\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} %\usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \newcommand{\bea}{\begin{eqnarray*}} \newcommand{\eea}{\end{eqnarray*}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm{\LARGE\bf Full Subsets of $\mathbb N$} \vskip 1cm \large {Lila Naranjani}\\ Islamic Azad University\\ Dolatabad Branch\\ Isfahan\\ Iran\\ \href{mailto:lnaranjani@yahoo.com}{\tt lnaranjani@yahoo.com} \\ \ \\ Madjid Mirzavaziri\\ Department of Pure Mathematics\\ Ferdowsi University of Mashhad\\ P. O. Box 1159--91775\\ Iran\\ \href{mailto:mirzavaziri@gmail.com}{\tt mirzavaziri@gmail.com} \\ \end{center} \vskip .2in \begin{abstract} Let $A$ be a subset of $\mathbb N$. We say that $A$ is $m$-full if $\sum A=[m]$ for a positive integer $m$, where $\sum A$ is the set of all positive integers which are a sum of distinct elements of $A$ and $[m]=\{1,\ldots,m\}$. In this paper, we show that a set $A=\{a_1,\ldots,a_k\}$ with $a_1<\cdots a_1+\cdots+a_{j-1}+1$ for some $j, 2\leq j\leq k$, then $a_1+\cdots+a_{j-1}+1$ is not a sum of distinct elements of $A$. But $1\leq a_1+\cdots+a_{j-1}+1\leq a_1+\cdots+a_k=m$. This contradicts to the fact that $\sum A=[m]$. Conversely, suppose that $a_1=1$ and $a_i\leq a_1+\cdots+a_{i-1}+1$ for each $i, 2\leq i\leq k$. We claim that $\sum A=[a_1+\cdots+a_k]$. We prove this by induction on $k$. For $k=1$ the result is obvious. Suppose that the result is true for $k-1$. Then $\sum A\setminus\{a_k\}=[a_1+\cdots+a_{k-1}]$. Now suppose that $a_1+\cdots+a_{k-1}+1\leq\ell\leq a_1+\cdots+a_{k}$ and write $\ell=a_{k}+a$. Then $a$ belongs to $\{0,1,\ldots,a_1+\cdots+a_{k-1}\}$ since $a_k\leq a_1+\cdots+a_{k-1}+1$. If $a=0$ then $\ell=a_k\in\sum A$ and if $a\neq 0$ then $a\in [a_1+\cdots+a_{k-1}]=\sum A\setminus\{a_k\}$ can be written as $a_{i_1}+\cdots+a_{i_r}$. Thus $\ell=a_{i_1}+\cdots+a_{i_r}+a_k\in\sum A$. \end{proof} \begin{proposition} Let $n=p_1^{\alpha_1}\cdots p_r^{\alpha_r}$, with $p_1<\cdots\sigma(p_1^{\alpha_1}\cdots p_{i-1}^{\alpha_{i-1}})+1$ for some $i$, then the number $\sigma(p_1^{\alpha_1}\cdots p_{i-1}^{\alpha_{i-1}})+1$ is a member of $[\sigma(n)]$ which is not a sum of distinct elements of $D(n)$. On the other hand, if the condition $p_i\leq\sigma(p_1^{\alpha_1}\cdots p_{i-1}^{\alpha_{i-1}})+1$ for each $i, 2\leq i\leq r$, is satisfied, then using an argument similar to the one used in Theorem~\ref{criterion}, we can inductively prove that each element of $[\sigma(n)]$ can be written as a sum of distinct elements of $D(n)$. \end{proof} In the next theorem, we characterize all $m$ for which there is an $A$ with $\sum A=[m]$. \begin{theorem}\label{values} Let $m$ be a positive integer. There is a set $A$ such that $\sum A=[m]$ if and only if $m\notin\{2,4,5,8,9\}$. \end{theorem} \begin{proof} By simple inspection, there is no $A$ with $\sum A=[m]$ for $m=2,4,5,8,9$ . Conversely, for $m=1,3,6,7,10$ note that $A=\{1\},\{1,2\},\{1,2,3\},\{1,2,4\},\{1,2,3,4\}$ are $m$-full. The recursive construction below shows us that for each $m\geq10$ there is an $A$ with $\sum A=[m]$. Suppose there is an $A=\{a_1,\ldots,a_k\}$ with $a_1<\cdotsn'$. Then $\frac{k(k+1)}2>m$. Hence $m=a_1+a_2+\cdots+a_k\geq1+2+\cdots+k=\frac{k(k+1)}2>m$ which is a contradiction. Thus $k\leq n'$ and, since $A$ was arbitrary, we therefore have $\beta(m)\leq n'$. On the other hand, we show that the maximum is attained. Let $m=\frac{n'(n'+1)}2+r$, where $r$ belongs to $\{0,1,\ldots, n'\}$. Then $A=\{1,2,3,\ldots,n'-1,n'+r\}$ is an $m$-full set with $n'$ elements. \end{proof} \begin{remark} The direct problem for subset sums is to find lower bounds for $|\sum A|$ in terms of $|A|$ . The inverse problem for subset sums is to determine the structure of the extremal sets $A$ of integers for which $|\sum A|$ is minimal. M. B. Nathanson gives a complete solution for the direct and the inverse problem for subset sums in \cite{Nat} and proves that if $A$ is a set of positive integers with $|A|\geq2$ then $|\sum A|\geq{|A|+1 \choose 2}$. This immediately implies the last part of Proposition \ref{N}. \end{remark} \begin{theorem}\label{L} Let $m\notin\{2,4,5,8,9,14\}$ be a positive integer and denote $\min\{\max A: \sum A=[m]\}$ by $L(m)$. If $m=\frac{n(n+1)}2+r$, where $r=0,1,\ldots,n$ then \[L(m)=\begin{cases} n, &\qquad \text{if}~r=0;\\ n+1, & \qquad \text{if}~1\leq r\leq n-2;\\ n+2, & \qquad \text{if}~1\leq r=n-1~\text{or}~n. \end{cases}\] \end{theorem} \begin{proof} Let $m=\frac{n(n+1)}2+r$, where $r=0,1,\ldots,n$. Then there are 3 cases: Case 1: $r=0$. Let $A=\{1,\ldots,n\}$. Since $\sum A=[\frac{n(n+1)}2]$ and $\max A$ has the minimum possible value, $L(m)=n$. Case 2: $r=1,\ldots,n-2$. We can consider the set \[A=\{1,\ldots,n,n+1\}\setminus\{n+1-r\}\] which is $m$-full, since $n+1-r\geq3$ and $1+\cdots+n+(n+1)-(n+1-r)=\frac{n(n+1)}2+r=m$. Hence $L(m)=n+1$. Case 3: $r=n-1$ or $n$. In this case we cannot omit $n+1-r$ from the set $\{1,\ldots,n,n+1\}$, because $n+1-r$ is $1$ or $2$ and the resulting set is not full. Thus we have to add $n+2$ and omit some other element. In fact for $r=n-1$ the suitable set with minimum possible value for its maximum is $\{1,\ldots,n,n+2\}\setminus\{3\}$, and for $r=n$ the desired set is $\{1,\ldots,n-1,n+1,n+2\}\setminus\{3\}$ (note that in this case we have $n\neq4$ since $m\neq14$ and we can therefore deduce that the latter set is full). We can therefore deduce that $L(m)=n+2$. \end{proof} For the remaining case $m=14$, it can be easily verified that $L(14)=7$. The first few values of $L(m)$, Sloane's OEIS \cite[\seqnum{A188429}]{S}, are \vspace{.5cm} \begin{center} \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline $m$ & 1&3&6&7&10&11&12&13&14&15&16&17&18&19&20\\ \hline $L(m)$&1&2&3&4&4&5&5&6&7&5&6&6&6&7&7 \\ \hline \end{tabular} \end{center} \vspace{.5cm} \begin{theorem}\label{U} Let $m\geq20$ be a positive integer and denote $\max\{\max A: \sum A=[m]\}$ by $U(m)$. Then \[U(m)=\big\lceil\frac{m}2\big\rceil.\] \end{theorem} \begin{proof} Let $A=\{a_1,\ldots,a_k\}$ with $a_1<\cdots