\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf A Note on Cosine Power Sums} \vskip 1cm \large Mircea Merca\\ Department of Mathematics\\ University of Craiova\\ A. I. Cuza 13 \\ Craiova, 200585 \\ Romania \\ \href{mailto:mircea.merca@profinfo.edu.ro}{\tt mircea.merca@profinfo.edu.ro} \\ \end{center} \vskip .2 in \begin{abstract} Using the multisection series method, we establish formulas for various power sums of cosine functions. As corollaries we derive several combinatorial identities. \end{abstract} \section{Introduction} \label{intro} In \cite{Mrk11,Mrk12}, we presented two open problems concerning the asymptotic behaviour of cosine power sums, \begin{equation} \sum_{k=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\cos^p\left(\frac{k\pi}{n}\right)\ , \end{equation} where $\lfloor x\rfloor$ denotes the largest integer not greater than $x$. Under certain conditions, these cosine power sums can be determined exactly, without approximations \cite{Quo68}. If $$f(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n+\cdots$$ is a finite or convergent infinite series, then for $0\le r1\ ;$ \item $\displaystyle{\sum_{k=1}^{\left\lfloor p/5\right\rfloor}\binom{2p-5}{p-5k} = \frac{4^{p-3}}{5}-\frac{(\sqrt{5}+1)^{2p-5}-(\sqrt{5}-1)^{2p-5}}{5\cdot2^{2p-5}}}\ ,\quad p>2\ .$ \end{enumerate} \end{corollary} \begin{corollary}\label{C5} Let $p$ be a positive integer. Then \begin{enumerate} \item $\displaystyle{\sum_{k=0}^{p}(-1)^k\binom{2p}{p-k} = \frac{1}{2}\binom{2p}{p}}\ ;$ \item $\displaystyle{\sum_{k=0}^{\left\lfloor p/2\right\rfloor}(-1)^k\binom{2p}{p-2k} = \frac{1}{2}\binom{2p}{p}+2^{p-1}}\ ;$ \item $\displaystyle{\sum_{k=0}^{\left\lfloor p/3\right\rfloor}(-1)^k\binom{2p}{p-3k} = \frac{1}{2}\binom{2p}{p}+3^{p-1}}\ ;$ \item $\displaystyle{\sum_{k=0}^{\left\lfloor p/4\right\rfloor}(-1)^k\binom{2p}{p-4k} = \frac{1}{2}\binom{2p}{p}+\frac{(2+\sqrt{2})^p+(2-\sqrt{2})^p}{4}}\ ;$ \item $\displaystyle{\sum_{k=0}^{\left\lfloor p/5\right\rfloor}(-1)^k\binom{2p}{p-5k} = \frac{1}{2}\binom{2p}{p}+\frac{(5+\sqrt{5})^p+(5-\sqrt{5})^p}{5\cdot2^p}}\ .$ \end{enumerate} \end{corollary} Note that Corollary \ref{C3} is related in \cite{Slo12} with the sequences $\seqnum{A032443}$, $\seqnum{A114121}$, $\seqnum{A007583}$, $\seqnum{A007582}$, $\seqnum{A078789}$, $\seqnum{A085282}$, Corollary \ref{C4} with $\seqnum{A000302}$, $\seqnum{A002450}$, $\seqnum{A095931}$, Corollary \ref{C5} with $\seqnum{A088218}$, $\seqnum{A005317}$, $\seqnum{A191993}$, $\seqnum{A007052}$, $\seqnum{A081567}$, respectively. \section{Acknowledgements} The author would like to thank Professor Cecil C. Rousseau from the University of Memphis for his comments on the exact formulas of these cosine power sums. The author expresses his gratitude to Oana Merca for the careful reading of the manuscript and helpful remarks. \begin{thebibliography}{10} \bibitem{Hon85} R. Honsberger, \textit{Mathematical Gems III}, Dolciani Math.\ Expositions No.\ 9, Mathematical Association of America, 1985. \bibitem{Mrk11} M. Merca, Asymptotic behavior of cosine power sums, \textit{SIAM, Problems and Solutions Online Archive}, \url{http://siam.org/journals/categories/11-002.php}, 2011. \bibitem{Mrk12} M. Merca, Problem 89, \textit{Eur. Math. Soc. Newsl.}, \textbf{81} (2011), 59. \bibitem{Rio68} J. Riordan, \textit{Combinatorial Identities}, John Wiley \& Sons, 1968. \bibitem{Quo68} J. M. Quoniam, and M. G. Greening, A trigonometric summation, \textit{Amer. Math. Monthly}, \textbf{75} (1968), 405--406. \bibitem{Sim75} T. Simpson, The invention of a general method for determining the sum of every 2d, 3d, 4th, or 5th, \&c. term of a series, taken in order; The sum of the whole series being known, \textit{Philosophical Transactions}, \textbf{50} (1757--1758), 757--769. Available at \url{http://www.jstor.org/stable/105328}. \bibitem{Slo12} N. J. A. Sloane, {\em The On-Line Encyclopedia of Integer Sequences}, published electronically at \url{http://oeis.org}, 2012. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 33B10; Secondary 05A19, 11B65. \noindent \emph{Keywords:} trigonometric power sum, multisection formula, combinatorial identity. \bigskip \hrule \bigskip \noindent (Concerned with sequences \seqnum{A000302}, \seqnum{A002450}, \seqnum{A005317}, \seqnum{A007052}, \seqnum{A007582}, \seqnum{A007583}, \seqnum{A032443}, \seqnum{A078789}, \seqnum{A081567}, \seqnum{A085282}, \seqnum{A088218}, \seqnum{A095931}, \seqnum{A114121}, and \seqnum{A191993}.) \bigskip \hrule \bigskip \noindent Received February 15 2012; revised version received May 8 2012. Published in {\it Journal of Integer Sequences}, May 28 2012. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .