\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm {\LARGE\bf Some Properties of the Multiple Binomial\\ \vskip .04in Transform and the Hankel Transform \\ \vskip .17in of Shifted Sequences} \vskip 1cm \large Jiaqiang Pan\\ School of Biomedical Engineering and Instrumental Science\\ Zhejiang University\\ Hangzhou 210027\\ China\\ \href{mailto:panshw@mail.hz.zj.cn} {\tt panshw@mail.hz.zj.cn}\\ \end{center} \vskip .2 in \begin{abstract} In this paper, we study the multiple binomial transform and the Hankel transform of shifted sequences of an integer sequence, particularly a linear homogeneous recurrence sequence, and some of their properties. \end{abstract} \section{Notation} In this paper, we generally use function symbols, like $a(t)$, $b(t)$, etc., to express integer sequences, where $t\in{\mathbb{N}}_0=\{0,1,2,\ldots\}$. However sometimes, to employ matrix tools in deduction process, we also denote the integer sequences by using (infinite-dimensional) vector symbols, like $a=(a(0),a(1),a(2),a(3),\cdots,\cdots)^T$, $b=(b(0),b(1),b(2),b(3),\cdots,\cdots)^T$, etc. \section{Multiple binomial transforms of shifted sequences} \begin{definition}[Shifting integer sequences]\label{d:ShiftingSequence} Let $a(t)$ be an integer sequence and $\sigma$ be the shift operator. Then we define \emph{the $p$th-order shifted sequence} $a_{(p)}(t))$, ($p=0,1,2,\ldots$), of $a(t)$, as follows: \begin{equation}\label{e:ShiftingTrans} a_{(p)}(t)=\sigma^{p}(a)=a(t+p), \qquad t=0,1,2,\ldots, \end{equation} Note that in the case $p=0$, $a_{(0)}(t)=\sigma^{0}(a)=a(t)$. \end{definition} \begin{definition}[Multiple binomial transforms]\label{d:BinomialTrans} Let $a(t)$ be an integer sequence. Then according to Pan \cite{ref1}, we define \emph{the $n$-fold binomial transform} of $a(t)$, and denote its image sequence by ${\mathcal{B}}_n(a)$ or $a^{(n)}(t)$, as follows: \begin{equation}\label{e:MultiTrans1} a^{(1)}(t)={\mathcal{B}}_1(a)=\sum_{k=0}^{t} \binom{t}{k}a(k), \qquad a^{(n)}(t)={\mathcal{B}}_n(a)=\overbrace{{\mathcal{B}}_1({\mathcal{B}}_1 (\cdots({\mathcal{B}}_1}^{n-fold}(a)))), \end{equation} where $n=0,1,2,\ldots$. Note that in the case $n=0$, ${\mathcal{B}}_0(a)=a^{(0)}(t)=a(t)$, that is, the transform ${\mathcal{B}}_0$ just is the identity transform. \end{definition} \begin{definition}[Inverse multiple binomial transform]\label{d:InverseTrans} Let $a(t)$ be an integer sequence. Then according to Pan \cite{ref1}, we define \emph{the $m$-fold inverse binomial transform} of $a(t)$, and denote its image sequence by ${\mathcal{B}}_{-m}(a)$ or $a^{(-m)}(t)$, as follows: \begin{equation}\label{e:InverseMulti1} a^{(-1)}(t)={\mathcal{B}}_{-1}(a)=\sum_{k=0}^{t} (-1)^{t-k}\binom{t}{k}a(k), \quad a^{(-m)}(t)={\mathcal{B}}_{-m}(a)=\overbrace{{\mathcal{B}}_{-1}({\mathcal{B}}_{-1} (\cdots({\mathcal{B}}_{-1}}^{m-fold}(a)))), \end{equation} where $m=1,2,\ldots$. \end{definition} \begin{remark}\label{r:MatrixForm1} We can express (\ref{e:MultiTrans1}) in the matrix form: $a^{(1)}=B_1 a$, where the transform matrix $B_1$ is an infinite-order lower-triangular matrix, as follows: \begin{equation}\label{e:MultiBinom1} B_1=\left(\begin{array}{ccccc} \binom{0}{0} & & & & \\ \binom{1}{0} & \binom{1}{1} & & & \\ \binom{2}{0} & \binom{2}{1} & \binom{2}{2} & & \\ \binom{3}{0} & \binom{3}{1} & \binom{3}{2} & \binom{3}{3} & \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{array} \right)=\left(\begin{array}{ccccc} 1 & & & & \\ 1 & 1 & & & \\ 1 & 2 & 1 & & \\ 1 & 3 & 3 & 1 & \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{array} \right), \end{equation} and \begin{equation}\label{e:MultiBinom3} a^{(n)}=(a^{(n)}(0),a^{(n)}(1),a^{(n)}(2),\cdots,\cdots)^T=B_n a= B_1^n a, \end{equation} where $n=0,1, 2, 3, \ldots$. The transform matrix of the $n$-fold binomial transform $B_n$ $(=B_1^n)$ is always a lower-triangular transform matrix with each of the diagonal elements being one. \end{remark} \begin{remark}\label{r:MatrixForm2} We can also express (\ref{e:InverseMulti1}) in matrix form, as $a^{(-1)}=B_{-1} a$, where the transform matrix $B_{-1}$ is an infinite-order lower-triangular matrix, as \begin{equation}\label{e:InverseMulti2} B^{-1}=\left(\begin{array}{rrrrr} \binom{0}{0} & & & & \\ -\binom{1}{0} & \binom{1}{1} & & & \\ \binom{2}{0} & -\binom{2}{1} & \binom{2}{2} & & \\ -\binom{3}{0} & \binom{3}{1} & -\binom{3}{2} & \binom{3}{3} & \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{array} \right)=\left(\begin{array}{ccccc} 1 & & & & \\ -1 & 1 & & & \\ 1 & -2 & 1 & & \\ -1 & 3 & -3 & 1 & \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{array} \right), \end{equation} and \begin{equation}\label{e:InverseMulti3} a^{(-m)}=(a^{(-m)}(0),a^{(-m)}(1),a^{(-m)}(2),\cdots,\cdots)^T=B_{-m}a=B_{-1}^{m} a, \end{equation} where $m=1, 2, 3, \ldots$. The transform matrix $B_{-m}$ $(=B_{-1}^{m})$ is also always a lower-triangular transform matrix with each of the diagonal elements being one. We see that $B_1B_{-1}=B_{-1}B_1=E$, where $E$ is the infinite-order unit matrix. It is the matrix form of well-known inversion relation: $\sum_{k=i}^t (-1)^{t-k}\binom{t}{k}\binom{k}{i}=\sum_{k=i}^t (-1)^{k-i}\binom{t}{k}\binom{k}{i}=\delta_{ti}$, where $t,i=0,1,2,\ldots.$ \end{remark} \begin{remark}\label{r:AbelianGroup} We view the $n$-fold binomial or inverse binomial transform ${\mathcal{B}}_n$, $(n=0,\pm 1,\pm 2,\pm 3,\ldots)$, to be one simple transform of integer sequences, because such inversion relations as $B_2B_{-2}=B_{-2}B_2=E$, $B_3B_{-3}=B_{-3}B_3=E$ hold, and so forth. For example, for $2$-fold binomial and inverse binomial transforms, the transform matrices are respectively \begin{equation}\label{e:TwoBinom} B_2=\left(\begin{array}{ccccc} 1 & & & & \\ 2 & 1 & & & \\ 4 & 4 & 1 & & \\ 8 & 12 & 6 & 1 & \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{array} \right), \quad B_{-2}=\left(\begin{array}{rrrrr} 1 & & & & \\ -2 & 1 & & & \\ 4 & -4 & 1 & & \\ -8 & 12 & -6 & 1 & \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{array} \right), \end{equation} \end{remark} Now, let us give the multiple binomial transforms of the shifting sequences $a_{(p)}(t)$, $(p=0,1,2,\ldots)$, of an integer sequence $a(t)$. \begin{theorem}\label{t:BinomShift} Let $a(t)$ be an integer sequence. Then \begin{equation}\label{e:BinomShift1} % {\mathcal{B}}_n(a) {\mathcal{B}}_n(a_{(p)})=(\sigma-n)^{p}({\mathcal{B}}_n(a))= (\sigma-n)^{p}(a^{(n)})=\sum^{p}_{k=0}(-n)^{p-k}\binom{p}{k}\sigma^k(a^{(n)}), \end{equation} where $n=0,\pm 1,\pm 2,\ldots$. \end{theorem} \begin{proof} Use the mathematical induction. When $n=\pm 1$ and $p=1$, \begin{multline} {\mathcal{B}}_1(\sigma(a))=\sum_{k=0}^{t}\binom{t}{k}a(k+1)=\sum_{k=1}^{t+1}\binom{t}{k-1}a(k) =\sum_{k=1}^{t+1}\binom{t+1}{k}a(k)-\sum_{k=1}^{t+1}\binom{t}{k}a(k) \\ =\sum_{k=0}^{t+1}\binom{t+1}{k}a(k)-a(0)-[\sum_{k=0}^{t}\binom{t}{k}a(k)-a(0)] =\sigma({\mathcal{B}}_1(a))-{\mathcal{B}}_1(a)=(\sigma-1)({\mathcal{B}}_1(a)), \nonumber \end{multline} and \begin{multline} {\mathcal{B}}_{-1}(\sigma(a))=\sum_{k=0}^{t}(-1)^{t-k}\binom{t}{k}a(k+1) =\sum_{k=1}^{t+1}(-1)^{t+1-k}\binom{t}{k-1}a(k) \\ =\sum_{k=0}^{t+1}(-1)^{t+1-k}\left[\binom{t+1}{k}-\binom{t}{k}\right]a(k) =\sum_{k=0}^{t+1}(-1)^{t+1-k}\binom{t+1}{k}a(k)+\sum_{k=0}^{t}(-1)^{t-k}\binom{t}{k}a(k) \\ =\sigma({\mathcal{B}}_{-1}(a))+{\mathcal{B}}_{-1}(a)=(\sigma+1)({\mathcal{B}}_{-1}(a)). \nonumber \end{multline} If for $n=\pm k$($k$ is some positive integer), ${\mathcal{B}}_{\pm k}(\sigma(a))=(\sigma\mp k)({\mathcal{B}}_{\pm k}(a))$ holds, then for $n=\pm(k+1)$, ${\mathcal{B}}_{\pm(k+1)}(\sigma(a))={\mathcal{B}}_{\pm 1}(\sigma({\mathcal{B}}_{\pm k}(a)))\mp k{\mathcal{B}}_{\pm 1}({\mathcal{B}}_{\pm k}(a))= (\sigma\mp 1)({\mathcal{B}}_{\pm(k+1)}(a))\mp k{\mathcal{B}}_{\pm(k+1)}(a)=(\sigma\mp(k+1))({\mathcal{B}}_{\pm(k+1)}(a))$ also holds. Hence, for any integer $n$, ${\mathcal{B}}_n(\sigma(a))=(\sigma-n)({\mathcal{B}}_n(a))$ holds. On the other hand, if for $p=m$($m$ is some positive integer) that ${\mathcal{B}}_n(\sigma^m(a))=(\sigma-n)^{m}({\mathcal{B}}_n(a))$ holds, then when $p=m+1$, we get that ${\mathcal{B}}_n(\sigma^{m+1}(a))=(\sigma-n)^{m}({\mathcal{B}}_n(\sigma(a)))= (\sigma-n)^{m}((\sigma-n)({\mathcal{B}}_n(a)))=(\sigma-n)^{m+1}({\mathcal{B}}_n(a))$. Hence, for any positive integer $n$ and $p$, ${\mathcal{B}}_n(\sigma^p(a))=(\sigma-n)^{p}({\mathcal{B}}_n(a))$. Special cases that $n=0$ and/or $p=0$ are trivial. \end{proof} \begin{corollary}\label{c:BinomShift} Let $a(t)$ be an integer sequence, and $P(\sigma)$ be an integer-coefficient polynomial in $\sigma$. Then \begin{equation}\label{e:BinomShift2} {\mathcal{B}}_n(P(\sigma)(a))=P(\sigma-n)({\mathcal{B}}_n(a))=P(\sigma-n)(a^{(n)}), \end{equation} where $n=0,\pm 1,\pm 2,\ldots.$ \end{corollary} \begin{proof} Let $P(\sigma)$ be a integer-coefficient polynomial of degree $p$ ($p=0,1,2,\ldots$) in $\sigma$: $P(\sigma)=\sum_{k=0}^{p}c_k\sigma^{k}$, where $c_k$s are ($p+1$) integers. From Theorem \ref{t:BinomShift}, we have that ${\mathcal{B}}_n(P(\sigma)(a))={\mathcal{B}}_n(\sum_{k=0}^{p}c_k\sigma^{k}(a))= \sum_{k=0}^{p}c_k{\mathcal{B}}_n(\sigma^{k}(a))=\sum_{k=0}^{p}c_k(\sigma-n)^{k}({\mathcal{B}}_n(a))= P(\sigma-n)({\mathcal{B}}_n(a))=P(\sigma-n)(a^{(n)})$. \end{proof} \begin{remark}\label{r:EigenValue} By using Corollary \ref{c:BinomShift}, we can more succinctly prove the following known property of recurrence sequences (see \cite[Thm.\ 17]{ref1}). Let $a(t)$ be a linear homogeneous recurrence sequence of order $q$ with the recurrence equation \begin{equation}\label{e:RecurSeq} P(\sigma)(a)=\sum_{k=0}^{q}b_k\sigma^{q-k}(a)=0, \end{equation} where $b_0=1$, $b_1,b_2,\ldots,b_q$ are $q$ given integers. Then its $q$ complex characteristic values $\lambda_k$, $k=1,2,\ldots,q$, are the roots of polynomial (algebraic) equation: \begin{equation}\label{e:EigenValue} P(\lambda)=\sum_{k=0}^{q}b_k\lambda^{q-k}=0. \end{equation} On the other hand, by taking transformation ${\mathcal{B}}_n$ of the two sides of (\ref{e:RecurSeq}), and then employing Corollary \ref{c:BinomShift}, we find that sequences $a^{(n)}(t)$, ($n=0,\pm 1,\pm 2,\ldots$), satisfy recurrence equation: \begin{equation}\label{e:EigenValue1} P(\sigma-n)(a^{(n)})=0. \end{equation} This implies that $q$ complex characteristic values $\lambda^{(n)}_k$, $(k=1,2,\ldots,q)$, of $a^{(n)}(t)$ are the roots of the algebraic equation: \begin{equation}\label{e:EigenValue2} P(\lambda^{(n)}-n)=\sum_{k=0}^{q}b_k(\lambda^{(n)}-n)^{q-k}=0. \end{equation} Comparing (\ref{e:EigenValue}) with (\ref{e:EigenValue2}), we find that $\lambda^{(n)}_k-n=\lambda_k$, namely \begin{equation}\label{e:EigenValue3} \lambda^{(n)}_k=\lambda_k+n, \quad (k=1,2,\ldots,q). \end{equation} \end{remark} \section{Shifted sequences and the Hankel transform} Layman proved the invariance of the Hankel transform under applications of the binomial transform or its inverse transform (see \cite{ref2}). For an integer sequence, the $n$-fold binomial (or inverse binomial) transform is the same as the $n$ times successive binomial (or inverse binomial) transform operation, Pan \cite{ref1} pointed out that the invariance of the Hankel transform holds under applications of the $n$-fold binomial (or $n$-fold invert binomial) transform. Now by using Theorem \ref{t:BinomShift}, we give a more direct and succinct proof of the invariance, as follows. \begin{remark}\label{r:InvarianceHankel} By using Definition \ref{d:ShiftingSequence}, we express the Hankel matrix $H_a$ of sequence $a(t)$ as \begin{equation}\label{e:HabkelMatri1} H_a=\left(\begin{array}{ccccc} a & \sigma(a) & \sigma^2(a) & \sigma^3(a) & \cdots \end{array} \right) \\ =\left(\begin{array}{ccccc} a & a_{(1)} & a_{(2)} & a_{(3)} & \cdots \end{array} \right), \end{equation} and Hankel matrix $H_{a^{(n)}}$ of integer sequence $a^{(n)}(t)$ as \begin{equation}\label{e:HabkelMatri2} H_{a^{(n)}}=\left(\begin{array}{ccccc} a^{(n)} & \sigma(a^{(n)}) & \sigma^2(a^{(n)}) & \sigma^3(a^{(n)}) & \cdots \end{array} \right), \end{equation} According to Theorem \ref{t:BinomShift}, we have that \begin{multline}\label{e:HabkelMatri3} B_n H_a=\left(\begin{array}{ccccc} B_n a & B_n a_{(1)} & B_n a_{(2)} & B_n a_{(3)} & \cdots \end{array} \right) \\ =\left(\begin{array}{ccccc} a^{(n)} & (\sigma-n)(a^{(n)}) & (\sigma-n)^2(a^{(n)}) & (\sigma-n)^3(a^{(n)}) & \cdots \end{array} \right). \end{multline} Comparing (\ref{e:HabkelMatri3}) with (\ref{e:HabkelMatri2}), we see that the upper-left $(t+1)\times(t+1)$ ($t=0,1,2,\ldots$) sub-matrix of $B_nH_a$ has the same determinant to the upper-left sub-matrix of the Hankel matrix $H_{a^{(n)}}$ of sequence $a^{(n)}(t)$. On the other hand, the determinant of the upper-left $(t+1)\times(t+1)$ ($t=0,1,2,\ldots$) sub-matrix of matrix $B_n H_a$ is equal to the determinant of the upper-left $(t+1)\times(t+1)$ ($t=0,1,2,\ldots$) sub-matrix of matrix $H_a$, because the determinant of any upper-left sub-matrices of matrix $B_n$ ($n=\pm 1,\pm 2,\pm 3,\ldots$) is always equal to one. In other words, the sequences $a$ and $a^{(n)}$ both have the same Hankel transform, for any integer $n$. \end{remark} \begin{remark}\label{r:InvarianceMulti} This result gives an affirmative answer to one of Layman's two questions raised in \cite{ref2}: \emph{Are there other interesting transforms, $T$, of an integer sequence $S$, in addition to the Binomial and Invert transforms, with the property that the Hankel transform of $S$ is the same as the Hankel transform of the $T$ transform of $S$?} For example, $\mathcal{T}={\mathcal{B}}_2$ or ${\mathcal{B}}_{-2}$, which have transform matrices listed in (\ref{e:TwoBinom}). \end{remark} Next, we investigate the Hankel transform of recurrence sequences. The following theorem gives a basic property of the Hankel transform of recurrence sequences. \begin{theorem}\label{t:RecurSeq1} Let $a(t)$ be a linear homogeneous recurrence sequence of order $q$, with recurrence equation (\ref{e:RecurSeq}). Then the Hankel transform $h_a(t)$ of sequence $a(t)$ is a finite sequence with length $q$, that is, for $t\geq q$, $h_a(t)\equiv 0$. \end{theorem} \begin{proof} We see from (\ref{e:HabkelMatri1}) and (\ref{e:RecurSeq}) that if multiplying the first, the second, $\ldots$, the $q$-th column vectors of the Hankel matrix $H_a$ by $b_q$, $b_{q-1}$, $\ldots$, $b_1$ respectively, and then adding them to the $(q+1)$th column $\sigma^q(a)$, we cause the $(q+1)$-th column to be a zero-column. This operation does not change the determinants of principal sub-matrices of $H_a$. On the other hand, for a infinite-order square matrix with its $(q+1)$-th column being a zero-column, determinants of the principal sub-matrices of order $q+1$, $q+2$, $q+3$, $\ldots$, namely $h(q)$, $h(q+1)$, $h(q+2)$, $\ldots$, are always equal to zeros. That is, the Hankel transform $h(t)$ is a finite integer sequence with the length of $q$. \end{proof} \begin{corollary}\label{c:RecurSeq1} All of the $n$-fold binomial transforms $a^{(n)}(t)$ ($n=0,\pm 1,\pm 2,\pm 3,\ldots$) of a $q$-order recurrence sequence $a(t)$ have identical Hankel transform with the length of $q$. \end{corollary} \begin{remark}\label{r:Examples1} For example, as recurrence sequences of order $2$ and $3$, the Fibonacci sequence $F(t)$ (\seqnum{A000045} in \cite{ref3}) and its multiple binomial transforms \seqnum{A001906}, \seqnum{A093131}, \seqnum{A039834}, etc. (see Pan \cite{ref1}) all have the same Hankel transform with length $2$: $h_F(0)=1$, $h_F(1)=1$, and the Tribonacci sequence $T(t)$ (\seqnum{A000073} in \cite{ref3}) and its multiple binomial transforms \seqnum{A115390}, etc. (see Pan \cite{ref1}) all have the same Hankel transform with length $3$: $h_T(0)=3$, $h_T(1)=8$, $h_T(2)=-44$. \end{remark} Finally, we give special relations of the Hankel transforms of $a^{(n)}(t)$, $(n=0,\pm 1,\pm 2,\ldots)$, and $a_{(p)}(t)$, $(p=0,1,2,\ldots)$, with the general term formula of the recurrent sequences $a(t)$, respectively. \begin{theorem}\label{t:HankelRecur1} Let $a(t)$ be a linear homogeneous recurrence sequence of order $q$, with the general-term formula: $a(t)=\sum^{q}_{i=1}c_i\lambda_i^t$, $t\in{\mathbb{N}}_0$. Then the Hankel transforms $h_{a^{(n)}}(t)$, ($n=0,\pm 1,\pm 2,\ldots$), are such that \begin{equation}\label{e:HankelRecur1} h_{a^{(n)}}(t)=\sum_{(i_1,i_2,\cdots,i_{t+1})}\prod_{k=1}^{t+1}(c_{i_{k}} \lambda_{i_{k}}^{k-1})\prod_{1\leq k