frac{1}{d} \left( \log \frac{4x}{d} + \gamma \right) < \frac{\log 6 + \gamma}{d} < \frac{3 \left( \log 6 + \gamma \right)}{2x}$$ and thus in this case we also get $$S(x,d) = \frac{2}{d} \left( \log \frac{2x}{d} + \gamma \right) + O \left( \frac{1}{x} \right).$$ If $1 \leq d \leq \frac{2x}{3}$, since $$\sum_{1 \leq k \leq x/d-1/2} \frac{1}{k+1/2} = \log \frac{x}{d} + \gamma - 2 + \log 4 + O \left( \frac{d}{x} \right)$$ where we used the fact that $d \leq \frac{2x}{3}$ implies $\frac{x}{d} - \frac{1}{2} \geq \frac{2x}{3d}$, then \begin{eqnarray*} S(x,d) &=& \frac{1}{d} \left( \log \frac{x}{d} + \gamma + O \left( \frac{d}{x} \right) \right) + \frac{2}{d} \\ & & {} + \frac{1}{d} \left( \log \frac{x}{d} + \gamma - 2 + \log 4 + O \left( \frac{d}{x} \right) \right) \\ &=& \frac{2}{d} \left( \log \frac{2x}{d} + \gamma \right) + O \left( \frac{1}{x} \right) \end{eqnarray*} completing the proof. \end{proof} \section{Sums of reciprocals} \label{s3} \begin{lemma} \label{le4} Let $f$ satisfying the conditions \eqref{e1}. Then $$\sum_{n \leq x} \frac{1}{f(n)} = \log x \sum_{d = 1}^{\infty} \frac{g(d)}{d} + K_f + O \left( \frac{(\log x)^{\lambda + 1}}{x} \right)$$ where \begin{alignat}{1} K_f := \sum_{d=1}^\infty \frac{g(d)}{d} \left( \gamma - \log d \right) \label{e9} \end{alignat} and $$\sum_{\substack{n \leq 2x \\ n \, \mathrm{even}}} \frac{1}{f(n)} = \frac{\log x}{2} \sum_{d = 1}^{\infty} \frac{g(d) \rho(d)}{d} + L_f + O \left( \frac{(\log x)^{\lambda + 1}}{x} \right)$$ where \begin{alignat}{1} L_f := \frac{1}{2} \sum_{d=1}^\infty \frac{g(d) \rho(d)}{d} \left( \gamma + \log \frac{\rho(d)}{d} \right). \label{e10} \end{alignat} and where $\rho(d)$ is given in \eqref{e8} and $\lambda$ is defined in \eqref{e2}. \end{lemma} \begin{proof} The proof of the first estimate follows the classical lines. We have \begin{eqnarray*} \sum_{n \leq x} \frac{1}{f(n)} &=& \sum_{n \leq x} \frac{(g \star \mathbf{1})(n)}{n} = \sum_{n \leq x} \frac{1}{n} \sum_{d \mid n} g(d) \\ &=& \sum_{d \leq x} \frac{g(d)}{d} \sum_{k \leq x/d} \frac{1}{k} \\ &=& \sum_{d \leq x} \frac{g(d)}{d} \left( \log \frac{x}{d} + \gamma + O \left( \frac{d}{x} \right) \right) \\ &=& (\log x + \gamma) \sum_{d \leq x} \frac{g(d)}{d} - \sum_{d \leq x} \frac{g(d) \log d}{d}+ O \left( \frac{1}{x} \sum_{d \leq x} |g(d)| \right) \\ \end{eqnarray*} and by Lemma~\ref{le2} we get $$\sum_{n \leq x} \frac{1}{f(n)} = ( \log x + \gamma ) \sum_{d = 1}^{\infty} \frac{g(d) \rho(d)}{d} - \sum_{d = 1}^{\infty} \frac{g(d) \log(d)}{d} + O \left( \frac{(\log x)^{\lambda + 1}}{x} \right)$$ as asserted. \\ \item[] The second estimate is similar, with the additional use of Lemma~\ref{le3} which gives \begin{eqnarray*} \sum_{\substack{n \leq 2x \\ n \, \textrm{even}}} \frac{1}{f(n)} &=& \sum_{n \leq x} \frac{1}{f(2n)} = \sum_{n \leq x} \frac{(g \star \mathbf{1})(2n)}{2n} \\ &=& \frac{1}{2} \sum_{n \leq x} \frac{1}{n} \sum_{d \mid 2n} g(d) = \frac{1}{2} \sum_{d \leq 2x} g(d) \sum_{ \substack{n \leq x \\ d \mid 2n}} \frac{1}{n} \end{eqnarray*} \begin{eqnarray*} &=& \frac{1}{2} \sum_{d \leq 2x} g(d) \left( \frac{\rho(d)}{d} \left( \log \frac{\rho(d) x}{d} + \gamma \right) + O \left( \frac{1}{x} \right) \right) \\ &=& \frac{1}{2} ( \log x + \gamma ) \sum_{d \leq 2x} \frac{g(d) \rho(d)}{d} + \frac{1}{2} \sum_{d \leq 2x} \frac{g(d) \rho(d)}{d} \log \frac{\rho(d)}{d} \\ & & {} + O \left( \frac{1}{x} \sum_{d \leq 2x} |g(d)| \right) \\ &=& \frac{1}{2} ( \log x + \gamma ) \sum_{d = 1}^{\infty} \frac{g(d) \rho(d)}{d} - \frac{1}{2} ( \log x + \gamma ) \sum_{d > 2x}^{\infty} \frac{g(d) \rho(d)}{d} \\ & & {} + \frac{1}{2} \sum_{d=1}^{\infty} \frac{g(d) \rho(d)}{d} \log \frac{\rho(d)}{d} - \frac{1}{2} \sum_{d > 2x} \frac{g(d) \rho(d)}{d} \log \frac{\rho(d)}{d} \\ & & {} + O \left( \frac{1}{x} \sum_{d \leq 2x} |g(d)| \right) \end{eqnarray*} and by Lemma~\ref{le2} we get $$\sum_{\substack{n \leq 2x \\ n \, \textrm{even}}} \frac{1}{f(n)} = \frac{1}{2} ( \log x + \gamma ) \sum_{d = 1}^{\infty} \frac{g(d) \rho(d)}{d} + \frac{1}{2} \sum_{d = 1}^{\infty} \frac{g(d) \rho(d)}{d} \log \frac{\rho(d)}{d} + O \left( \frac{(\log x)^{\lambda + 1}}{x} \right)$$ completing the proof. \end{proof} \section{Proof of Theorem~\ref{t}} \label{s4} \subsection{First step: Asymptotic formula} From Lemma~\ref{le4} we get \begin{eqnarray*} \sum_{n \leq x} \frac{(-1)^n}{f(n)} &=& 2 \sum_{\substack{n \leq x \\ n \, \textrm{even}}} \frac{1}{f(n)} - \sum_{n \leq x} \frac{1}{f(n)} \\ &=& \log \frac{x}{2} \sum_{d = 1}^{\infty} \frac{g(d) \rho(d)}{d} - \log x \sum_{d = 1}^{\infty} \frac{g(d)}{d} + 2L_f - K_f \\ & & {} + O \left( \frac{(\log x)^{\lambda + 1}}{x} \right) \\ \end{eqnarray*} where $K_f$ et $L_f$ are given in \eqref{e9} et \eqref{e10}, so that setting \begin{eqnarray*} C_f &:=& 2L_f - K_f - \log 2 \sum_{d = 1}^{\infty} \frac{g(d)}{d} \\ &=& \sum_{d = 1}^{\infty} \frac{g(d)}{d} \left( \left( \rho(d) - 1 \right) \left( \gamma - \log d \right) + \rho(d) \log \frac{\rho(d)}{2} \right) \\ &=& \sum_{\substack{d = 1 \\ d \ \textrm{even}}}^{\infty} \frac{g(d)}{d} \left( \gamma - \log d \right) + \sum_{\substack{d = 1 \\ d \ \textrm{odd}}}^{\infty} \frac{g(d) \rho(d)}{d} \log \frac{\rho(d)}{2} \\ &=& \sum_{d = 1}^{\infty} \frac{g(2d)}{2d} \left( \gamma - \log 2d \right) - \log 2 \sum_{\substack{d = 1 \\ d \ \textrm{odd}}}^{\infty} \frac{g(d)}{d} \\ &=& \frac{1}{2} \sum_{d = 1}^{\infty} \frac{g(2d)}{d} \left( \gamma - \log d \right) - \log 2 \sum_{d = 1}^{\infty} \frac{g(d)}{d} \\ \end{eqnarray*} we obtain \begin{eqnarray*} \sum_{n \leq x} \frac{(-1)^n}{f(n)} &=& \log x \sum_{d = 1}^{\infty} \frac{g(d) \left( \rho(d) - 1 \right)}{d} + C_f + O \left( \frac{(\log x)^{\lambda + 1}}{x} \right) \\ &=& \frac{\log x}{2} \sum_{d = 1}^{\infty} \frac{g(2d)}{d} + C_f + O \left( \frac{(\log x)^{\lambda + 1}}{x} \right) \end{eqnarray*} completing the proof. \qed \subsection{Second step: Series expansions} \noindent The unique decomposition $d= 2^\alpha m$ with $\alpha \in \Z^+$ and $m \geq 1$ odd provides \begin{eqnarray*} \sum_{d=1}^\infty \frac{g(d)}{d} &=& \sum_{\alpha = 0}^\infty \frac{g(2^\alpha) }{2^\alpha} \sum_{\substack{m=1 \\ m \ \textrm{odd}}}^\infty \frac{g(m)}{m} \\ &=& \left( 1 + \sum_{\alpha = 1}^\infty \frac{g(2^\alpha) }{2^\alpha} \right) \prod_{p \geq 3} \left( 1 + \sum_{\alpha = 1}^\infty \frac{g(p^\alpha) }{p^\alpha} \right) \\ &=& \frac{1}{2} \sum_{\alpha = 0}^\infty \frac{1}{f(2^\alpha)} \prod_{p \geq 3} \left( 1 - \frac{1}{p} \right) \left( 1 + \sum_{\alpha = 1}^\infty \frac{1}{f (p^\alpha)} \right) \\ &=& \mathcal{P}_f \end{eqnarray*} and \begin{eqnarray*} \sum_{d=1}^\infty \frac{g(2d)}{d} &=& \sum_{\alpha = 0}^\infty \frac{g \left( 2^{\alpha+1} \right)}{2^\alpha} \sum_{\substack{m=1 \\ m \, \textrm{odd}}}^{\infty} \frac{g(m)}{m} \\ &=& \left( g(2) + 2 \sum_{\alpha = 2}^\infty \frac{g \left( 2^{\alpha} \right)}{2^\alpha} \right) \prod_{p \geq 3} \left( 1 + \sum_{\alpha=1}^{\infty} \frac{g \left( p^\alpha \right)}{p^\alpha} \right) \\ &=& \left( \sum_{\alpha=1}^\infty \frac{1}{f \left( 2^\alpha \right)} -1 \right) \prod_{p \geq 3} \left( 1-\frac{1}{p} \right) \left( 1 + \sum_{\alpha = 1}^\infty \frac{1}{f \left( p^\alpha \right)} \right) \\ &=& \frac{2\left( S_f(2)-1\right) }{S_f(2)+1} \mathcal{P}_f. \end{eqnarray*} Similarly \begin{eqnarray*} \sum_{d=1}^\infty \frac{g(2d) \log d}{d} &=& \sum_{\alpha = 0}^\infty \frac{g \left( 2^{\alpha+1} \right)}{2^\alpha} \sum_{\substack{m=1 \\ m \, \textrm{odd}}}^{\infty} \frac{g(m) \log (2^\alpha m)}{m} \\ &=& \sum_{\alpha = 0}^\infty \frac{g \left( 2^{\alpha+1} \right)}{2^\alpha} \left( \alpha \log 2 \sum_{\substack{m=1 \\ m \, \textrm{odd}}}^{\infty} \frac{g(m)}{m} + \sum_{\substack{m=1 \\ m \, \textrm{odd}}}^{\infty} \frac{g(m) \log m}{m} \right) \\ &=& \log 2 \sum_{\alpha = 0}^\infty \frac{\alpha g \left( 2^{\alpha+1} \right)}{2^\alpha} \sum_{\substack{m=1 \\ m \, \textrm{odd}}}^{\infty} \frac{g(m)}{m} + \sum_{\alpha = 0}^\infty \frac{g \left( 2^{\alpha+1} \right)}{2^\alpha} \sum_{\substack{m=1 \\ m \, \textrm{odd}}}^{\infty} \frac{g(m) \log m}{m} \\ &=& \log 2 \left( \sum_{\alpha=1}^\infty \frac{\alpha - 2}{f \left( 2^\alpha \right)} \right) \prod_{p \geq 3} \left( 1-\frac{1}{p} \right) \left( 1 + \sum_{\alpha = 1}^\infty \frac{1}{f \left( p^\alpha \right)} \right) \\ & & {} + \left( \sum_{\alpha=1}^\infty \frac{1}{f \left( 2^\alpha \right)} -1 \right) \sum_{\substack{m=1 \\ m \, \textrm{odd}}}^{\infty} \frac{g(m) \log m}{m} \\ &=& \frac{2 \log 2 \left( s_f(2)-2S_f(2) \right)}{S_f(2)+1} \mathcal{P}_f + \left( S_f(2) - 1 \right) \sum_{\substack{m=1 \\ m \, \textrm{odd}}}^{\infty} \frac{g(m) \log m}{m}. \\ \end{eqnarray*} Now since for $s \in \C$ such that $\re s > \delta > 0$, we have $$\sum_{\substack{m=1 \\ m \, \textrm{odd}}}^{\infty} \frac{g(m)}{m^s} = \prod_{p \geq 3} \left( 1 - \frac{1}{p^s} \right) \left( 1 + \sum_{\alpha = 1}^{\infty} \frac{1}{p^{\alpha(s-1)} f(p^\alpha)} \right) := G(s)$$ we infer $$\sum_{\substack{m=1 \\ m \, \textrm{odd}}}^{\infty} \frac{g(m) \log m}{m} = - G'(1).$$ Using the logarithmic derivative, we get $$\frac{G'_f(s)}{G(s)} = \sum_{p \geq 3} \log p \left( \frac{1}{p^s-1} - \frac{\sum_{\alpha=1}^{\infty} \frac{\alpha}{{p^{\alpha(s-1)} f(p^\alpha)}}}{1 + \sum_{\alpha = 1}^{\infty} \frac{1}{p^{\alpha(s-1)} f(p^\alpha)}} \right) $$ and therefore $$\sum_{\substack{m=1 \\ m \, \textrm{odd}}}^{\infty} \frac{g(m) \log m}{m} = - \frac{2 \mathcal{P}_f}{S_f(2)+1} \sum_{p \geq 3} \log p \left( \frac{1}{p-1} - \frac{s_f(p)}{1 + S_f(p)} \right)$$ thus completing the proof of Theorem~\ref{t}. \qed \section{Acknowledgments} We express our gratitude to the referee for his careful reading of the manuscript and the many valuable suggestions and corrections he made. \begin{thebibliography}{9} \bibitem{kac} J. Kaczorowski and K. Wiertelak, On the sum of the twisted Euler function, \textit{Internat. J. Number Theory} \textbf{8} (2012), 1741--1761. \bibitem{lan} E. Landau, \"{U}ber die Zahlentheoretische Function $\varphi(n)$ und ihre Beziehung zum Goldbachschen Satz, \textit{Nachrichten der Koniglichten Gesellschaft der Wissenschaften zu G\"{o}ttingen, Mathematisch-Physikalische Klasse}, 1900, 177--186. \bibitem{woo} K. Wooldridge, Mean value theorems for arithmetic functions similar to Euler's phi-function, \textit{Proc. Amer. Math. Soc.} \textbf{58} (1976), 73--78. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 11A25; Secondary 11N37. \noindent \emph{Keywords: } alternating sum, average order over a polynomial sequence. \bigskip \hrule \bigskip \noindent (Concerned with sequences \seqnum{A001615}, \seqnum{A058026}, \seqnum{A065463}, \seqnum{A082695}, \seqnum{A211117}, and \seqnum{A211178}.) \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received February 9 2013; revised versions received March 3 2013; June 12 2013. Published in {\it Journal of Integer Sequences}, June 16 2013. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .