\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf Identities Involving Generalized Harmonic \\ \vskip 0.01in Numbers and Other Special Combinatorial \\ \vskip 0.01in Sequences \\ \vskip .10in } \vskip 1cm \large Huyile Liang\footnote{This work was supported by the Science Research Foundation of Inner Mongolia (2012MS0118) and the National Natural Science Foundation of China (NSFC Grant \#11061020).} and Wuyungaowa\\ Department of Mathematics\\ College of Sciences and Technology\\ Inner Mongolia University\\ Hohhot 010021 \\ P. R. China\\ \href{mailto:lianghuyile@gmail.com}{\tt lianghuyile@gmail.com } \\ \href{mailto:wuyungw@163.com}{\tt wuyungw@163.com} \\ \end{center} \vskip .2 in \begin{abstract} In this paper, we study the properties of the generalized harmonic numbers $H_{n,k,r}(\alpha,\beta)$. In particular, by means of the method of coefficients, generating functions and Riordan arrays, we establish some identities involving the numbers $H_{n,k,r}(\alpha,\beta)$, Cauchy numbers, generalized Stirling numbers, Genocchi numbers and higher order Bernoulli numbers. Furthermore, we obtain the asymptotic values of some summations associated with the numbers $H_{n,k,r}(\alpha,\beta)$ by Darboux's method and Laplace's method. \end{abstract} \section{Introduction} Harmonic numbers are important in various branches of combinatorics and number theory, and they also frequently appear in the analysis of algorithms and expressions for special functions. Recently, many papers have been devoted to the study of harmonic number identities by various methods; see, for instance, \cite{ref1, ref2, ref3, ref4, ref5, ref6, ref7}. We recall the definition of harmonic numbers $H_n=\sum_{k=1}^{n}\frac{1}{k}$ for $n \geq 0$. The generating function of $H_n$ is $\sum_{n=1}^{\infty}H_nt^n=-\frac{\ln(1-t)}{1-t}$. In this paper, we discuss a class of generalized harmonic numbers $H_{n,k,r}(\alpha,\beta)$. We refer to Zhao and Wuyungaowa \cite{ref10} for this topic. The definition of $H_{n,k,r}(\alpha,\beta)$ is \begin{equation} \sum_{n=0}^{\infty}H_{n,k,r}(\alpha,\beta)t^n=\frac{(-\ln(1-\alpha t))^r}{(1-\beta t)^k} , \label{af-1.1} \end{equation} where ${k\geq}1$ and ${r\geq}1$ are integers. Let~$(\alpha,\beta)$ be a pair of real numbers and (${\alpha\beta\neq0}$). From the generating function of $H_{n,k,r}(\alpha,\beta)$, we know that $H_{n,1,1}(1,1)=H_n ({n\geq0})$. From (\ref{af-1.1}) we obtain \begin{align} &{(-\ln(1-\alpha t))^r=(1-\beta t)^k\sum_{n=0}^{\infty}H_{n,k,r}(\alpha,\beta)t^n}\nonumber\\ &=\sum_{i=0}^{k}\binom{k}{i}(-\beta t)^i\sum_{n=0}^{\infty}H_{n,k,r}(\alpha,\beta)t^n\nonumber\\ &=\sum_{n=0}^{\infty}\sum_{h=0}^{k}\binom{k}{h}(-\beta)^hH_{n-h,k,r}(\alpha,\beta)t^n. \label{af-1.2} \end{align} For convenience, let us recall some definitions and notations. Denote the generalized Stirling numbers of the first kind by $s(n, k; r)$, and the generalized Stirling numbers of the second kind by $S(n, k; r)$. Denote further $C_n^{(k)}$, $\hat{C}_n^{(k)}$, $B_n^{(r)}$, $G_n^{(x)}$, $G_n^{(k)}$ be the higher order Cauchy numbers of both kinds, higher order Bernoulli numbers, the generalized Genocchi numbers, the higher order Genocchi numbers and the generalized Lah numbers. These numbers satisfy the following generating functions respectively: \begin{align} & \sum_{n=k}^{\infty}s(n, k; r)\frac{(-1)^{n-k}t^n}{n!}=\frac{\ln^k(1+t)}{(1+t)^rk!},\quad k=0,1,2,\ldots, \label{af-1.3}\\ & \sum_{n=k}^{\infty}|s(n, k; r)|\frac{t^n}{n!}=\frac{(-\ln(1-t))^k}{(1-t)^rk!},\quad k=0,1,2,\ldots, \label{af-1.4}\\ & \sum_{n=k}^{\infty}S(n, k; r)\frac{t^n}{n!}=\frac{e^{rt}(e^t-1)^k}{k!},\quad k=0,1,2,\ldots, \label{af-1.5}\\ & \sum_{n=0}^{\infty}C_n^{(k)}\frac{t^n}{n!}=\bigg(\frac{t}{\ln(1+t)}\bigg)^k,\label{af-1.6}\\ &\sum_{n=k}^{\infty}\hat{C}_n^{(k)}\frac{t^n}{n!}=\bigg(\frac{t}{(1+t)\ln(1+t)}\bigg)^k,\label{af-1.7}\\ & \sum_{n=0}^{\infty}G_n^{(k)}\frac{t^n}{n!}=\bigg(\frac{2t}{e^t+1}\bigg)^k,\label{af-1.8}\\ & \sum_{n=0}^{\infty}\frac{G_n^{(x)}}{2^n}\frac{t^n}{n!}=\bigg(\frac{2}{e^t+1}\bigg)^x,\label{af-1.9} \end{align} \begin{align} & \sum_{n=0}^{\infty}B_n^{(r)}\frac{t^n}{n!}=\bigg(\frac{t}{e^t-1}\bigg)^r,\label{af-1.10}\\ & \sum_{n=k}^{\infty}L(n,k;r)\frac{t^n}{n!}=(1+t)^r\frac{1}{k!}\bigg(\frac{-t}{1+t}\bigg)^k,\label{af-1.11}\\ &\sum_{n=0}^{\infty}H_{n}^{(r)}(z)t^n=\frac{(-\ln(1-t))^{r+1}}{t(1-t)^{1-z}},\label{af-1.12}\\ &\sum_{n=1}^{\infty}H_{n}^{(r)}t^n=\frac{-\ln(1-t)}{(1-t)^r}.\label{af-1.13} \end{align} Let $[t^n]f(t)$ be the coefficient of $t^n$ in the formal power series of $f(t)$, where $ f(t)=\sum_{n=0}^{\infty}f_nt^n$. (See Merlini, Sprugnoli, and Verri \cite{ref8} for related topics.) If $f(t)$ and $g(t)$ are formal power series, we get the following relations: \begin{align} &[t^n](\alpha f(t)+\beta g(t)) =\alpha [t^n]f(t)+\beta [t^n]g(t), \label{af-1.14}\\ &[t^n]f(t)=[t^{n-1}]f(t), \label{af-1.15}\\ &[t^n]f(t)g(t)=\sum_{j=0}^{n}[y^j]f(y)[t^{n-j}]g(t). \label{af-1.16} \end{align} A {\it Riordan array} is a pair $(d(t),h(t))$ of formal power series with $h_0=h(0)=0$. It defines an infinite lower triangular array $(d_{n,k})_{n,k\in N}$ according to the rule \[ d_{n,k}=[t^n]d(t)(h(t))^k\,. \] Hence we write $\{d_{n,k}\}=(d(t),h(t))$. Moreover, if $(d(t),h(t))$ is a Riordan array and $f(t)$ is the generating function of the sequence $\{f_k\}_{k\in N}$, i.e., $f(t)=\sum_{k=0}^{\infty}f_kt^k$, then we have \begin{align} &\sum_{k=0}^{\infty}d_{n,k}f_k=[t^n]d(t)f(h(t))=[t^n]d(t)[f(y)\mid y=h(t)]. \label{af-1.17} \end{align} Furthermore, based on the generating function (\ref{af-1.1}) we obtain the next three Riordan arrays: \begin{align} &\{H_{n,k,r}(\alpha, \beta)\}=\bigg(\frac{1}{(1-\beta t)^k}, \frac{-\ln(1-\alpha t)}{t}\bigg), \label{af-1.18}\\ &\{H_{n,k,{r+1}}(\alpha, \beta)\}=\bigg(\frac{-\ln(1-\alpha t)}{(1-\beta t)^k}, \frac{-\ln(1-\alpha t)}{t}\bigg), \label{af-1.19}\\ &\{H_{n,k,r}(\alpha, \alpha)\}=\bigg(\frac{1}{(1-\alpha t)^k}, \frac{-\ln(1-\alpha t)}{t}\bigg). \label{af-1.20} \end{align} In this paper, we pay particular attention to the three Riordan arrays above. \section{Identities involving {$H_{n,k,r}(\alpha,\beta)$}, $s(n, k; r)$, $S(n, k; r)$, $B_n^{(r)}$ and $L(n,k;r)$} \begin{theorem} Let $ k,~r,~m\geq1$, $l\geq0$ be integers. Then \begin{align} &\sum_{j=0}^{n}\sum_{h=0}^{k}\binom{k}{h}(-\beta)^h{H}_{j-h,k,r}(\alpha,\beta)|s(n-j, m; l)|\frac{\alpha^{n-j}}{(n-j)!} =\frac{1}{m!}H_{n,l,{m+r}}(\alpha,\alpha). \label{af-2.1} \end{align} \end{theorem} \begin{proof} By applying (\ref{af-1.2}), (\ref{af-1.4}) and (\ref{af-1.16}), we get \begin{align*} &\sum_{j=0}^{n}\sum_{h=0}^{k}\binom{k}{h}(-\beta)^h{H}_{j-h,k,r}(\alpha,\beta)|s(n-j, m; l)|\frac{\alpha^{n-j}}{(n-j)!}\\ &=[t^n]\frac{(-\ln(1-\alpha t))^{m+r}}{(1-\alpha t)^l m!}=\frac{1}{m!}H_{n,l,m+r}(\alpha,\alpha)\,. \end{align*} \end{proof} \begin{theorem} Let $n,~k,~j\geq 1$, $l\geq 0$ be integers. Then \begin{equation} \sum_{j=m}^{n}H_{n,k,j}(\alpha,\beta)S(j, m; l)\frac{m!}{j!}=\sum_{i=0}^{n-m}\binom{i+k-1}{i}\binom{n-i+l-1}{n-m-i}\beta^i \alpha^{n-i}. \label{af-2.2} \end{equation} \end{theorem} \begin{proof} By using (\ref{af-1.5}), (\ref{af-1.17}) and (\ref{af-1.18}), we obtain \begin{align*} &\sum_{j=m}^{n}H_{n,k,j}(\alpha,\beta)S(j, m; l)\frac{m!}{j!} =[t^n]\frac{1}{(1-\beta t)^k} [(e^y-1)^me^{yl}\mid y=-\ln(1-\alpha t)]\\ &=\alpha^m[t^{n-m}]\frac{1}{(1-\beta t)^k}\frac{1}{(1-\alpha t)^{l+m}} =\sum_{i=0}^{n-m}\binom{i+k-1}{i}\binom{n-i+l-1}{n-m-i}\beta^i \alpha^{n-i}\,. \end{align*} \end{proof} \begin{corollary} The following relations hold: \begin{align} &\sum_{j=0}^{n}\sum_{h=0}^{k}\binom{k}{h}(-\beta)^h{H}_{j-h,k,r}(\alpha,\beta)|s(n-j, m)|\frac{\alpha^{n-j}}{(n-j)!} =\frac{\alpha^n}{m!}|s(n, m+r)|\frac{(m+r)!}{n!}, \label{af-2.3}\\ &\sum_{j=m}^{n}H_{n,k,j}(\alpha,\alpha)S(j, m; l)\frac{m!}{j!}=\binom{n+l+k-1}{n-m}\alpha^n, \label{af-2.4}\\ &\sum_{j=m}^{n}H(n,r-1)S(j, m; l)\frac{m!}{j!}=\binom{n+l}{n-m}. \label{af-2.5} \end{align} \end{corollary} \begin{proof} Setting $l=0$ in (\ref{af-2.1}), we get (\ref{af-2.3}). Setting $\beta=\alpha$ in (\ref{af-2.2}), we have (\ref{af-2.4}). Setting $\beta=\alpha=k=1$ in (\ref{af-2.2}), we obtain (\ref{af-2.5}). \end{proof} \begin{theorem} Let $n,~k\geq 1$ and $l,~j\geq 0$ be integers. Then \begin{align} &\sum_{j=m}^{n}H_{n,k,j+1}(\alpha,\beta)S(j, m; l)\frac{m!}{j!}=\sum_{i=0}^{n-m}H_{i,k,1}(\alpha,\beta)\binom{n-i+l-1}{n-m-i}\alpha^{n-i}. \label{af-2.6} \end{align} \end{theorem} \begin{proof} By applying (\ref{af-1.5}), (\ref{af-1.17}) and (\ref{af-1.19}), we have \begin{align*} &\sum_{j=m}^{n}H_{n,k,j+1}(\alpha,\beta)S(j, m; l)\frac{m!}{j!} =[t^n]\frac{-\ln(1-\alpha t)}{(1-\beta t)^k} [(e^y-1)^me^{yl}\mid y=-\ln(1-\alpha t)]\\ &=\alpha^m[t^{n-m}]\frac{-\ln(1-\alpha t)}{(1-\beta t)^k}\frac{1}{(1-\alpha t)^{l+m}} =\sum_{i=0}^{n-m}H_{i,k,1}(\alpha,\beta)\binom{n-i+l-1}{n-m-i}\alpha^{n-i}\,. \end{align*} \end{proof} \begin{corollary} The following relations hold: \begin{align} &\sum_{j=m}^{n}H_{n,k,j+1}(\alpha,\alpha)S(j, m; l)\frac{m!}{j!}=\alpha^n H_{n-m-1}(1-m-l-k), \label{af-2.7}\\ &\sum_{j=m}^{n}H_{n,k,j+1}(\alpha,\alpha)S(j, m; l)\frac{m!}{j!}=\alpha^n H_{n-m}^{(m+l+k)}. \label{af-2.8} \end{align} \end{corollary} \begin{proof} Setting $\beta=\alpha$ in (\ref{af-2.6}), we obtain (\ref{af-2.7}) and (\ref{af-2.8}). \end{proof} \begin{theorem} Let $k,~r\geq 1$ and $m,~l\geq 0$ be integers. Then \begin{align} \sum_{j=0}^{n}\sum_{h=0}^{k}\binom{k}{h}(-\beta)^h{H}_{j-h,k,r}(\alpha,\beta)\frac{L(n-j,m;l)}{(n-j)!}(-\alpha)^{n-j}\nonumber \\ =\begin{cases} \sum_{i=r}^{l-m}\binom{l-m}{i}|s(n-m-i, r)|\frac{(-1)^i \alpha^n r!}{m!(n-m-i)!}, & \text{if $l>m$; }\\ \frac{\alpha^n }{m!}|s(n-m, r)|\frac{r!}{(n-m)!}, & \text{if $l=m$; }\\ \frac{\alpha^m}{m!}{H}_{n-m,m-l,r}(\alpha,\alpha), & \text{if $lm$; }\\ \frac{\alpha^n }{m!}|s(n-m, r)|\frac{r!}{(n-m)!}, & \text{if $l=m$; }\\ \frac{\alpha^m}{m!}{H}_{n-m,m-l,r}(\alpha,\alpha), & \text{if $lm$; }\\ \alpha^n |s(n+m, m)|\frac{m!}{(n+m)!}, & \text{if $k=m$; }\\ \sum_{i=0}^{m-k}\binom{m-k}{i}|s(n+m-i, m)|\frac{(-1)^i\alpha^n m! }{(n+m-i)!}, & \text{if $km$; }\\ \alpha^n |s(n+m, m)|\frac{m!}{(n+m)!}, & \text{if $k=m$; }\\ \sum_{i=0}^{m-k}\binom{m-k}{i}|s(n+m-i, m)|\frac{(-1)^i\alpha^n m! }{(n+m-i)!}, & \text{if $kx$; }\\ \binom{n+k-1}{n} \frac{\alpha^n}{2^n}, & \text{if $k=x$; }\\ \sum_{i=0}^{x-k}\binom{x-k}{i}\binom{x+n-i-1}{n-i}\frac{(-1)^i\alpha^n}{2^{n-i}}, & \text{if $kx$; }\\ \binom{n+k-1}{n} \frac{\alpha^n}{2^n}, & \text{if $k=x$; }\\ \sum_{i=0}^{x-k}\binom{x-k}{i}\binom{x+n-i-1}{n-i}\frac{(-1)^i\alpha^n}{2^{n-i}}, & \text{if $km$; }\\ \sum_{i=m}^{n}|s(i, m)|\frac{m!}{i!}\binom{n-i+m-1}{m-1} \frac{\alpha^n}{2^{n-i}}, & \text{if $k=m$; }\\ \sum_{i=0}^{m-k}\sum_{j=0}^{n-i}\binom{m-k}{i}\binom{j+m-1}{m-1}|s(n-i-j, m)|\frac{(-1)^i\alpha^nm!}{2^j (n-i-j)!}, & \text{if $km$; }\\ \sum_{i=m}^{n}|s(i, m)|\frac{m!}{i!}\binom{n-i+m-1}{m-1} \frac{\alpha^n}{2^{n-i}}, & \text{if $k=m$; }\\ \sum_{i=0}^{m-k}\sum_{j=0}^{n-i}\binom{m-k}{i}\binom{j+m-1}{m-1}|s(n-i-j, m)|\frac{(-1)^i\alpha^nm!}{2^j (n-i-j)!}, & \text{if $km$; }\\ \alpha^m\delta_{n,m}, & \text{if $r=m$; }\\ \frac{(-1)^{n-r}\alpha^n}{(n-r)!}{C}_{n-r}^{(m-r)}, & \text{if $rm$; }\\ \alpha^m\delta_{n,m}, & \text{if $r=m$; }\\ \frac{(-1)^{n-r}\alpha^n}{(n-r)!}{C}_{n-r}^{(m-r)}, & \text{if $rm$; }\\ \alpha^n\binom{n-1}{n-m}, & \text{if $r=m$; }\\ \sum_{i=m-r}^{n-r}\hat{C}_{n-r-i}^{(m-r)}\frac{(-1)^{n-r-i}\alpha^n}{(n-r-i)!}\binom{i+r-1}{r-1}, & \text{if $r0$ and has only algebraic singularities on $|z|=R$. Let $a$ be the minimum of $\Re(\alpha)$ for the terms of the form at the singularity of $f(z)$ on $|z|=R$, and let $w_j$, $\alpha_j$ and $g_j(z)$ be the $w,\alpha$ and $g(z)$ for those terms of the form (\ref{af-4.1}) for which $Re(\alpha)=a$. Then, as $n\rightarrow\infty$, \begin{align*} [z^n]f(z)=\sum_{j}\frac{g_j(w_j)n^{-\alpha_j-1}} {\Gamma(-\alpha_j)w_j^n}+o(R^{-n}n^{-a-1}). \end{align*} \end{lemma} \begin{lemma}\label{af-4.3} (see \cite{ref11}) Let $\alpha$ be a real number and \[ L(z)=\ln(\frac{1}{1-z})\,. \] When $n\rightarrow\infty$, \begin{align*} &[z^n](1-z)^{\alpha}L^k(z)\sim \frac{1}{\Gamma(-\alpha)}n^{-\alpha-1}\ln^{k}n\,, \quad(\alpha\not\in\{0,1,2,\ldots\})\\ &[z^n](1-z)^{m}L^{k}(z)\sim(-1)^{m}k{m!}n^{-m-1}\ln^{k-1}n\,, \quad(m\in\mathbb{Z}_{\geq0},~k\in\mathbb{Z}_{\geq1}). \end{align*} \end{lemma} \begin{lemma} \label{af-4.4} (see \cite{ref11}) Suppose that $a(z)=\sum a_nz^n$ and $b(z)=\sum b_nz^n$ are power series with radii of convergence $\alpha>\beta\geq0$, respectively. Suppose that $\frac{b_{n-1}}{b_n}\rightarrow \beta$ as $n\rightarrow\infty$. If $a(\beta)\neq0$ and $\sum c_nz^n=a(z)b(z)$, then \begin{align*} & c_n\sim a(\beta)b_n\quad\text{as }n\rightarrow\infty. \end{align*} \end{lemma} \begin{theorem} Let $k,~r\geq1$. As $n\rightarrow \infty$, we get \begin{equation*} \sum_{h=0}^{n}\binom{k}{h}(-\beta)^h{H}_{n-h,k,r}(\alpha,\beta)\sim{\frac{\alpha^n r}{n}}\ln^{r-1}n\,. \end{equation*} \end{theorem} \begin{proof} By Eq.~(\ref{af-1.2}) and Lemma~\ref{af-4.3}, we get \begin{align*} &\sum_{h=0}^{k}\binom{k}{h}(-\beta)^h{H}_{n-h,k,r}(\alpha,\beta) =[t^n](-\ln(1-\alpha t))^r\sim{\frac{\alpha^n r}{n}}\ln^{r-1}n\,. \end{align*} \end{proof} \begin{theorem} Let $k,~r,~m\geq 1$. As $n\rightarrow\infty$, we have \begin{align*} &\sum_{j=0}^{n}\sum_{h=0}^{k}\binom{k}{h}(-\beta)^h {H}_{j-h,k,r}(\alpha,\beta)|s(n-j, m)|\frac{\alpha^{n-j}}{(n-j)!}\sim\frac{\alpha^n (m+r)}{m! n}(\ln n)^{m+r-1}\,. \end{align*} \end{theorem} \begin{proof} By Eq.~(\ref{af-2.3}) and Lemma \ref{af-4.3}, we obtain \begin{align*} &\sum_{j=0}^{n}\sum_{h=0}^{k}\binom{k}{h}(-\beta)^h {H}_{j-h,k,r}(\alpha,\beta)|s(n-j, m)|\frac{\alpha^{n-j}}{(n-j)!}=\frac{1}{m!}[t^n](-\ln(1-\alpha t))^{m+r}\\ &\sim\frac{\alpha^n (m+r)}{m! n}(\ln n)^{m+r-1}\,. \end{align*} \end{proof} \begin{theorem} Let $k,~j,~m\geq 1$ and $l\geq 0$. As $n\rightarrow\infty$, we have \begin{align*} &\sum_{j=1}^{n}H_{n,k,j}(\alpha,\alpha)S(j, m; l)\frac{m!}{j!}\sim\frac{\alpha ^n n^{k+m+l-1}}{\Gamma(k+l+m)}\,. \end{align*} \end{theorem} \begin{proof}By Eq. (\ref{af-2.4}) and Lemma \ref{af-4.2}, we obtain \begin{align*} \sum_{j=1}^{n}H_{n,k,j}(\alpha,\alpha)S(j, m; l)\frac{m!}{j!}=\alpha^m[t^n]\frac{t^m}{(1-\alpha t)^{k+l+m}} \sim\frac{\alpha ^n n^{k+m+l-1}}{\Gamma(k+l+m)}\,. \end{align*} \end{proof} \begin{theorem} Let $k,~r\geq1$. As $n\rightarrow \infty$, we get \begin{equation*} \sum_{j=0}^{n}\sum_{h=0}^{k}\binom{k}{h}(-\beta)^h{H}_{j-h,k,r}(\alpha,\beta)\binom{n-j+l}{n-j}\beta^{n-j}\sim{\frac{\alpha^n n^l}{l!}\ln^r n}\,. \end{equation*} \end{theorem} \begin{proof} It is well known that \begin{align} &\sum_{n=0}^{\infty}\binom{n+l}{n}t^n=\frac{1}{(1-t)^{l+1}}. \label{af-4.5} \end{align} By Lemma \ref{af-4.3} and Eq.~(\ref{af-4.5}), we get \begin{align*} &\sum_{j=0}^{n}\sum_{h=0}^{k}\binom{k}{h}(-\beta)^h{H}_{j-h,k,r}(\alpha,\beta)\binom{n-j+l}{n-j}\alpha^{n-j}=[t^n]\frac{(-\ln(1-\alpha t))^r}{(1-\alpha t)^{l+1}}\sim{\frac{\alpha^n n^l}{l!}\ln^r n}\,. \end{align*} \end{proof} \begin{theorem} Let $j,~k,~m\geq 1$. As $n\rightarrow\infty$, we have \begin{align*} &\sum_{j=1}^{n}{H}_{n,k,j}(\alpha,\alpha)\frac{B_j^{(m)}}{j!} \sim\begin{cases} (-1)^{m-k} \alpha^n m (m-k)!(n+m)^{k-m-1}(\ln(n+m))^{m-1}, & \text{if $m-k\in\mathbb{Z}_{\geq0}$; }\\ \frac{\alpha^n (n+m)^{k-m-1}}{\Gamma(m-k)}(\ln(n+m))^m, & \text{if $m-k\not\in\mathbb{Z}_{\geq0}$. } \end{cases} \end{align*} \end{theorem} \begin{proof} By the proof of Eq.~(\ref{af-2.8}) and Lemma \ref{af-4.3}, we obtain \begin{align*} \sum_{j=1}^{n}{H}_{n,k,j}(\alpha,\alpha)\frac{B_j^{(m)}}{j!} =[t^n]\frac{1}{(1-\alpha t)^k}\left[\bigg(\frac{y}{e^y-1}\bigg)^m \mid y=-\ln(1-\alpha t)\right]\\ \sim\begin{cases} (-1)^{m-k} \alpha^n m (m-k)!(n+m)^{k-m-1}(\ln(n+m))^{m-1}, & \text{if $m-k\in\mathbb{Z}_{\geq0}$; }\\ \frac{\alpha^n (n+m)^{k-m-1}}{\Gamma(m-k)}(\ln(n+m))^m, & \text{if $m-k\not\in\mathbb{Z}_{\geq0}$. } \end{cases} \end{align*} \end{proof} \begin{theorem} Let $j$ be fixed and $x$ be a real number. As $n\rightarrow\infty$, we have \begin{equation*} \sum_{j=1}^{n}H_{n,k,j}(\alpha,\alpha)\frac{G_{j}^{(x)}}{2^jj!} \sim\begin{cases} \frac{2^x \alpha^n n^{k-x-1}}{\Gamma(k-x)}, & \text{if $k>x$; }\\ \frac{\alpha^n n^{k-1}}{2^n \Gamma(k)}, & \text{if $k=x$; }\\ \frac{(-1)^{x-k}\alpha^n n^{x-1}}{2^n \Gamma(x)}, & \text{if $kx$; }\\ (1-\frac{\alpha t}{2})^x, & \text{if $k=x$; }\\ \frac{(1-\alpha t)^{x-k}}{(1-\frac{\alpha t}{2})^x}, & \text{if $kx$; }\\ \frac{\alpha^n n^{k-1}}{2^n \Gamma(k)}, & \text{if $k=x$; }\\ \frac{(-1)^{x-k}\alpha^n n^{x-1}}{2^n \Gamma(x)}, & \text{if $km$; }\\ \frac{2^m \alpha^n m}{n}\ln^{m-1}n, & \text{if $k=m$; }\\ \frac{(-1)^{m-k}2^m \alpha^n(m-k)!}{n^{m+1-k}}\ln^m n, & \text{if $km$; }\\ \frac{1}{(1-\frac{\alpha t}{2})^m}(-\ln(1-\alpha t))^m, & \text{if $k=m$; }\\ (1-\alpha t)^{m-k}\frac{1}{(1-\frac{\alpha t}{2})^m}(-\ln(1-\alpha t))^m, & \text{if $km$; }\\ \frac{2^m \alpha^n m}{n}\ln^{m-1}n, & \text{if $k=m$; }\\ \frac{(-1)^{m-k}2^m \alpha^n(m-k)!}{n^{m+1-k}}\ln^m n, & \text{if $km$ and $k\alpha b^b $ and b be a positive integer. As $k\rightarrow \infty$, we get \begin{align} &\sum_{n=0}^{\infty}\frac{H_{n,k,r}(\alpha,\beta)}{[(b+1)n+1]\binom{(b+1)n}{n}}\nonumber\\ &\sim{\bigg(\frac{(b+1)^{b+1}}{(b+1)^{b+1}-\beta b^b}\bigg)^{k-\frac{1}{2}} \bigg(\ln\frac{(b+1)^{b+1}}{(b+1)^{b+1}-\alpha b^b}\bigg)^{r}\sqrt{\frac{2\pi(b+1)^{b-2}}{\beta kb^{b-1}}}}. \label{af-4.6} \end{align} \end{theorem} \begin{proof} From Tiberiu \cite{ref9}, we know that the inverse of a binomial coefficient is related to an integral as follows: \begin{equation} \binom{n}{m}^{-1}=(n+1)\int^{1}_{0}t^{m}(1-t)^{n-m}dt. \label{af-4.7} \end{equation} Owing to (\ref{af-4.7}), we have \begin{align*} &\sum_{n=0}^{\infty}\frac{H_{n,k,r}(\alpha,\beta)}{[(b+1)n+1]\binom{(b+1)n}{n}} =\sum_{n=0}^{\infty}H_{n,k,r}(\alpha,\beta)\int^{1}_{0}t^n(1-t)^{nb}dt\\ &=\int^{1}_{0}\sum_{n=0}^{\infty}H_{n,k,r}(\alpha,\beta)(t(1-t)^b)^ndt =\int^{1}_{0}\frac{(-\ln(1-\alpha t(1-t)^b))^r}{(1-\beta t(1-t)^b)^k}dt\\ & =\int^{1}_{0}(-\ln(1-\alpha t(1-t)^b)^r e^{-k\ln(1-\beta t(1-t)^b)} dt\,. \end{align*} Let $\varphi(t)=(-\ln(1-\alpha t(1-t)^b)^r $ and $h(t)=-\ln(1-\beta t(1-t)^b)$. Then $h(t)$ reaches a maximum at $t=\frac{1}{b+1}$, $h^{\prime}(\frac{1}{b+1})=0$ and $ h^{\prime\prime}(\frac{1}{b+1})<0$. By applying Laplace's method, we have \begin{align*} &\sum_{n=0}^{\infty}\frac{H_{n,k,r}(\alpha,\beta)}{[(b+1)n+1]\binom{(b+1)n}{n}} =\int^{1}_{0}(-\ln(1-\alpha t(1-t)^b)^r e^{-k\ln(1-\beta t(1-t)^b}dt\,\\ & \sim{\varphi(\frac{1}{b+1})e^{kh(\frac{1}{b+1})}\sqrt{\frac{-2\pi}{k h^{\prime\prime}(\frac{1}{b+1})}}}\,. \end{align*} \end{proof} \begin{corollary} Let $k,~r\geq1$, $\alpha<4$, $0<\beta$, $\beta\neq4 $ and $b$ be a positive integer. As $k\rightarrow \infty$, we get \begin{align} &\sum_{n=0}^{\infty}\frac{H_{n,k,r}(\alpha,\beta)}{(2n+1)\binom{2n}{n}} \sim{\bigg(\frac{4}{4-\beta}\bigg)^{k-\frac{1}{2}}\bigg(\ln\frac{4}{4-\alpha}\bigg)^r\sqrt{\frac{\pi}{k\beta}}}. \label{af-4.8} \end{align} \end{corollary} \begin{proof} Setting $b=1$ in (\ref{af-4.6}), we obtain (\ref{af-4.8}). \end{proof} \begin{theorem} Let $k,~ r\geq1$, $0<\alpha$, $(b+1)^{b+1}\neq -\beta b^b$ and $b$ be a positive integer. As $r\rightarrow \infty$, we get \begin{align} &\sum_{n=0}^{\infty}\frac{(-1)^nH_{n,k,r}(\alpha,\beta)}{[(b+1)n+1]\binom{(b+1)n}{n}}\nonumber\\ &\sim(-1)^r{\bigg(\frac{(b+1)^{b+1}}{(b+1)^{b+1}+\beta b^b}\bigg)^k \bigg(\ln\frac{(b+1)^{b+1}+\alpha b^b}{(b+1)^{b+1}}\bigg)^{r+\frac{1}{2}}\sqrt{\frac{2\pi(b+1)^{b-2}((b+1)^{b+1}+\alpha b^b)}{ \alpha r b^{b-1}(b+1)^{b+1}}}}. \label{af-4.9} \end{align} \end{theorem} \begin{proof} Owing to (\ref{af-4.7}), we get \begin{align*} &\sum_{n=0}^{\infty}\frac{(-1)^nH_{n,k,r}(\alpha,\beta)}{[(b+1)n+1]\binom{(b+1)n}{n}} =\sum_{n=0}^{\infty}(-1)^nH_{n,k,r}(\alpha,\beta)\int^{1}_{0}t^n(1-t)^{nb}dt\\ &=\int^{1}_{0}\sum_{n=0}^{\infty}H_{n,k,r}(\alpha,\beta)(-t(1-t)^b)^ndt =\int^{1}_{0}\frac{(-\ln(1+\alpha t(1-t)^b))^r}{(1+\beta t(1-t)^b)^k}dt\\ & =(-1)^r\int^{1}_{0}\frac{e^{r\ln\ln(1+\alpha t(1-t)^b}} {(1+\beta t(1-t)^b)^k} dt\,. \end{align*} Let $\varphi(t)=\frac{1}{(1+\beta t(1-t)^b)^k} $ and $h(t)=\ln\ln(1+\alpha t(1-t)^b)$. Then $h(t)$ reaches the maximum at $t=\frac{1}{b+1},$ $h^{\prime}(\frac{1}{b+1})=0$ and $ h^{\prime\prime}(\frac{1}{b+1})<0.~ $ By applying Laplace's method, we have \begin{align*} &\sum_{n=0}^{\infty}\frac{(-1)^nH_{n,k,r}(\alpha,\beta)}{[(b+1)n+1]\binom{(b+1)n}{n}} =\int^{1}_{0}(-\ln(1-\alpha t(1-t)^b)^r e^{-k\ln(1-\beta t(1-t)^b}dt\,\\ &\sim{\varphi(\frac{1}{b+1})e^{rh(\frac{1}{b+1})}\sqrt{\frac{-2\pi}{rh^{\prime\prime}(\frac{1}{b+1})}}}\,. \end{align*} \end{proof} \begin{corollary} Let $k,~r\geq1$, $0<\alpha$, $\beta\neq-4 $. As $r\rightarrow \infty$, we get \begin{align} &\sum_{n=0}^{\infty}\frac{(-1)^nH_{n,k,r}(\alpha,\beta)}{(2n+1)\binom{2n}{n}} \sim(-1)^r\bigg(\frac{4}{4+\beta}\bigg)^{k}\bigg(\ln\frac{4+\alpha}{4}\bigg)^{r+\frac{1}{2}}\sqrt{\frac{\pi(4+\alpha)}{4\alpha r }}. \label{af-4.10} \end{align} \end{corollary} \begin{proof} Setting $b=1$ in (\ref{af-4.9}), we derive (\ref{af-4.10}). \end{proof} \section{Acknowledgment} The authors are grateful to the anonymous referee for his/her helpful comments. \begin{thebibliography}{99} \bibitem{ref1} V. S. Adamic, \newblock On Stirling numbers and Euler sums, \newblock {\em J. Comput App. Math.}, {\bf 79} (1997), 119--130. \bibitem{ref2} A. T. Benjamin, D. Gaebler, and R. Gaebler, \newblock A combinatorial approach to hyperharmonic numbers, \newblock {\em Integers} {\bf 3} (2003), Paper A15. Available electronically at \url{http://www.integers-ejcnt.org/vol3.html}. \bibitem{ref3} Gi-Sang Cheon and M. A. El-Mikkawy, \newblock Generalized harmonic numbers with Riordan arrays, \newblock {\em J. Number Theory}, {\bf 128} (2008), 413--425. \bibitem{ref4} W. Chu, \newblock Harmonic number identities and Hermite-Pad\'{e} approximations to the logarithm function, \newblock {\em J. Approx. Theory}, {\bf 137} (2005), 42--56. \bibitem{ref5} I. M. Gessel, \newblock On Miki's identity for Bernoulli numbers, \newblock {\em J. Number Theory}, {\bf 110} (2005), 75--82. \bibitem{ref6} A. Gertsch, \newblock Nombres harmoniques g\'en\'eralis\'es. \newblock {\em C. R. Acad. Sci. Paris Ser. I } {\bf 324} (1997), 7--10. \bibitem{ref7} J. M. Santmyer, \newblock A Stirling like sequence of rational numbers, \newblock {\em Discrete Math.}, {\bf 171} (1997), 229--239. \bibitem{ref8} D. Merlini, R. Sprugnoli, and M. C. Verri, \newblock The method of coefficients, \newblock {\em Amer.\ Math.\ Monthly} {\bf 114} (2007), 40--57. \bibitem{ref9} T. Trif, \newblock Combinatorial sums and series involving inverses of binomial coefficients, \newblock {\em Fibonacci Quart.}, {\bf 38} (2000), 847--857. \bibitem{ref10} Feng-Zhen Zhao and Wuyungaowa, \newblock Some results on a class of generalized harmonic numbers, \newblock {\em Util. Math.}, {\bf 87} (2012), 65--78. \bibitem{ref11} P. Flajolet, E. Fusy, X. Gourdon, D. Panario, and N. Pouyanne, \newblock A hybrid of Darboux's method and singularity analysis in combinatorial asymptotics, \newblock {\em Electron. J. Combin.}, {\bf 13} (2006), Paper R103. Available electronically at \url{http://www.combinatorics.org/ojs/index.php/eljc/article/view/v13i1r103}. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 05A16, 05A19; Secondary 05A15. \noindent \emph{Keywords: } generalized harmonic number, Genocchi number, Stirling number, Cauchy number, Riordan array, method of coefficients. \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received October 25 2012; revised version received November 20 2012. Published in {\it Journal of Integer Sequences}, December 27 2012. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .