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Constrained nonlinear programming problems often arise in many engineering appli-
cations. The most well-known optimization methods for solving these problems are se-
quential quadratic programming methods and generalized reduced gradient methods.
This study compares the performance of these methods with the genetic algorithms which
gained popularity in recent years due to advantages in speed and robustness. We present a
comparative study that is performed on fifteen test problems selected from the literature.

1. Introduction

There are many applications in various branches of engineering field (e.g., mechanical
engineering, chemical engineering, electrical engineering, aerospace engineering, etc.)
that can be formulated as constrained nonlinear programming problems (NLPs). Typ-
ical examples include structural optimization, mechanical design, chemical process con-
trol, engineering design, and VLSI design. Quality of the solutions to these applications
affects the system performance significantly, resulting in low-cost implementation and
maintenance, fast execution, and robust operation [21].
A general constrained nonlinear programming problem (P) can be stated as follows:

(P)

Minimize f(x), x€Fc<S<cR”,

subject to
hi(x)=0, i=1,...,p, (1.1)
gilx)<0, j=p+1,..,q
ar <x,<be, k=1,...,n,

where x = [x1,...,X,] is a vector of n variables, f(x) is the objective function, h;(x) (i =
1,...,p) is the ith equality constraint, and g;j(x) (j = p+1,...,q; q <n) is the jth in-
equality constraint. S is the whole search space and F is the feasible search space. The aj
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and by denote the lower and upper bounds of the variable xx (k = 1,...,n), respectively.
It is assumed that all problem functions f(x), hi(x), and g;(x) are twice continuously
differentiable. In most of the nonlinear programming problems f(x), h(x), and g(x) are
nonconvex and the problems have multiple locally optimal solutions. In the only case
where the f(x) is convex, every h;(x) is linear and every g;(x) is convex, constrained local
minimum is also constrained global minimum.

Although a number of methods for the solution of constrained nonlinear program-
ming problems are available, there is no known method to determine the global mini-
mum with certainty in the general nonlinear programming problem. The methods for
constrained optimization can be divided into two categories as deterministic and sto-
chastic methods. According to some comparative studies, the generalized reduced gradi-
ent (GRG) methods and the sequential quadratic programming (SQP) methods are two
of the best deterministic local optimization methods [8]. These gradient-based methods
always look for optimum closest to the starting point whether it is a local or global one.
A number of packages, such as Optima, Matlab, GRG, and LSGRG, are based on these
widely used methods. In recent years, there has been an increasing interest to employ the
stochastic methods, such as genetic algorithms (GA), simulated annealing (SA), and tabu
search (TS), in solving complex optimization problems involving even nondifferentiable,
discontinuous, highly nonlinear objective, and constraint functions. These methods are
stochastic global optimization methods which do not require gradient information un-
like GRG and SQP.

In this paper, the performances of SQP and GRG are compared with that of GA, which
is the most popular method among the stochastic methods in solving constrained nonlin-
ear programming problems. The experimental study is conducted on several NLPs taken
from the literature.

The organization of this paper as follows: we briefly describe sequential quadratic pro-
gramming methods, generalized reduced gradient methods, and genetic algorithms in
Section 2. Section 3 presents the 15 test problems and the optimization results obtained
by using SQP, GRG, and GA. The conclusion is drawn in Section 4.

2. Methods used in the study
In this section, the brief summaries of each of the methods, namely sequential quadratic

programming, generalized reduced gradient, and genetic algorithms, are given.

2.1. Sequential quadratic programming. SQP methods are iterative methods that solve
at the kth iteration a quadratic subproblem (QP) of the form

(QP)

T |
Minimize Edtde +Vf () 'd,
subject to

. (2.1)
Vhi(Xk) d+h,’(Xk) =0, i= 1,...,p,

Vgi(xk)'d+gi(x) <0, j=p+1....q



Ozgur Yeniay 167

where d is the search direction and Hy is a positive definite approximation to the Hessian
matrix of Lagrangian function of problem (P). The Lagrangian function is given by

P q
Lx,u,v) = f(x)+ > uihi(x)+ > vigi(x), (2.2)
i=1 j=p+1

where u; and v; are the Lagrangian multipliers. The subproblem (QP) can be solved by
using the active set strategy. The solution dy is used to generate a new iterate

X1 = Xk + ardr, (2.3)

where the step-length parameter oy € (0,1] depends on some line search techniques.

At each iteration, the matrix Hj is updated according to any of the quasi-Newton
method. The most preferable method to update Hy is Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method [5], where Hy is initially set to the identity matrix I and updated using
the formula

t t
VeV Hisisi Hy

t ; >
SkYk SHrsk

Hpy1 = Hi + (2-4)

where
Sk = Xk+1 — Xk Vi = VL(Xks1, Uies1, Vir1) — VL (X, i, Vi) (2.5)

We have only provided the most basic form of the SQP methods here. Detailed de-
scription of the SQP method can be found in [2, 3].

2.2. Generalized reduced gradient. The GRG algorithm was first developed by Abadie
and Carpentier [1] as an extension of the reduced gradient method.

GRG transforms inequality constraints into equality constraints by introducing slack
variables. Hence all the constraints in (P) are of equality form and can be represented as
follows:

hi(x)=0, i=1,...,q, (2.6)

where x contains both original variables and slacks. Variables are divided into dependent,
xp, and independent, x;, variables (or basic and nonbasic, resp.):

XD
x=|---1. (2.7)
X1
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The names of basic and nonbasic variables are from linear programming. Similarly, the
gradient of the objective function bounds and the Jacobian matrix may be partitioned as

follows:
ap bp va(x)
a=|---1/, b=1|--- s Vf(x)= >
o b Vif(x)

_thl(X)Evlhl(x) (2.8)
V pha (x):V 1 (%)

| Viphg(x):Vihg(x) ]

Let x° be an initial feasible solution, which satisfies equality constraints and bound con-
straints. Note that basic variables must be selected so that Jp(x°) is nonsingular.
The reduced gradient vector is determined as follows:

@ =Vif(x*) = Vpf(x°) Up(x) 'Ji (x?). (2.9)
The search directions for the independent and the dependent variables are given by
0, ifx? =a;, g >0,

d[ =40, 1fx? = bi, gi < 0,
—gi, otherwise,

dp =~ (Jp(x)) "' T (x°)dr.

(2.10)

A line search is performed to find the step length « as the solution to the following
problem:

Minimize f(x°+ ad),
subject to (2.11)

0 <« < dmax,
where
ocmaxzsup{% Sx05x0+ocdsb}. (2.12)
The optimal solution a™* to the problem gives the next solution:
xl = x0+a*d. (2.13)

A more detailed description of the GRG method can be found in [10].
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2.3. Genetic algorithms. GAs are stochastic optimization algorithms based upon the
principles of evolution observed in nature [7, 12]. Because of their power and ease of im-
plementation, the use of GAs has noticeably increased in recent years. Unlike the gradient
methods, they have no requirements on convexity, differentiability, and continuity of the
objective, and constraint functions. These significant characteristics of GAs increase their
popularity in applications.
The basic GA can be summarized by the following steps:
(1) generate an initial population of chromosomes (or possible solutions) randomly,
(2) evaluate the fitness of each chromosome in the initial population,
(3) select chromosomes that will have their information passed on to the next gener-
ation,
4) cross over the selected chromosomes to produce new offspring chromosomes,
5) mutate the genes of the offspring chromosomes,
6) repeat steps (3) through (5) until a new population of chromosomes is created,
7) evaluate each of the chromosomes in the new population,
(8) go back to step (3) unless some predefined termination condition is satisfied.

(
(
(
(

GAs are directly applicable only to the unconstrained problems. In the application of
GAs to constrained nonlinear programming problems, chromosomes in the initial pop-
ulation or those generated by genetic operators during the evolutionary process generally
violate the constraints, resulting in infeasible chromosomes. During the past few years,
several methods were proposed for handling constraints by GAs.

Michalewicz and Schoenauer grouped the constraint handling methods into the fol-
lowing four categories [14]:

(1) methods based on preserving feasibility of solutions,
(2) methods based on penalty functions,

(3) methods based on a search for feasible solutions,

(4) hybrid methods.

Penalty function methods are the most popular methods used in the GAs for con-
strained optimization problems. These methods transform a constrained problem into
an unconstrained one by penalizing infeasible solutions. Penalty is imposed by adding to
the objective function f(x) a positive quantity to reduce fitness values of such infeasible
solutions:

y _ f(X) 1fx (= F,
1= {f (x)+p(x) otherwise, (2.14)

where f (x) is the fitness function and p(x) is the penalty function whose value is pos-
itive. The design of the penalty function p(x) is the main difficulty of penalty function
methods. Several forms of penalty functions are available in the literature.

Nevertheless, most of them have the form

p m
px) = SrH® + > 6], (2.15)
i=1 j=p+1
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Table 3.1. Fifteen constrained nonlinear programming problems.

Problem n LE LI NE NI Type of Ot.)J ective Best known Source
number function
1 8 0 3 0 3 Linear 7049.25 (6]
2 7 0 0 0 4 Polynomial 680.6300573 [13]
3 6 0 0 3 1 Linear —0.3888 [22]
4 0 4 0 1 2 Linear —400 [16]
5 6 3 3 0 0 Nonlinear —13.401904 [16]
6 5 0 0 0 6 Quadratic 30665.41 [20]
7 0w o0 3 0 5 Quadratic 24.3062 [20]
8 13 0 9 0 0 Quadratic -15 [13]
9 2 0 1 0 1 Polynomial —118.704860 [16]
10 2 0 2 0 2 Linear —2.828427 [16]
11 2 0 0 0 2 Linear —5.50801 [18]
12 5 0 0 3 0 Nonlinear 0.0539498 [18]
13 3 0 0 0 2 Quadratic 11.68 [11]
14 2 0 0 0 2 Quadratic —79.8078 [19]
15 10 0 3 0 5 Polynomial —216.602 [17]

where H;(x) and G;(x) are functions of the equality constraint h;(x) and the inequality
constraint g;(x), respectively, and r; and c; are positive penalty coefficients. 8 and y are
positive constants usually set to be 1 or 2. The most general form of H; and G; is as fol-
lows:

Hi(x) = |hi(x)|,  Gj(x) = max[0,g;(x)]. (2.16)

How to design a penalty function and which penalty function method is the best are
still open questions one needs to answer. Comparative studies about the penalty func-
tion methods in genetic algorithms can be found in [9, 13, 15]. One important result
of these studies is that the quality of the solution severely depends on selected values of
penalty coefficients. Hence, determining the appropriate values for penalty coefficients at
the beginning of the optimization has vital importance in order to have a robust solution.

3. Test problems and results

In order to test the efficiency of the algorithms in terms of getting closer to the best-
known solution, some constrained nonlinear programming problems have been selected
from the literature. Several authors from optimization community have used some of
these problems to compare the performances of some available penalty function meth-
ods and their own methods. These problems have objective functions of various types
with different types of constraints. Table 3.1 presents some information of these prob-
lems, including the number of variables n, the number of constraints, type of the objec-
tive function, the best-known objective function value, and the source of the problem.
LE, LI, NE, and NI denote the number of linear equations, linear inequalities, nonlinear
equations, and nonlinear inequalities, respectively.
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Table 3.2. Results obtained by GRG, SQP, and GA.
Problem number Methods
GRG SQP GA
1 7049.248 7049.248 7049.248
2 680.63 680.63 680.63
3 -0,3876 0 —0.3888
4 —400 —400 —400
5 —12.5079 —4.8038 —13.4019
6 30665.4152 30665.4152 30665.4152
7 24.6232 24.3062 24.3062
8 —10.1094 —10.1094 —15
9 10.94 11 —118.7049
10 1.4142 1.4142 —2.8284
11 —4.0537 —4.0537 —5.5080
12 1 1 0.0435
13 6.9418 7.0732 11.6766
14 —47.9977 —79.8078 —-79.8078
15 4.1288 197.8580 —216.6025

In our experiments, three different programs have been used to solve the problems
above:

(i) Microsoft Excel Solver using GRG algorithm,
(ii) the function fmincon from the MATLAB Optimization Toolbox using SQP algo-
rithm,
(iii) GA Solver of WWW-NIMBUS system.

The GA Solver of WWW-NIMBUS system uses a parameter-free penalty function ap-
proach [4]. One of the important advantages of this penalty approach is that no param-
eter is required in handling constraints unlike other penalty function approaches which
require that a large number of parameters must be set right by the user. consequently , we
decided to use GA Solver of WWW-NIMBUS for solving 15 test problems. For detailed
information about the parameter-free penalty function approach, see [4].

For each of the problems, we started the GRG and SQP methods from five different
starting points in order to increase their chances of finding better solutions, and recorded
the best solutions, found. The experimental results obtained by each of the three methods
are shown in Table 3.2.

From the results of Table 3.2, it is easy to draw a conclusion that GA has better perfor-
mance than GRG and SQP in constrained nonlinear programming problems. In fourteen
problems, GA has been able to find solutions close to or the same as objective func-
tion values reported in earlier studies. In problem 12, the solution (x* = —1.4730;1.7546;
—1.8568;—0.7956;0.8190) obtained with GA is more accurate than that reported earlier.
Although GRG and SQP could give the same solutions with true optimum solutions in
some of the problems, they could not find better solutions than those of GA in any of
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the problems. It is also interesting to note that GRG and SQP have given solutions rather
far from the true optimum solutions in some problems (e.g., problems 8,9,12,13, and
15).

4, Conclusion

Three popular optimization methods were tested on various constrained optimization
problems that were found in the literature. Sizes of our test problems were smaller than
the problems generally encountered in engineering applications, but they had some com-
mon characteristics (e.g., nonconvex and multimodal solution space) with real-world en-
gineering optimization problems. GA Solver of WWW-NIMBUS system was found to be
highly efficient for all these problems. Neither GRG nor SQP could give better solutions
than those found by using GA. In some problems, these methods get trapped local op-
timum solutions rather far from the true optimum solutions. We expect that the poor
performances of the GRG and SQP methods will also continue in large-scale engineering
optimization problems because of the nonconvex solution spaces.

GA Solver of WWW-NIMBUS using penalty-free method makes things easier for the
user by removing the problem of setting a large number of the penalty parameter values
even in small size problems. Since the GA explores multiple regions of the solution space
simultaneously, it can avoid the local optimum problem and identify the global opti-
mum. We conclude that GA is reliable and effective for solving nonlinear and nonconvex
engineering problems.
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