\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf On the Truncated Kernel Function } \vskip 1cm \large Jean-Marie De Koninck \\ D\'epartement de Math\'ematiques et de Statistique \\ Universit\'e Laval \\ Qu\'ebec G1V 0A6 \\ Canada \\ \href{mailto:jmdk@mat.ulaval.ca}{\tt jmdk@mat.ulaval.ca} \\ \ \\ Isma\"{\i}la Diouf \\ D\'epartement de Math\'ematiques et d'Informatique \\ FST - Universit\'e Cheikh Anta DIOP \\ BP 5005, Dakar-Fann \\ Senegal \\ \href{mailto:isma.diouf@gmail.com}{\tt isma.diouf@gmail.com} \\ \ \\ Nicolas Doyon \\ D\'epartement de Math\'ematiques et de Statistique \\ Universit\'e Laval \\ Qu\'ebec G1V 0A6 \\ Canada \\ \href{mailto:nicodoyon77@hotmail.com}{\tt nicodoyon77@hotmail.com}\\ \end{center} \vskip .2 in \begin{abstract} We study properties of the {\it truncated kernel function} $\gamma_2$ defined on integers $n\ge 2$ by $\gamma_2(n)=\gamma(n)/P(n)$, where $\gamma(n)=\prod_{p|n}p$ is the well-known {\it kernel function} and $P(n)$ is the largest prime factor of $n$. In particular, we show that the maximal order of $\gamma_2(n)$ for $n\le x$ is $(1+o(1))x/\log x$ as $x\to \infty$ and that $\sum_{n\le x} 1/\gamma_2(n)= (1+o(1)) \eta x/\log x$, where $\eta=\zeta(2)\zeta(3)/\zeta(6)$. We further show that, given any positive real number $u<1$, $\lim_{x\to \infty} \frac 1x \#\{n\le x: \gamma_2(n)1)$$ satisfying the initial condition $\rho(u)=1$ for $0\le u \le 1$. \end{theorem} \begin{theorem} \label{thm:reciproque} For all $x\ge 2$, \begin{equation} \label{eq:th2} \sum_{n\le x} \frac 1{\gamma_2(n)}= c_2 \frac x{\log x} + O \left( \frac{x\log \log x}{\log^2 x} \right), \end{equation} where $c_2=\displaystyle{\frac{\zeta(2)\zeta(3)}{\zeta(6)}\approx 1.9436}$ (here $\zeta$ stands for the Riemann Zeta Function). \end{theorem} The next theorem allows us to study the distribution of $\gamma_2(n)$, in particular by showing that it behaves like the function $n/P(n)$ almost everywhere. \begin{theorem}\label{thm:distribution2} Given any positive real number $u<1$, $$\lim_{x\to \infty} \frac 1x \#\{n\le x: \gamma_2(n) < x^u\} =\lim_{x\to \infty} \frac 1x \#\{n\le x: n/P(n) < x^u\} = 1 -\rho\left(\frac 1{1-u}\right).$$ \end{theorem} Given a real number $h\ge 1$, let us set $$\Psi_h(x,y) = \#\{n\le x: P(n)\le y,\ \gamma(n)0$ and $h\ge 1$, then \begin{equation} \label{eq:th7} \Psi_h(x,x^{1/u}) = (1+o(1)) x\,D(h)\,\rho(u) \qquad (x\to \infty), \end{equation} where $$D(h) := \lim_{x\to \infty} \frac 1x \#\{n\le x: \gamma(n)0$, $$ \lim_{x\to \infty}\lambda(cx)/\lambda(x)=1. $$ \begin{proposition} \label{prop:1} Let $f$ be a non negative multiplicative function for which there exist a positive real number $k$ and a slowly increasing function $\lambda$ such that, as $x\to \infty$, $$\sum_{n\le x} f(n) = (1+o(1))\,x\,(\log^{k-1} x)\,\lambda(\log x),$$ and such that for all real numbers $u>1$, as $y\to \infty$, $$ \sum_{y1), \\ \end{array} $$ where $\Gamma$ stands for the Gamma function. \end{proposition} \begin{proof} This result is due to de Bruijn and van Lint \cite{kn:lint}. \end{proof} \begin{proposition} \label{prop:2} As $x\to \infty$, \begin{equation} \label{eq:iv} \sum_{n\leqslant x} \frac 1{P(n)} = \left(1+O \left( \sqrt{ \frac{\log\!\log x}{\log x}} \right) \right)x\delta(x), \end{equation} \begin{equation} \sum_{n\leqslant x} \frac{\mu^2(n)}{P(n)} = \left(\frac 6{\pi^2}+ O \left(\sqrt{\frac{\log\!\log x}{\log x}} \right) \right) \sum_{n\leqslant x} \frac 1{P(n)}, \label{eq:iv2} \end{equation} \begin{equation} \sum_{n\leqslant x \atop P(n)^2|n} \frac 1{P(n)} = x \exp\left\{-\sqrt{4\log x \log\!\log x} \left(1+ O \left( \frac{\log\!\log\!\log x}{\log\!\log x} \right) \right) \right\} = x\delta(x)^{\sqrt 2 +o(1)}, \label{eq:iv3} \end{equation} where $\delta(x)$ is the function defined in (\ref{eq:defdelta}). \end{proposition} \begin{proof} A proof of (\ref{eq:iv}) was established by Erd\H{o}s, Ivi\'c, and Pomerance \cite{kn:eip}, while (\ref{eq:iv2}) can be found in Ivi\'c \cite{kn:ivic}, and (\ref{eq:iv3}) in Ivi\'c and Pomerance \cite{kn:ip}. \end{proof} \begin{remark} Using the estimate \begin{equation}\label{eq:rhou} \rho(u) = \exp\{ -u(\log u + \log\!\log u -1 +o(1)) \} \qquad (u\to \infty) \end{equation} (see the book of Tenenbaum \cite{kn:ten}), one can show that the function $\delta(x)$ defined in (\ref{eq:defdelta}) is slowly increasing and satisfies \begin{equation}\label{eq:gL} \delta(x)=\exp\left\{-(1+o(1))\sqrt{2\log x \log\!\log x}\right\}\quad (x\to \infty), \end{equation} so that $$ \delta(x)=L_0(x)^{-1+o(1)} \quad (x\to \infty), $$ where \begin{equation} \label{eq:defL0} L_0(x):= \exp\{ \sqrt{2\log x\log \log x}\}, \end{equation} \end{remark} \begin{lemma} \label{lem:1a} As $x\to \infty$, $$ \int_1^x t\, \rho \left( \frac{\log t}{\log y} \right) \, {\rm d}t = \int_y^x t\, \rho \left( \frac{\log t}{\log y} \right) \, {\rm d}t+O(y) = O(x), $$ uniformly for $2\leqslant y \leqslant x$. \end{lemma} \begin{proof} We first estimate the maximum value of \begin{equation} g(t):=t\,\rho \left( \frac{\log t}{\log y} \right) \label{eq:defg} \end{equation} for $y\leqslant t \leqslant x$ and fixed $y\in [2,x]$. For this, consider $h(t):=\log g(t)$ and solve $h'(t)=0$ for $t$. In view of (\ref{eq:rhou}), we have \begin{eqnarray*} h'(t) = \frac {\rm d}{{\rm d}t}\left(- \frac{\log t}{\log y}( \log\log t - \log \log y+\log\log\log t -\log\log\log y-1)+ \log t\right) \end{eqnarray*} so that $$\log \log t - \log \log y = \log y,$$ in which case, $$ t=y^y.$$ Substituting this value of $t$ in (\ref{eq:defg}), we get in view of (\ref{eq:rhou}), $$g(t) = \rho(y) y^y \ll e^{-y\log y} y^y = 1,$$ which completes the proof of the lemma. \end{proof} \begin{lemma} \label{lem:psi} Uniformly for $x\ge y \ge 2$, $$\log \Psi(x,y) = Z \left\{ 1 + O\left( \frac 1{\log y} + \frac 1{\log \log x} \right) \right\},$$ where $$Z= \frac{\log x}{\log y} \log \left( 1+ \frac y{\log x} \right) + \frac y{\log y} \log \left(1+ \frac{\log x}y \right).$$ \end{lemma} \begin{proof} This result is due to de Bruijn \cite{kn:bruijn}. \end{proof} \begin{lemma} \label{lem:Dh} Given any real number $h\ge 1$, the limit \begin{equation} \label{eq:defDh} D(h):= \lim_{x\to \infty} \frac 1x \#\{n\le x: \gamma(n)\frac s{\gamma(s)} >h$, we have $$ \sum_{s>x \atop{s\ \mbox{\tiny powerful} \atop \frac{\gamma(s)}s<\frac 1h}} \frac 1s < \sum_{s> h \atop s\ \mbox{\tiny powerful}} \frac 1s \ll \int_h^\infty \frac 1t \mbox{d}\,S(t) = \int_h^\infty \frac{S(t)}t \,{\rm d}t + \int_h^\infty \frac{S(t)}{t^2} \,{\rm d}t\ll \frac 1{\sqrt h}.$$ \end{proof} \section{The proof of the theorems} \subsection{The proof of Theorem \ref{thm:moyenne}} We first write $$ S_2(x):=\sum_{n\le x} \gamma_2(n) =\sum_{n\le x \atop P(n)\|n} \frac{\gamma(n)}{P(n)} + \sum_{n\le x \atop P(n)^2|n } \frac{\gamma(n)}{P(n)} =\Sigma_1 + \Sigma_2, $$ say. Since it follows from (\ref{eq:iv3}) of Proposition \ref{prop:2} that \begin{equation}\label{eq:s1s2} \Sigma_2 \leqslant \sum_{n\leqslant x \atop P(n)^2|n } \frac n{P(n)} \leqslant x \sum_{n\leqslant x \atop P(n)^2|n } \frac 1{P(n)} \ll x^2\, \delta(x)^{\sqrt 2 + o(1)} \qquad (x\to \infty), \end{equation} we only need to estimate $\Sigma_1$. We first observe that the true order of $\Sigma_1$ is $x^2\,\delta(x)$ and in fact that $$ \frac{\Sigma_1}{(x^2\delta(x))/2}\; \in\; \left[\frac 6{\pi^2},1\right] $$ since it is easily shown that, as $x\to \infty$, \begin{equation}\label{eq:approx} (1+o(1))\frac 6{\pi^2} \frac{x^2}2\, \delta(x) \leqslant \sum_{n\leqslant x \atop P(n)\|n} \frac{\gamma(n)}{P(n)} \leqslant (1+o(1)) \frac{x^2}2\, \delta(x). \end{equation} Indeed, on the one hand, $$ \sum_{n\le x \atop P(n)\|n} \frac{\gamma(n)}{P(n)} \leqslant \sum_{n\leqslant x \atop P(n)\|n} \frac n{P(n)} = (1+o(1))\frac{x^2}2\, \delta(x) \qquad (x\to \infty), $$ by way of (\ref{eq:iv}) and partial summation. On the other hand, using the trivial observation $\gamma(n)\geqslant \mu^2(n)\,n$ valid for all $n\geqslant 1$, we have $$ \sum_{n\le x \atop P(n)\|n} \frac{\gamma(n)}{P(n)} \geqslant \sum_{n\leqslant x \atop P(n)\|n} \frac{\mu^2(n)\,n}{P(n)} = \sum_{n\leqslant x}\frac{\mu^2(n)n}{P(n)}=(1+o(1))\frac 6{\pi^2}\frac{x^2}2\, \delta(x) \qquad (x\to \infty), $$ where first we used (\ref{eq:iv2}) and partial summation and thereafter estimate (\ref{eq:iv}) of Proposition\,\ref{prop:2}. In order to estimate $\Sigma_1$, we shall first prove that \begin{equation}\label{eq:g1} G(x,y):=\sum_{n\le x \atop P(n)\leqslant y} \gamma(n) = (1+o(1))\,c_1 x^2 \ \rho(u)\qquad (x\to \infty), \end{equation} where $\ u=\dfrac{\log x}{\log y}$ and $\rho$ is the Dickman function. Let $f(n):=\gamma(n)/n$. First, it is an easy matter to derive from (\ref{eq:cohen}) that \begin{equation} \label{eq:gn} \sum_{n\le x} \frac{\gamma(n)}n = c_1 x +O(x^{1/2} \log x), \end{equation} where $c_1=2c_0$. On the other hand, using Mertens' formula, we have that \begin{equation}\label{eq:pnt} \sum_{y< pK} \frac{\mu^2(k)}{k\phi(k)} < x \sum_{k>K} \frac 1{k^{3/2}} < \frac x{K^{1/2}}, \end{equation} where we used the trivial inequality $\phi(k)>k^{1/2}$ valid for all $k\ge 7$. On the other hand, in light of estimate (\ref{eq:ajout}), which is proved in section 4.7, we get \begin{eqnarray} \label{eq:y2} \nonumber S_1(x;K) & = & \sum_{k\le K} \frac{\mu^2(k)}k \left( \sum_{n\le x \atop \gamma_2(n)\le k} 1 - \sum_{n\le x \atop \gamma_2(n)\le k-1} 1 \right) \\ \nonumber & = & \sum_{k\le K} \frac{\mu^2(k)}k \left( (E(k)-E(k-1)) \frac x{\log x} + O\left( \frac x{\log^2 x} \right) +O(\pi(k)) \right) \\ & = & \left( \sum_{k\le K} \frac{\mu^2(k)}{k\phi(k)} \right) \frac x{\log x} + O\left( \frac{x\log K}{\log^2 x} \right)+ O\left( \frac K{\log K} \right). \end{eqnarray} Again using the fact that $\phi(k)< k^{1/2}$ for all $k\ge 7$, we have \begin{equation} \label{eq:y3} \sum_{k\le K} \frac{\mu^2(k)}{k\phi(k)} = \sum_{k=1}^\infty \frac{\mu^2(k)}{k\phi(k)} - \sum_{k> K} \frac{\mu^2(k)}{k\phi(k)} = c_2 + O\left( \frac 1{\sqrt K} \right). \end{equation} Choosing $K=\log^4 x$ and using (\ref{eq:y1}), (\ref{eq:y2}) and (\ref{eq:y3}) in (\ref{eq:y0}), estimate (\ref{eq:th2}) follows, thereby completing the proof of Theorem \ref{thm:reciproque}. \subsection{The proof of Theorem \ref{thm:distribution2}} Since, for each integer $n\ge 2$, we have $\displaystyle{\gamma_2(n)=\frac{\gamma(n)}{P(n)} \le \frac n{P(n)}}$, it follows that \begin{eqnarray}\label{eq:w1} \nonumber \sum_{n\le x \atop \gamma_2(n)\frac 1{x^u}} 1 \\ \nonumber & = & [x] - \sum_{n\le x \atop P(n)\le n/x^u} 1 \ge [x] - \sum_{n\le x \atop P(n)\le x^{1-u}} 1 \\ & = & x \left( 1- \rho\left(\frac 1{1-u}\right)+o(1) \right) \qquad (x\to \infty). \end{eqnarray} On the other hand, let $\varepsilon>0$ be an arbitrarily small number and choose $k$ large enough so that, using estimate (\ref{eq:borneDh}) of Lemma \ref{lem:Dh}, we can claim that \begin{equation} \label{eq:v1} \lim_{x\to \infty} \frac 1x \#\{n\le x: \gamma(n)/n < 1/k\} < \varepsilon. \end{equation} Then, using (\ref{eq:v1}), provided $x$ is large enough, we have \begin{equation}\label{eq:w2} \sum_{n\le x \atop \gamma_2(n)x^{1/u}$ and $u\in [N,N+1]$, we have $$\frac{\log(x/p)}{\log p} = \frac{\log x}{\log p} -1 < \frac{\log x}{\log(x^{1/u})} - 1 =u-1 \le N,$$ implying that (\ref{eq:resum}) holds, say with $u'=\frac{\log(x/p)}{\log p}$ instead of $u$, thus allowing us to replace (\ref{eq:dif-2}) by \begin{eqnarray*} \Psi_h(x,x^{1/u}) & = & (1+o(1)) x D(h) \rho(N) - (1+o(1)) D(h) \sum_{x^{1/u} < p \le x^{1/N}} \frac xp\, \rho \left( \frac{\log x}{\log p} -1 \right) \\ & = & (1+o(1)) x D(h) \rho(N) - (1+o(1))x D(h)\int_{x^{1/u}}^{x^{1/N}} \rho \left( \frac{\log x}{\log v}-1 \right) \frac{{\rm d}\,\theta(v)}{v\log v} \\ & = & (1+o(1))x D(h) \left( \rho(N) - \int_N^u \frac{\rho(t-1)}t\,dt \right) \\ & = & (1+o(1))x D(h) \rho(u) \qquad (x\to \infty), \end{eqnarray*} (where we used the prime number theorem in the form $\theta(v)=\sum_{p\le v} \log p = (1+o(1))v$ as $v\to \infty$), thus showing that (\ref{eq:resum}) also holds for $u\in [N,N+1]$ and thus completing the induction argument. \subsection{The proof of Theorem \ref{thm:max}} We first show that the bound is achieved for $n=\prod_{p\le \log x} p$. Indeed, it follows from the prime number theorem that, as $x\to \infty$, $$ \gamma_2(n)= \frac 1{\max_{p\le \log x} p} \times \prod_{p\le \log x} p =\frac 1{\max_{p\le \log x} p} \times e^{(1+o(1))\log x} = (1+o(1)) \frac x{\log x}. $$ On the other hand, this last expression is indeed an upper bound for $\gamma_2(n)$. To prove this, first assume that $P(n)>\log(n/\log n)$. Then, in this case, as $x\to \infty$, $$ \gamma_2(n) \le \frac n{P(n)} \le \frac n{\log n - \log \log n} = \frac n{\log n} \left(1 + O\left( \frac{\log \log n}{\log n} \right) \right)\le (1+o(1)) \frac x{\log x}. $$ If, on the contrary, $P(n)\le \log(n/\log n)$, we have, by the prime number theorem, $$ \gamma_2(n) < \prod_{p\le P(n)}p \le \prod_{p\le \log n - \log\log n}p = (1+o(1)) \frac n{\log n} \le (1+o(1)) \frac x{\log x} \qquad (x\to \infty). $$ This completes the proof of Theorem \ref{thm:max}. \subsection{The proof of Theorem \ref{thm:unique}} Let us write each integer $n\ge 2$ as $n=st$, where $s$ is squarefull and $t$ is squarefree with $(s,t)=1$. On the one hand, $$\frac{\gamma_2(n)}n \ge \frac 1{c\log n} \Longleftrightarrow \frac{s P(st)}{\gamma(s)} \le c\log n.$$ But this last inequality implies that \begin{equation} \label{eq:a1} P(st) \le \frac{sP(st)}{\gamma(s)} \le c\log n \le c \log x. \end{equation} Since $\gamma_2(n)\le \gamma(n) \le n/\sqrt s$, we get that $s\le (k\log x)^2$, which combined with (\ref{eq:a1}) implies that $P(t)\le c \log x$. Therefore, as $x\to \infty$, \begin{eqnarray} \label{eq:t11} \nonumber A(x) & \le & \#\{t\le x: \mu^2(t)=1, \ P(t)\le c \log x\}\\ & \le & 2^{\pi(c\log x)} = \exp\left\{ (1+o(1)) c \log 2 \frac{\log x}{\log \log x} \right\}, \end{eqnarray} where again we made use of the prime number theorem. We will now obtain a lower bound for $B(x)$. Given any small $\delta>0$, we have, using Lemma \ref{lem:psi}, that as $x\to \infty$, \begin{eqnarray} B(x) & = & \#\{n\le x: P(n) \le c \log n\} \nonumber \\ & \ge & \#\{x^{1-\delta} < n\le x: P(n) \le c \log n\} \nonumber \\ & \ge & \#\{x^{1-\delta} < n\le x: P(n) \le (1-\delta) c \log x\} \nonumber \\ & = & \Psi(x,(1-\delta)c\log x) - \Psi(x^{1-\delta},(1-\delta)c\log x) \nonumber \\ & = & (1+o(1))\Psi(x,(1-\delta)c\log x) \label{eq:t21} \\ & = & (1+o(1)) \exp Z \nonumber \\ & = & \exp\left\{ (1+o(1))\frac{\log x}{\log \log x} \left( \log(1+(1-\delta)c) + (1-\delta) c \log \left( 1+ \frac 1{c(1-\delta)} \right) \right) \right\} \nonumber . \end{eqnarray} Since $\delta$ can be taken arbitrarily small, it follows from (\ref{eq:t21}) that, as $x\to \infty$, \begin{equation} \label{eq:t3} B(x) \ge \exp\left\{ (1+o(1))\frac{\log x}{\log \log x} \left( \log(1+c) + c \log \left( 1+ \frac 1c \right) \right) \right\}. \end{equation} Finally, by comparing (\ref{eq:t11}) with (\ref{eq:t3}) and observing that for $c<\xi$, we have $$c \log 2 < \log(1+c) + c \log \left( 1+ \frac 1c \right),$$ the proof of Theorem \ref{thm:unique} is complete. \subsection{The proof of Theorem \ref{thm:distribution1}} We first evaluate $S_1=\#\{n\le x: n/P(n) \le k\}$. Writing each positive integer $n\le x$ as $n=mp$ with $P(m)\le p$, we have \begin{eqnarray*} S_1 & = & \sum_{m\le k } \sum_{k y$, {\it Nederl. Akad. Wetensch. Proc. Ser. A} {\bf 69} (1966), 239--247. (= {\it Indag. Math.} {\bf 28}). \bibitem{kn:lint} N. G. de Bruijn and Y. H. van Lint, Incomplete sums of multiplicative functions, {\it Nederl. Akad. Wetensih. Proc. Ser. A} {\bf 67} (1964), 339--347; 348--353. \bibitem{kn:cohen} E. Cohen, Arithmetical functions associated with the unitary divisors of an integer, {\it Math. Z.} {\bf 74} (1960), 66--80. \bibitem{kn:dk-si} J.-M. De Koninck and R. Sitaramachandrarao, Sums involving the largest prime divisor of an integer, {\it Acta Arith.} {\bf 48} (1987), 1--8. \bibitem{kn:eip} P. Erd\H{o}s, A. Ivi\'c, and C. Pomerance, On sums involving reciprocals of the largest prime factor of an integer, {\it Glas. Mat.} {\bf 21} (1986), 27--44. \bibitem{kn:golomb} S. Golomb, Powerful numbers, {\it Amer. Math. Monthly} {\bf 77} (1970), 848--852. \bibitem{kn:granville} A. Granville, Smooth numbers: computational number theory and beyond, in {\it Algorithmic Number Theory, MSRI Publications}, Vol.\ 44, 2008, pp.\ 267--323. \bibitem{kn:ivic} A. Ivi\'c, On some estimates involving the number of prime divisors of an integer, {\it Acta Arith.} {\bf 49} (1987), 21--32. \bibitem{kn:ip} A. Ivi\'c and C. Pomerance, Estimates for certain sums involving the largest prime factor of an integer, in {\it Proceedings Budapest Conference in Number Theory July 1981, Coll. Math. Soc. J. Bolyai}, Vol.\ 34, North-Holland, 1984, pp.\ 769--789. \bibitem{kn:ws} W. Schwarz, Einige Anwendungen tauberscher S\"atz in der Zahlentheorie B, {\it J. Reine Angew. Math.} {\bf 219} (1965), 157--179. \bibitem{kn:ten} G. Tenenbaum, {\it Introduction \`a la Th\'eorie Analytique et Probabiliste des Nombres}, Collection \'Echelles, Belin, 2008. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 11N37; Secondary 11A25. \noindent \emph{Keywords: } kernel function, arithmetic function. \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received November 24 2011; revised version received January 28 2012. Published in {\it Journal of Integer Sequences}, February 5 2012. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .