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The paper presents a novel approach to predict the response of earthquake-excited
structures. The earthquake excitation is expanded in terms of series of deterministic
functions. The coefficients of the series are represented as a point in N-dimensional
space. Each available accelerogram at a certain site is then represented as a point in
the above space, modeling the available fragmentary historical data. The minimum
volume ellipsoid, containing all points, is constructed. The ellipsoidal models of
uncertainty, pertinent to earthquake excitation, are developed. The maximum response
of a structure, subjected to the earthquake excitation, within ellipsoidal modeling of
the latter, is determined. This procedure of determining least favorable response was
termed in the literature (Elishakoff, 1991) as an antioptimization. It appears that
under inherent uncertainty of earthquake excitation, antioptimization analysis is a
viable alternative to stochastic approach.
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1. INTRODUCTION

There is a vast literature on modeling of earthquake excitations. The
modern analysis is based on the recognition that this excitation is an
uncertain process. In overwhelming majority of the studies, the
uncertainty is modeled as a random process, either stationary or
non-stationary, with various approximations and attendant models.
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The works by Drenick [1-4], Shinozuka [5], Elishakoff and Pletner
[6], Baratta and Zuccaro [8,9] and have been the exceptions in the
literature dedicated to uncertainty modeling of the earthquakes, in
the sense that they utilized an alternative, non-probabilistic, avenue.
Drenick [1,2] used a constraint on the total energy which the
earthquake is likely to develop at a certain site, as a description of
uncertainty. He used the Cauchy—Schwarz inequality to determine
the maximum response of the system to such an excitation. In the
opinion of several investigators such a bound was too conservative
[7]. Shinozuka [5] has suggested to characterize the earthquake
uncertainty by specifying an envelope of the Fourier amplitude
spectrum. Numerical calculations have demonstrated that the max-
imum response of the structure predicted by this method is less than
that predicted in Refs. [1-4]. Elishakoff and Pletner [6] investigated
the modification of the response prediction when the global informa-
tion on the excitation is increased. In particular, the maximum
possible response, which the structure may develop, was evaluated
under the assumption that only the bound on base acceleration is
known; then the maximum response was modified under the
assumption that in addition to the base acceleration bound, the
bounds on base velocity and/or displacement were specified. Baratta
and Zuccaro in Refs. [8,9,17—-19] developed a technique to produce
the maximum theoretical values of the structural response under
seismic load at given site. They pursued the goal combining available
techniques for synthesis of random accelerograms (Ruiz-Penzien,
1971) with the optimization procedures capable of maximizing some
parameters, significant for aseismic design, in respect of the con-
straints represented by the basic values characteristic of the shaking
properties at the site.

In this paper we resort to ellipsoidal modeling of earthquake
excitation. The ellipsoidal model of uncertainty has been previously
introduced in the theory of control by Schweppe [10], and in
modeling geometric imperfections in structures by Ben-Haim and
Elishakoff [11] (see also an essay by Elishakoff [12]). Only other
work known to us, on using convex modeling to earthquake
engineering is that by Ben-Haim, Chen and Soong [13]. They
suggested several analytical treatments, without resorting to the data
analysis, that is the central topic of the present investigation.
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2. FORMULATION OF THE PROBLEM

Consider a single-degree-of-freedom linear system, subjected to
earthquake excitation

mx + cx + kx = —miy, (1)

where x(f)=displacement of the structure, ¢ =damping coefficient,
k =stiffness, ¥,(f) =earthquake excitation. If the excitation force
—mXy, is known, the response is given by the Duhamel integral

t
x(t) = / [-mXy(7)|h(t — 7)dT, (2)
0
where A(f) is the impulse response function

ht) = expf’:uiiwot)

wqg =wpy/ 1 —&, 4)

where wy = /k/m is the natural frequency, and & = ¢/2vkm is the
damping ratio. Let us represent the excitation as a series in terms of
complete and orthogonal deterministic set of functions {((?)}, in the
interval (0, T') where T is the duration of the earthquake

sinwgt, (3)

T
| etoear=o, foriz) (5)
namely,
Xp = ZAi‘Pi(t)' (6)
i=1

If the excitation is known, the coefficients A4;, are readily obtainable,
by multiplying both sides of Eq. (5) by ¢;(f), and integrating the
result in the interval (0, T'), and using the orthogonality property (5):

1

T
A= [ s0par, )
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where
T
vi- [ et ®)
0
The response, given in Eq. (2), is re-written as
xX(1) =Y Aahi(t), ©)
i=j
where
T
bill) = —m / oi(h(t — 7) 6. (10)
0

Let us visualize now that at a given site we possess some
fragmentary information, namely we assume that the historical data
is available on the accelerograms 56(;),56(5), .. ,56,(;") where the super-
script denotes the serial number of the earthquake, and m is the
total number of accelerograms. Then, using the decomposition of

type (6) for each earthquake realization,
[o 0]
X0 =3" a0, k=12,...,m, (11)
i=1
we arrive at m vectors of the excitation parameters

AT = (A AP 4],

APT = (AP AP 4D,
) (12)

P S

where the superscript T means transposition. In addition we have
retained only the most significant N terms in the series (6)

N N
Bo() =Y Aipi(r),  x(1) = Bipi(1). (13)

i=1 i=1
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Thus we replace m accelerograms by m points in an N-dimensional
space. To this end, to use the ellipsoidal modeling of these “point-
images” of original accelerogram, we model these points as belong-
ing to an N-dimensional ellipsoid

ATwAa < 62, (14)

where W is a symmetric positive-definite matrix, defining the shape
of the ellipsoid, A% is a positive constant, defining the size of the
ellipsoid. The way of obtaining the matrix W and constant 6% will
be discussed in Section 4.

3. MAXIMUM STRUCTURAL RESPONSE

We are interested in determining the maximum response of the struc-
ture at any time instant . Mathematically the problem reads as follows:

N
maxZAizpi(t) =max ATy(7), subject to ATWA <02 (15)
i=1

The closely related problem has been studied in Refs. [11,12]. For the
sake of completeness the basic steps of Ref. [12] will be re-introduced
here, although in a different context. We define the Lagrangian

L=A"y+\A"WA - 6?), (16)
where the vector ¥ is defined as
¥ =) ) - () (17)
The necessary conditions for the maximum reads

dL

0=

=Y+ 2\WA. (18)
We multiply from the left this equation by W'

_ =l
A=Wy, (19)
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We substitute this expression in the equation for the constraint itself:
1 _ _
v wTwwly =02, (20)
This leads to

Ty -1
A VYWY Q1)

20
This yields the worst earthquake excitation vector
W'y
Jwly

The worst response is obtained by substituting Eq. (22) into Eq. (9):

xworst(t) = AT'/’ = 0\/ '/’T W—l'/ﬂ (23)

Once the basic excitation functions ¢(f) are chosen, the basic
response functions {f) are readily obtained from Eq. (10). Then,
having the information on matrix W and constant 6 from the accelero-
grams, we find the maximum response by employing Eq. (22).

Aworst =0

4. ELLIPSOIDAL MODELING OF DATA

4.1. Basic ldeas

Consider any collection of data to be processed by the procedure in
Section 3. Assume that one record consists of N numerical param-
eters, so that any observation j of the phenomena is fully described
by a point P; in N-dimensional Euclidean vector space Ey.

The problem treated in this section is to find the smallest (in some
sense) ellipsoid containing all the observed data, i.e. to set the matrix
W in Eq. (14) and the shift of the origin to the center of the ellipsoid.

This problem is rather hard to solve, if the ellipsoid width defining
the minimum volume is required; the approach leads to cumbersome
optimizations, that may be impractical. So, the problem is treated
aiming at a simple, as far as possible, solution.
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In this view, and for simplicity of graphic representation only, let
us consider the three-dimensional case (Fig. 1), i.e. a collection of m
points Py, ..., P, that are the recorded observations of the phenom-
enon to be included in the ellipsoid and let

X11 X11 Xml
o X = : (24)

XIN XIN XmN

xi=| : |5 X=|: |

be the coordinate column vectors of the points, collecting any
relevant parameter to identify the characters of the phenomenon at
the observation P,, in the reference frame with origin O and the
bases

1 0 0
(e1,...,en) with e =[0]; ee=[11]; en=3=10
0 0 1

(25)

X

FIGURE 1
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The proposed procedure is conducted basically in two phases:

(A) Find the smallest parallelepiped p in Ey containing all points P;
(i=1,...,m).

(B) Find the smallest ellipsoid in Ey, also containing all points P;
(i=1,...,m), searching in the subset of ellipsoids &, that are
homothetical to the ellipsoid &; inscribed in p having the same
center as p and the principal axes parallel to the sides of p.

The second phase is straightforward, as it will be shown later.

The phase (A) is founded on the solution of two auxiliary problems
as follows.

4.2. Preliminary Statements

Consider the following auxiliary problems:

Problem I Given the set of m points Py,..., P, in Ey consider to
find the couple of parallel hyperplanes, say 1’ and 1” (see Fig. 2 for
3D case), containing all the points and having the minimum distance

FIGURE 2
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from each other. Let 1’ and 1” be any two parallel hyperplanes in
Ey with « being the unit vector orthogonal to both; let §’ and 6" be
the orthogonal distance of, respectively, 1’ and 1” from the point O
assumed to be the origin of the reference frame (see Fig. 2 when
6’ >0 and §” <0). Any point P; is internal to the strip included by
' and x” iff simultaneously

(26)

By applying (26) for i=1,...,m, one gets that the strip includes all
points iff

X -a<é'l,
(27)
X -a>6"1,
where
1 x|
lz(f) and X = -] (28)
1 ern

The total width of the strip is given by 6'—6". Therefore, the first
problem turns into:

X a<é1,
Find o € Sy;: X a>6", (29)
§' — 6" = min,
with Sy, being the unit sphere in Ey.

This problem is approached in two steps:
Step 1.1 For any given a € Sy

X -a<é'l,
Find (6",6") € R: { X.-a>6"1, (30)

6'* — §"* = min.
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It is trivially proved that

T . Noo __ oo T _ T
Lo 6" =min x; ra=x; -a. (31)

6 =max x] -a=x ;

1 4

Step 1.2 In order to find the smallest strip containing all points,
consider the following problem:

X-a <81, (32a)
Finda ¢ RY: L %2 o, (320)
of =1, (32¢)
8’ — 6" = min, (32d)

where 6’ and 6™ are intrinsically related to e; by Eq. (31).

The above problem is a non-linear optimization problem, mainly
because of the constraint oleal =1.

Any constrained search procedure can be applied to find the
optimal vector a;.

The simplest, and also effective, as tested in this investigation, is a
random walk search. The only difficulty lies in generating unit
random vectors ’s checking the condition (32c).

The following procedure is suggested. Let B be a generic unit
random vector and & the unit vector satisfying the condition (32d).
Let n; and s; (i=1,...,N) be any random numbers in [0, 1], J;=27n;
is the random angle in [0,27] of B and SG; the sign of the ith
component of g with

{ SG;=+1 ifs;<0.5,
SG; = -1 if si > 0.5.
The components of B are chosen through the following steps:

(a) Ry=1,

(b) Ry_; =sin®(9;) % Ry_is1 (i=1,...,N—1) and ¥; = 27n;,  (33)
©) Bit1 =SGiy1 * /(Rp1 —R) (i=N-1,...,1).

Problem 1 is thus solved after Steps I.1, I1.2.

Problem II Let a; be found, and the first minimal strip obtained,
with width 6] — 6{ = d,.
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Let ay,...,ar (k< N) be given unit vectors, mutually orthogonal
(i.e. af - @; = §;), and consider the following Problem (II):

X oy < 6",
X oy > 6"%41,

Find o, ;: o, o =1, (34)
a1 =0 (i=1,....k),

&%+ — §%+1 = min.

Problem II exhibits a number, say k, of constraints in addition to
Problem I and it can be viewed at as a generalization of Problem I,
by making reference to Sy_x, the vector subspace of Ey orthogonal
to oy, ..., 0.

To generate Sy_; one has to infer an orthogonal unit minimal
base, say (Bf'',...,B%H), of Sy_x. To this aim one can take
recourse to the Schmidt’s orthogonalization procedure, as follows.

Let BF,....B% , 41 be the minimal orthogonal base of Sy_x4; so
that both sets of unit vectors,

T
"‘.1 of
“E—l “Ll
B* = BH" |, B = ap ; (35)
(85" (BFHT
' T
(Brii)" (BN

are orthogonal unit bases for the entire Ey, the first is a known
base, the second is known up to ay.
Note that

€]
B'=| M| (36)
(F
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One has to infer B¥*! from B*. Assuming y,=ay and following
Schmidt’s method one sets:

Vi = )‘}ak + ﬁéi’

Yy = )\;ak + )\%}’1 + ﬂf,

y3 = Mk + Ny + Ny + B (37)
Yook = M+ Xy + Xy va+oo ﬂlfv_k+1,

where, by orthogonalization

Al = —(B5) ous
KT
>\§=—(ﬁ§)Tak, )\%:_( 3)T)’1;
(r1)' 7
)\1 _ (AT A2 _ (ﬂf)T}’I A3 _ (ﬂ‘{()TyZ .
3= —(Bs) ax, 3= T. ° 3= T. °
() » (2) 72
AL gk T N2, — — (ﬂ]’ff—k+1)T}'1 3 (ﬁ]’\c/—kﬂ)T}'z
N—k = (ﬁN-k+1) Ok, Ay_j = T  Ay_g = —— ==,
(1) 7 (2) »2
D\ (ﬂﬁ—kﬂ)T}'N-kq .
()’N—k—l)T)'N—k-1
(38)

After the orthogonal vectors y; have been found, one can normalize:

gt =i i1, Nk (39)

Note that each yp;, for i>0, and consequently each ﬂ,.k“ is
orthogonal to «;, Vj=1,...,k. In fact, every y; turns out to be a
linear combination of vector e and vectors Bf. All these B vectors
are assumed to have been built up orthogonal to «,...,a; in the
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previous step. Whence one can write, for suitable a;;,

N—k+1
k
Yi = ooy + airB,

~
i

‘
1l

and

=

N—k+1
k
Vit o = ajoo - o + a;B,; -a;=0.

r=

—

Therefore, problem (34) is reduced to:
Xak-l—l S 5/ak+119
Xoyjey > 811,

T —
ak+1ak+l - 1,
6/ak+1 — 6’/ak+l — min,

Find Ortl € Sv_k:

where o, | € Sy_x means
N-K
_ k gh+1
O] = § B,
i=1
with

N—k N-k

(esn) @i = > nfnf (B B

i=1lr=1
whence, by orthonormality of §s,
N—k

7 )T“k+1 = Z(’?ik)z-

i=1

With the above relations, Problem II turns to the following one:

1
et = S kBT
Xoye i < 6'+1,
Find 9* € Sy Xogjyy > 6"okn1],
T
(%) 'k =1,
&%+ — §"%+1 = min.

13

(40)

(41)

(42)

(43)

(44)

(45)
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Thus, one recognizes that Problem II is reduced to Problem I in the
vector space En_y.

4.3. Search of the Smallest Parallelepiped p in Ey
Containing the Data Points

This part of the paper represents the phase A of the main problem,
and it is articulated in N steps.

Step A.1 Solve Problem I, find «;, 6'*, 6",

After this step a first strip between hyperplanes 1’ and 1” is
determined.

Step A.2 Solve Problem II, with k=1, in the form (46) and find
o1, 5’0%—1, §"%k+1

Step A.3,...,A.N [Iterate step A.2 for k=2,...,N. After step
A.N, N couple of hyperplanes are individuated, each couple defines
a minimal strip in Ey containing all m points.

By iterating these N steps, the minimal parallelepiped g is found.

4.4. Search the “Smallest” Ellipsoid Containing all Points

The “smallest” ellipsoid is assumed to have the same centroid as p
and principal axis parallel to the edges of p which are identified in
the unit vectors ey,...,ey. The diametral lengths are assumed
proportional, respectively, to dy = §'* — §" ..., dy = §'*¥ — §"ov,

Let xo be the position vector of the centroid of p, and shift the
origin of the reference system to xo. Thus the data points are
identified in the new reference frame by

Ai=xi—x9, i=1,...,m, (47)
so that the ellipsoid is identified by
A"wa <02 (48)
In order to identify matrix W, let R be the rotation matrix yielding

T
Q;

RBi=]| : | =8y (49)
ay
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In the frame of reference By, the equation of the ellipsoid is given by

m 2
Z% =770z < ¢?, (50)
i=1"

where z; are the coordinates of any point with respect of By and

1> 0 - - 0
0o - . . .
o=| - 0 1/d* 0 : (51)
. . . . 0
o - - 0 1d

In the reference frame B; one has the coordinates A of any point P
related to the corresponding coordinates in By

P=B]A=B)\Z=BIR"Z, (52)
whence
A=R"Z and Z=RA. (53)
Therefore the equation of the ellipsoid is
Z'Q0Z = ATRTQRA < 07, (54)
whence, in B; (having again shifted back to x,)
A"WA <62, (55)

where W=RTQR.

The above considerations produce the matrix W.

Now the minimal value for §? can be searched by unidimensional
search

02 = max A]WA,. (56)

i=1,..,m
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Note that the above “minimal” ellipsoid may not be the absolute
minimum, since it is minimal under the assumption that it is related
to the minimal parallelepiped.

The ellipsoid so found is in general included between the ellipsoid
contained in p and the one containing .

4.5 Numerical Application

A numerical application of the procedure proposed above has been
performed; in order to show the results graphically, the example has
been carried out for N=3.

Let us consider a set of points P, (m=14), the coordinates are
given in Table I. The unit vectors oy, &5, a3, in Ez, orthogonal to the
couples of planes that define the minimal strips containing all points
P, are

0.2052 —0.824 0.5269
o = | —0.670 |; o= | —0.510 |; o3 = | —0.538
0.7130 —0.242 —0.657

The minimal distances between the planes are
dy = 647, dr = 981; ds = 3240.

Figure 3 shows the minimal parallelepiped p, the ellipsoid e,
contained in p and the principal planes of the ellipsoids.

Figure 4 shows the sectional view of the three principal planes.

Figure 5 shows the ellipsoid €, found by enlarging homothetically
€ in order to include all points.

TABLE I

Pl P2 P3 P4 PS P6 P’7 PS P9 PlO Pll P12 Pl3 P14

x; 100 =300 700 400 —200 400 0 100 —300 700 400 —200 —750 1380
x; 500 550 450 470 500 500 500 —200 500 800 600 800 1370 —250
x3 800 800 600 600 400 400 200 200 100 100 900 900 1600 —260
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FIGURE 3
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