\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf A Study of a Curious Arithmetic Function } \vskip 1cm \large Bakir Farhi\\ Department of Mathematics\\ University of B\'ejaia\\ B\'ejaia\\ Algeria\\ \href{mailto:bakir.farhi@gmail.com}{\tt bakir.farhi@gmail.com} \\ \end{center} \vskip .2 in \begin{abstract} In this note, we study the arithmetic function $f : \mathbb{Z}_+^* \rightarrow \mathbb{Q}_+^*$ defined by $f(2^k \ell) = \ell^{1 - k}$ ($\forall k , \ell \in \mathbb{N}$, $\ell$ odd). We show several important properties about this function, and we use them to obtain some curious results involving the $2$-adic valuation. In the last section of the paper, we generalize those results to any other $p$-adic valuation. \end{abstract} \def\lcm{{\rm lcm}} \def\odd{{\rm Odd}} \section{Introduction and notation} The purpose of this paper is to study the arithmetic function $f : \mathbb{Z}_+^* \rightarrow \mathbb{Q}_+^*$ defined by $$f(2^k \ell) = \ell^{1-k} ~~~~ (\forall k , \ell \in \mathbb{N} , \ell ~\text{odd}) .$$ We have, for example, $f(1) = 1 , f(2) = 1 , f(3) = 3 , f(12) = \frac{1}{3} , f(40) = \frac{1}{25} , \dots$, so it is clear that $f(n)$ is not always an integer. However, we will show in what follows that $f$ satisfies the property that the product of the $f(r)$ for $1 \leq r \leq n$ is always an integer, and it is a multiple of all odd prime numbers not exceeding $n$. Further, we exploit the properties of $f$ to establish some curious properties concerning the $2$-adic valuation. In the last section of the paper, we give (without proof) the analogous properties for other $p$-adic valuations. The study of $f$ requires introducing the two auxiliary arithmetic functions $g : \mathbb{Q}_+^* \rightarrow \mathbb{Z}_+^*$ and $h : \mathbb{Z}_+^* \rightarrow \mathbb{Q}_+^*$, defined by: \begin{equation}\label{eq1} g(x) := \begin{cases} x, & \text{if $x \in \mathbb{N}$}; \\ 1, & \text{otherwise}. \end{cases}~~~~~~~~ (\forall x \in \mathbb{Q}_+^*) \end{equation} \begin{equation}\label{eq2} h(r) := \frac{r}{g(\frac{r}{2}) g(\frac{r}{4}) g(\frac{r}{8}) \cdots} ~~~~~~~~ (\forall r \in \mathbb{Z}_+^*) \end{equation} Notice that the product in the denominator of the right-hand side of (\ref{eq2}) is actually finite, because $g(\frac{r}{2^i}) = 1$ for any sufficiently large $i$. So $h$ is well-defined.~\vspace{2mm} \subsection{Some notation and terminology} Throughout this paper, we let $\mathbb{N}^*$ denote the set $\mathbb{N} \setminus \{0\}$ of positive integers. For a given prime number $p$, we let $\nu_p$ denote the usual $p$-adic valuation. We define the {\it odd part} of a positive rational number $\alpha$ as the positive rational number, denoted $\odd(\alpha)$, so that we have $\alpha = 2^{\nu_2(\alpha)} \cdot \odd(\alpha)$. Finally, we denote by $\lfloor . \rfloor$ the integer-part function and we often use in this paper the following elementary well-known property of that function: $$\forall a , b \in \mathbb{N}^* , \forall x \in \mathbb{R} :~~~~ \left\lfloor\frac{\left\lfloor\frac{x}{a}\right\rfloor}{b}\right\rfloor = \left\lfloor\frac{x}{a b}\right\rfloor .$$ \section{Results and proofs}\label{sec2} \begin{theorem}\label{t1} Let $n$ be a positive integer. Then the product $\displaystyle \prod_{r = 1}^{n} f(r)$ is an integer. \end{theorem} \begin{proof} For a given $r \in \mathbb{N}^*$, let us write $f(r)$ in terms of $h(r)$. By writing $r$ in the form $r = 2^k \ell$ ($k , \ell \in \mathbb{N}$, $\ell$ odd), we have by the definition of $g$: $$g\left(\frac{r}{2}\right) g\left(\frac{r}{4}\right) g\left(\frac{r}{8}\right) \cdots = \left(2^{k - 1} \ell\right) (2^{k - 2} \ell) \times \cdots \times (2^0 \ell) = 2^{\frac{k (k - 1)}{2}} \ell^k .$$ So, it follows that: $$h(r) := \frac{r}{g(\frac{r}{2}) g(\frac{r}{4}) g(\frac{r}{8}) \cdots} = \frac{2^k \ell}{2^{\frac{k (k - 1)}{2}} \ell^k} = 2^{\frac{k (3 - k)}{2}} \ell^{1 - k} = 2^{\frac{k (3 - k)}{2}} f(r) .$$ Hence \begin{equation}\label{eq3} f(r) = 2^{\frac{\nu_2(r) (\nu_2(r) - 3)}{2}} h(r) . \end{equation} Using (\ref{eq3}), we get for all $n \in \mathbb{N}^*$ that: \begin{equation}\label{eq4} \prod_{r = 1}^{n} f(r) ~=~ 2^{\sum_{r = 1}^{n}\frac{\nu_2(r) (\nu_2(r) - 3)}{2}} \prod_{r = 1}^{n} h(r) . \end{equation} By taking the odd part of each side of this last identity, we obtain \begin{equation}\label{eq5} \prod_{r = 1}^{n} f(r) = \odd\left(\prod_{r = 1}^{n} h(r)\right) ~~~~ (\forall n \in \mathbb{N}^*) . \end{equation} So, to confirm the statement of the theorem, it suffices to prove that the product $\prod_{r = 1}^{n} h(r)$ is an integer for any $n \in \mathbb{N}^*$. To do so, we lean on the following sample property of $g$: $$g\left(\frac{1}{a}\right) g\left(\frac{2}{a}\right) \cdots g\left(\frac{r}{a}\right) = \left\lfloor \frac{r}{a} \right\rfloor ! ~~~~ (\forall r , a \in \mathbb{N}^*) .$$ Using this, we have \begin{eqnarray*} \prod_{r = 1}^{n} h(r) & = & \prod_{r = 1}^{n} \frac{r}{g\left(\frac{r}{2}\right) g\left(\frac{r}{4}\right) g\left(\frac{r}{8}\right) \cdots} \\ & = & \frac{n!}{\displaystyle\prod_{r = 1}^{n} g\left(\frac{r}{2}\right) \cdot \displaystyle\prod_{r = 1}^{n} g\left(\frac{r}{4}\right) \cdot \prod_{r = 1}^{n} g\left(\frac{r}{8}\right) \cdots} \\ & = & \frac{n!}{\lfloor\frac{n}{2}\rfloor ! \lfloor\frac{n}{4}\rfloor ! \lfloor\frac{n}{8}\rfloor ! \cdots} . \end{eqnarray*} Hence \begin{equation}\label{eq6} \prod_{r = 1}^{n} h(r) = \frac{n!}{\lfloor\frac{n}{2}\rfloor ! \lfloor\frac{n}{4}\rfloor ! \lfloor\frac{n}{8}\rfloor ! \cdots} \end{equation} (Notice that the product in the denominator of the right-hand side of (\ref{eq6}) is actually finite because $\lfloor\frac{n}{2^i}\rfloor = 0$ for any sufficiently large $i$).\\ Now, since $\lfloor\frac{n}{2}\rfloor + \lfloor\frac{n}{4}\rfloor + \lfloor\frac{n}{8}\rfloor + \dots \leq \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \dots = n$ then $\frac{n!}{\lfloor\frac{n}{2}\rfloor ! \lfloor\frac{n}{4}\rfloor ! \lfloor\frac{n}{8}\rfloor ! \cdots}$ is a multiple of the multinomial coefficient $\binom{\lfloor\frac{n}{2}\rfloor + \lfloor\frac{n}{4}\rfloor + \lfloor\frac{n}{8}\rfloor + \dots}{\lfloor\frac{n}{2}\rfloor ~ \lfloor\frac{n}{4}\rfloor ~ \lfloor\frac{n}{8}\rfloor ~ \dots}$ which is an integer. Consequently $\frac{n!}{\lfloor\frac{n}{2}\rfloor ! \lfloor\frac{n}{4}\rfloor ! \lfloor\frac{n}{8}\rfloor ! \cdots}$ is an integer, which completes this proof. \end{proof} Here is a table of the values of $f(n)$, $h(n)$, $\prod_{1 \leq i \leq n} f(i)$,and $\prod_{1 \leq i \leq n} h(i)$. The sequences $\prod_{1 \leq i \leq n} f(i)$ and $\prod_{1 \leq i \leq n} h(i)$ are sequences \seqnum{A185275} and \seqnum{A185021}, respectively, in Sloane's {\it Encyclopedia of Integer Sequences}. \begin{table}[H] \begin{center} \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline $n$ & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline $f(n)$ & 1 & 1 & 3 & 1 & 5 & 1 & 7 & 1 & 9 & 1 & 11 & ${1\over 3}$ \\ \hline $h(n)$ & 1 & 2 & 3 & 2 & 5 & 2 & 7 & 1 & 9 & 2 & 11 & ${2 \over 3}$ \\ \hline $\prod_{1 \leq i \leq n} f(i)$ & 1 & 1 & 3 & 3 & 15 & 15 & 105 & 105 & 945 & 945 & 10395 & 3465 \\ \hline $\prod_{1 \leq i \leq n} h(i)$ & 1 & 2 & 6 & 12 & 60 & 120 & 840 & 840 & 7560 & 15120 & 166320 & 110880 \\ \hline \end{tabular} \end{center} \end{table} \begin{theorem}\label{t2} Let $n$ be a positive integer. Then $\displaystyle \prod_{r = 1}^{n} f(r)$ is a multiple of $\odd(\lcm(1 , 2 , \dots , n))$.\\ In particular, $\displaystyle \prod_{r = 1}^{n} f(r)$ is a multiple of all odd prime numbers not exceeding $n$. \end{theorem} \begin{proof} According to the relations (\ref{eq5}) and (\ref{eq6}) obtained during the proof of Theorem \ref{t1}, it suffices to show that $\frac{n!}{\lfloor\frac{n}{2}\rfloor ! \lfloor\frac{n}{4}\rfloor ! \lfloor\frac{n}{8}\rfloor ! \cdots}$ is a multiple of $\lcm(1 , 2 , \dots , n)$. Equivalently, it suffices to prove that for all prime number $p$, we have \begin{equation}\label{eq7} \nu_p\left(\frac{n!}{\lfloor\frac{n}{2}\rfloor ! \lfloor\frac{n}{4}\rfloor ! \lfloor\frac{n}{8}\rfloor ! \cdots}\right) \geq \alpha_p , \end{equation} where $\alpha_p$ is the $p$-adic valuation of $\lcm(1 , 2 , \dots , n)$, that is the greatest power of $p$ not exceeding $n$. Let us show (\ref{eq7}) for a given arbitrary prime number $p$. Using Legendre's formula (see e.g., \cite{hw}), we have \begin{eqnarray} \nu_p\left(\frac{n!}{\lfloor\frac{n}{2}\rfloor ! \lfloor\frac{n}{4}\rfloor ! \lfloor\frac{n}{8}\rfloor ! \cdots}\right) & = & \sum_{i = 1}^{\infty} \left\lfloor \frac{n}{p^i}\right\rfloor - \sum_{j = 1}^{\infty}\sum_{i = 1}^{\infty} \left\lfloor\frac{n}{2^j p^i}\right\rfloor \notag \\ & = & \sum_{i = 1}^{\alpha_p}\left(\left\lfloor\frac{n}{p^i}\right\rfloor - \sum_{j = 1}^{\alpha_2}\left\lfloor\frac{n}{2^j p^i}\right\rfloor\right) \label{eq8} \end{eqnarray} Next, for all $i \in \{1 , 2 , \dots , \alpha_p\}$, we have $$\sum_{j = 1}^{\alpha_2} \left\lfloor\frac{n}{2^j p^i}\right\rfloor ~=~ \sum_{j = 1}^{\alpha_2} \left\lfloor\frac{\left\lfloor\frac{n}{p^i}\right\rfloor}{2^j}\right\rfloor ~\leq~ \sum_{j = 1}^{\alpha_2} \frac{\left\lfloor\frac{n}{p^i}\right\rfloor}{2^j} ~<~ \left\lfloor\frac{n}{p^i}\right\rfloor .$$ But since $(\lfloor\frac{n}{p^i}\rfloor - \sum_{j = 1}^{\alpha_2} \lfloor\frac{n}{2^j p^i}\rfloor)$ ($i \in \{1 , 2 , \dots , \alpha_p\}$) is an integer, it follows that: $$\left\lfloor\frac{n}{p^i}\right\rfloor - \sum_{j = 1}^{\alpha_2} \left\lfloor\frac{n}{2^j p^i}\right\rfloor ~\geq~ 1 ~~~~~~ (\forall i \in \{1 , 2 , \dots , \alpha_p\}) .$$ By inserting those last inequalities in (\ref{eq8}), we finally obtain $$\nu_p\left(\frac{n!}{\lfloor\frac{n}{2}\rfloor ! \lfloor\frac{n}{4}\rfloor ! \lfloor\frac{n}{8}\rfloor ! \cdots}\right) \geq \alpha_p ,$$ which confirms (\ref{eq7}) and completes this proof. \end{proof} \begin{theorem}\label{t3} For all positive integers $n$, we have $$\prod_{r = 1}^{n} h(r) ~\leq~ c^n ,$$ where $c = 4.01055487\dots$. \\ In addition, the inequality becomes an equality for $n = 1023 = 2^{10} - 1$. \end{theorem} \begin{proof} First, we use the relation (\ref{eq6}) to prove by induction on $n$ that: \begin{equation}\label{eq9} \prod_{r = 1}^{n} h(r) ~\leq~ n^{\log_2 n} 4^n \end{equation} $\bullet$ For $n = 1$, (\ref{eq9}) is clearly true.\\ $\bullet$ For a given $n \geq 2$, suppose that (\ref{eq9}) is true for all positive integer $< n$ and let us show that (\ref{eq9}) is also true for $n$. To do so, we distinguish the two following cases:\\ {\bf 1\textsuperscript{st} case:} (if $n$ is even, that is $n = 2 m$ for some $m \in \mathbb{N}^*$). \\ In this case, by using (\ref{eq6}) and the induction hypothesis, we have \begin{eqnarray*} \prod_{r = 1}^{n} h(r) & = & \binom{2 m}{m} \prod_{r = 1}^{m} h(r) \\ & \leq & \binom{2 m}{m} m^{\log_2 m} 4^m \\ & \leq & m^{\log_2 m} 4^{2 m} ~~~~~~~~ \text{(since $\binom{2 m}{m} \leq 4^m$)} \\ & \leq & n^{\log_2 n} 4^n , \end{eqnarray*} as claimed.\\ {\bf 2\textsuperscript{nd} case:} (if $n$ is odd, that is $n = 2 m + 1$ for some $m \in \mathbb{N}^*$). \\ By using (\ref{eq6}) and the induction hypothesis, we have \begin{eqnarray*} \prod_{r = 1}^{n} h(r) & = & (2 m + 1) \binom{2 m}{m} \prod_{r = 1}^{m} h(r) \\ & \leq & (2 m + 1) \binom{2 m}{m} m^{\log_2 m} 4^m \\ & \leq & m^{\log_2 m + 1} 4^{2 m + 1} ~~~~~~~~ \text{(since $2 m + 1 \leq 4 m$ and $\binom{2 m}{m} \leq 4^m$)} \\ & \leq & n^{\log_2 n} 4^n , \end{eqnarray*} as claimed. \\ The inequality (\ref{eq9}) thus holds for all positive integer $n$. Now, to establish the inequality of the theorem, we proceed as follows:\\ --- For $n \leq 70000$, we simply verify the truth of the inequality in question (by using the Visual Basic language for example).\\ --- For $n > 70000$, it is easy to see that $n^{\log_2 n} \leq (c/4)^n$ and by inserting this in (\ref{eq9}), the inequality of the theorem follows.\\ The proof is complete. \end{proof} Now, since any positive integer $n$ satisfies $\prod_{r = 1}^{n} f(r) \leq \prod_{r = 1}^{n} h(r)$ (according to (\ref{eq5}) and the fact that $\prod_{r = 1}^{n} h(r)$ is an integer), then we immediately derive from Theorem \ref{t3} the following: \begin{corollary}\label{coll1} For all positive integers $n$, we have $$\prod_{r = 1}^{n} f(r) ~\leq~ c^n ,$$ where $c$ is the constant given in Theorem \ref{t3}.\hfill$\square$ \end{corollary} To improve Corollary \ref{coll1}, we propose the following optimal conjecture which is very probably true but it seems difficult to prove or disprove it! \begin{conjecture}\label{conj1} For all positive integers $n$, we have $$\prod_{r = 1}^{n} f(r) ~<~ 4^n .$$ \end{conjecture} Using the Visual Basic language, we have checked the validity of Conjecture \ref{conj1} up to $n = 100000$. Further, by using elementary estimations similar to those used in the proof of Theorem \ref{t3}, we can easily show that: $$\lim_{n \rightarrow + \infty}\left(\prod_{r = 1}^{n} f(r)\right)^{\!\!1/n} = \lim_{n \rightarrow + \infty}\left(\prod_{r = 1}^{n} h(r)\right)^{\!\!1/n} = 4 ,$$ which shows in particular that the upper bound of Conjecture \ref{conj1} is optimal. Now, by exploiting the properties obtained above for the arithmetic function $f$, we are going to establish some curious properties concerning the $2$-adic valuation. \begin{theorem}\label{t4} For all positive integers $n$ and all odd prime numbers $p$, we have $$\sum_{r = 1}^{n} \nu_2(r) \nu_p(r) ~\leq~ \sum_{r = 1}^{n} \nu_p(r) - \left\lfloor\frac{\log n}{\log p}\right\rfloor .$$ \end{theorem} \begin{proof} Let $n$ be a positive integer and $p$ be an odd prime number. Since (according to Theorem \ref{t2}), the product $\prod_{r = 1}^{n} f(r)$ is a multiple of the positive integer $\odd(\lcm(1 , 2 , \dots , n))$ whose the $p$-adic valuation is equal to $\lfloor\frac{\log n}{\log p}\rfloor$, then we have $$\nu_p\left(\prod_{r = 1}^{n} f(r)\right) = \sum_{r = 1}^{n} \nu_p\left(f(r)\right) ~\geq~ \left\lfloor\frac{\log n}{\log p}\right\rfloor .$$ But by the definition of $f$, we have for all $r \geq 1$: $$\nu_p(f(r)) ~=~ (1 - \nu_2(r)) \nu_p(r) .$$ So, it follows that: $$\sum_{r = 1}^{n} (1 - \nu_2(r)) \nu_p(r) \geq \left\lfloor\frac{\log n}{\log p}\right\rfloor ,$$ which gives the inequality of the theorem. \end{proof} \begin{theorem}\label{t5} Let $n$ be a positive integer and let $a_0 + a_1 2^1 + a_2 2^2 + \dots + a_s 2^s$ be the representation of $n$ in the binary system. Then we have $$\sum_{r = 1}^{n} \frac{\nu_2(r) (3 - \nu_2(r))}{2} ~=~ \sum_{i = 1}^{s} i a_i .$$ In particular, we have for all $m \in \mathbb{N}$: $$\sum_{r = 1}^{2^m} \frac{\nu_2(r) (3 - \nu_2(r))}{2} ~=~ m .$$ \end{theorem} \begin{proof} By taking the 2-adic valuation in the two hand-sides of the identity (\ref{eq4}) and then using (\ref{eq6}), we obtain $$\sum_{r = 1}^{n} \frac{\nu_2(r) (3 - \nu_2(r))}{2} = \nu_2\left(\prod_{r = 1}^{n} h(r)\right) = \nu_2\left(\frac{n!}{\lfloor\frac{n}{2}\rfloor! \lfloor\frac{n}{4}\rfloor! \lfloor\frac{n}{8}\rfloor! \cdots}\right) .$$ It follows by using Legendre's formula (see e.g., \cite{hw}) that: \begin{eqnarray*} \sum_{r = 1}^{n} \frac{\nu_2(r) (3 - \nu_2(r))}{2} & = & \sum_{i = 1}^{\infty} \left\lfloor\frac{n}{2^i}\right\rfloor - \sum_{j = 1}^{\infty}\sum_{i = 1}^{\infty} \left\lfloor\frac{n}{2^{i + j}}\right\rfloor \\ & = & \sum_{i = 1}^{\infty} \left\lfloor\frac{n}{2^i}\right\rfloor - \sum_{u = 2}^{\infty} (u - 1) \left\lfloor\frac{n}{2^u}\right\rfloor \\ & = & \sum_{i = 1}^{\infty} \left\lfloor\frac{n}{2^i}\right\rfloor - \sum_{i = 1}^{\infty} i \left\lfloor\frac{n}{2^{i + 1}}\right\rfloor . \end{eqnarray*} By adding to the last series the telescopic series $\sum_{i = 1}^{\infty} \left((i - 1) \left\lfloor\frac{n}{2^i}\right\rfloor - i \left\lfloor\frac{n}{2^{i + 1}}\right\rfloor\right)$ which is convergent with sum zero, we derive that: $$\sum_{r = 1}^{n} \frac{\nu_2(r) (3 - \nu_2(r))}{2} = \sum_{i = 1}^{\infty} i \left(\left\lfloor\frac{n}{2^i}\right\rfloor - 2 \left\lfloor\frac{n}{2^{i + 1}}\right\rfloor\right) .$$ But according to the representation of $n$ in the binary system, we have $$\left\lfloor\frac{n}{2^i}\right\rfloor - 2 \left\lfloor\frac{n}{2^{i + 1}}\right\rfloor = \begin{cases} a_i, & \text{for $i = 1 , 2 , \dots , s$}; \\ 0, & \text{for $i > s$}.\end{cases} $$ Hence $$\sum_{r = 1}^{n} \frac{\nu_2(r) (3 - \nu_2(r))}{2} = \sum_{i = 1}^{s} i a_i ,$$ as required.\\ The second part of the theorem is an immediate consequence of the first one. The proof is finished. \end{proof} \section{Generalization to the other $p$-adic valuations} The generalization of the previous results by replacing the $2$-adic valuation by a $p$-adic valuation (where $p$ is an odd prime) is possible but it doesn't yield results as interesting as those concerning the $2$-adic valuation. Actually, the particularity of the prime number $p = 2$ which have permit us to obtain the previous interesting results is the fact that we have $\frac{1}{p} + \frac{1}{p^2} + \frac{1}{p^3} + \dots = 1$ for $p = 2$. For the following, let $p$ be an arbitrary prime number. We consider more generally the arithmetic function $f_p : \mathbb{N}^* \rightarrow \mathbb{Q}_+^*$ defined by: $$ f_p(p^k \ell) = \ell^{1 - k} $$ for any $k \in \mathbb{N}$, $\ell \in \mathbb{N}^*$, $\ell$ non-multiple of $p$. So we have clearly $f_2 = f$. Using the same method and the same arguments as those used in Section \ref{sec2}, we obtain the followings: \begin{theorem} Let $n$ be a positive integer. Then the product $\displaystyle \prod_{r = 1}^{n} f_p(r)$ is an integer. \end{theorem} For $x \in \mathbb{Q}^*$, set $\varphi_p(x) := x p^{- \nu_p(x)}$. \begin{theorem}\label{t6} Let $n$ be a positive integer. Then $\displaystyle \prod_{r = 1}^{n} f_p(r)$ is a multiple of $\varphi_p(\lcm(1 , 2 , \dots , n))$.\\ In particular, $\displaystyle \prod_{r = 1}^{n} f_p(r)$ is a multiple of all prime number, different from $p$, not exceeding $n$.\\ In addition, $\displaystyle \prod_{r = 1}^{n} f_p(r)$ is a multiple of the rational number $\varphi_p(n!^{\frac{p - 2}{p - 1}})$. \end{theorem} \begin{remark} For $p \neq 2$, because the rational number $n!^{\frac{p - 2}{p - 1}}$ cannot bounded from above by $c^n$ ($c$ an absolute constant) then according to the second part of Theorem \ref{t6}, there is no inequality of the type $\prod_{r = 1}^{n} f_p(r) < c^n$ ($c$ an absolute constant). So, Corollary \ref{coll1} cannot be generalized to the arithmetic functions $f_p$ $(p \neq 2)$. \end{remark} \begin{theorem} For all positive integers $n$ and all prime numbers $q \neq p$, we have $$ \sum_{r = 1}^{n} \nu_p(r) \nu_q(r) \leq \sum_{r = 1}^{n} \nu_q(r) - \left\lfloor \frac{\log n}{\log q}\right\rfloor . $$ We have also $$ \sum_{r = 1}^{n} \nu_p(r) \nu_q(r) \leq \sum_{r = 1}^{n} \nu_q(r) - \frac{p - 2}{p - 1} \sum_{i = 1}^{\infty} \left\lfloor\frac{n}{q^i}\right\rfloor . $$ \end{theorem} \begin{theorem} Let $n$ be a positive integer and let $a_0 + a_1 p^1 + a_2 p^2 + \dots + a_s p^s$ be the representation of $n$ in the base-$p$ system. Then we have $$ \sum_{r = 1}^{n} \frac{\nu_p(r) (3 - \nu_p(r))}{2} = \sum_{i = 1}^{s}\left\{\frac{p(p - 2)p^{i-1} + 1 + (i - 1)(p - 1)}{(p - 1)^2}\right\} a_i . $$ In particular, we have for all $m \in \mathbb{N}$: $$ \sum_{r = 1}^{p^m}\frac{\nu_p(r) (3 - \nu_p(r))}{2} = \frac{p (p - 2) p^{m - 1} + 1 + (m - 1) (p - 1)}{(p - 1)^2} . $$ \end{theorem} \begin{thebibliography}{9} \bibliographystyle{plain} \bibitem{hw} G. H. Hardy and E. M. Wright. \textit{The Theory of Numbers}, 5th ed., Oxford Univ. Press, 1979. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 11A05. \noindent \emph{Keywords: } Arithmetic function, least common multiple, $2$-adic valuation. \bigskip \hrule \bigskip \noindent (Concerned with sequences \seqnum{A185021} and \seqnum{A185275}.) \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received April 27 2011; revised version received October 15 2011; January 25 2012. Published in {\it Journal of Integer Sequences}, January 28 2012. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .