\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf A Restricted Random Walk defined\\ \vskip .14in via a Fibonacci Process} \vskip 1cm \large Martin Griffiths\\ School of Education\\ University of Manchester\\ Manchester\\ M13 9PL\\ United Kingdom\\ \url{martin.griffiths@manchester.ac.uk} \end{center} \begin{abstract} In this article we study a random walk on a particularly simple graph. This walk is determined by a probabilistic process associated with the Fibonacci sequence. Exact formulas are derived for the expected proportions of time spent on each arc of the graph for a walk of length $n$, giving rise to sequences that do not appear in Sloane's \textit{On-Line Encyclopedia of Integer Sequences}. We also obtain asymptotic relations for these expected proportions. \end{abstract} \section{Introduction}\label{section1} A one-dimensional random walk on the integers $\mathbb{Z}$ might typically be regarded as a process defined by a sequence of random variables $\left\{U_n\right\}$, the $n$th term of which is given by \[U_n=U_0+\sum_{k=1}^n V_k,\] where $U_0\in\mathbb{Z}$ is the starting position and $\left\{V_n\right\}$ is a sequence of independent random variables, each term of which takes only values in $\{1,-1\}$. If the terms in $\left\{V_n\right\}$ are also identically distributed, so that $\textup{P}\left(V_k=1\right)=p$ and $\textup{P}\left(V_k=-1\right)=1-p$ for each $k\in\mathbb{N}$, where $p$ is a fixed number satisfying $0