\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm{\LARGE\bf Certain Sums Involving Inverses of Binomial \\ \vskip .12in Coefficients and Some Integrals } \vskip 1cm \large Jin-Hua Yang\\ Zhoukou Normal University\\ Zhoukou, 466001\\ China\\ \ \\ Feng-Zhen Zhao \\ Department of Applied Mathematics\\ Dalian University of Technology\\ Dalian, 116024\\ China \\ \href{mailto:fengzhenzhao@yahoo.com.cn}{\tt fengzhenzhao@yahoo.com.cn} \\ \end{center} \vskip .2 in \begin{abstract} In this paper, we are concerned with sums involving inverses of binomial coefficients. We study certain sums involving reciprocals of binomial coefficients by using some integrals. Some recurrence relations related to inverses of binomial coefficients are obtained. In addition, we give the approximate values of certain sums involving the inverses of binomial coefficients. \end{abstract} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{conjecture}[theorem]{Conjecture} \section{Introduction} It is well known that binomial coefficients play an important role in various subjects such as combinatorics, number theory, and probability. There are many results for sums related to binomial coefficients. Sums involving inverses of binomial coefficients have been receiving much attention. For example, see \cite{ref1}-\cite{ref2} or \cite{ref4}-\cite{ref14}. In this paper, we are still interested in sums involving inverses of binomial coefficients, and we investigate these kinds of sums by using some integrals. For convenience, we first give the definition of binomial coefficients. For nonnegative integers $m$ and $n$, the binomial coefficient ${n\choose m}$ is defined by $$ {n\choose m}=\begin{cases} \displaystyle\frac{n!}{m!(n-m)!}, & \text{if } n\geq m,\\ 0, & \text{if } n