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ABSTRACT. A strong Schwarzian derivative is defined, and it is shown that the con-
volution of a function with a map from an interval into itself having negative strong
Schwarzian derivative is a function with negative Schwarzian derivative. Such con-
volutions have 0 as a stable periodic point and at most one other stable periodic

orbit in the interior of the domain.
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1. INTRODUCTION.
Let £:[0,1]}-(0,1] be a C3 map, i.e., it has 3 continuous derivatives. The

Schwarzian derivative at a point x 1is given by

N4
_ M (x) jf"(x)
(£, = L50 z\f.(x)/) . (1.1)

This derivative was first formulated by H.A. Schwarz and has been used in the theory
of differential equations [1]. Recently, it has found important application in the
study of bifurcation of periodic orbits [2]. 1In [3,4], the Schwarzian derivative
is used to study the limiting behaviour of dynamical systems.
The main result of [2] is
THEOREM 1. Let f£f:(0,1]1-[0,1] be a C3 map and let it satisfy
(1) £f(0) = f(1) =0
(ii) f has a unique critical point ¢ in (0,1)
and (iii) {f,x} < 0 for all x€[0,1]-¢ .
Then f has at most one stable orbit in (0,1). If it exists it is the w- limit
set of c.

Note that the wording of Theorem 1 allows for the possibility that 0 1is also
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a stable fixed point of f. Indeed, Theorem 1 holds even if the slope at 0 “(and
at 1) is equal to 0. Furthermore, the requirement that £"'(x) is continuous at
c can be relaxed. In [4, p. 100] it is shown that Theorem 1 is true even if only
f'(x) 1is continuous at c. We collect these observations in a version of Theorem
1 which we shall need in the sequel.

THEOREM 2. Let f£:[0,1]-[0,1] be a C3 map everywhere in (0,1) except
possibility at c¢ where it is Cl. Assume conditions (i), (ii) and (iii) of
Theorem 1. Then f has at most one stable periodic orbit in (0,1) . If it exists
it is the w- limit set of c.

In this note we define a strong Schwarzian derivative and show that the convolu-
tion of a function with a map having negative Schwarzian derivative is a function
with negative Schwarzian derivative.

In practice one is concerned with the structural stability of the map f, i.e.
with what happens to the dynamical properties of f once it is perturbed. Since
{f,x} <0 1is an open condition, it is clear that for maps which are C3 and close to
f, this condition will be retained. Thus, for small, smooth perturbations of f,
the negative Schwarzian property is not destroyed. However, for any given perturba-
tion, the Schwarzian derivative must be computed to verify that {f,x}<O0 . In this
note we consider a class of large perturbations of f derived by convoluting f
with a known function, g. We define a new derivative of f called the strong
Schwarzian derivative, denoted by Sf. The main result of this note shows that if
Sf < 0, then the map F = f *g has negative Schwarzian derivative. Thus, we can
draw dynamical conclusions about maps which are large perturbations of f.

2. A SIMPLE LEMMA.
Let (Sf)(x) = £f""(x)f'(x) - % (f"(x))z. We define the strong Schwarzian deri-

vative Sf at points a and b in [0,1], a < b, by
(S£)(a,b) = f‘(a)f"'(b)-wgf"(a) £"(b). (2.1)

Clearly, if (Sf)(a,b) <0 for all a <b, then (Sf)(x) <O for all x in [O0,1].
LEMMA 1. Let f:[0,1]>[0,1] be a unimodal map with 3 continuous derivatives

such that f'(x) >0 on [O,c) and f'(x) <O on (c,1]. Furthermore, assume:
1) (sf)(x) <O
2) f"(x) <0, f™(x) >0, £'Y(x) <0 for all x€(0,1).

Then (S£)(a,b) < 0 for all a,b€ (0,1).
PROOF. Let a < b. Since (Sf)(a) <0 and £"'(a) > 0

2
fy L 3LEm@l?
£'(a) 2 £"(a)
Ther
E@Em ) <3 r@ene) S L0l 2.2)

Since f"'(a) > 0, £f"(a) < f"(b) , and since f'V{x) <0, f""(a) - £""(b) .
Hence

£ @EM(b) < 2 M) (2.3)
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i.e., (Sf)(a,b) for all a <b, a€(0,1).

To complete the proof, we must show that
f"(a)f'(b) < % f"(a)f" () , (2.4)

where a < b. There are two cases.

CASE 1. f'(b) > 0. Since a<b, f'(a) >0. Then

2
3 [£"(a)]
" =2
£ (a) < 2 f'(a)
and
3 £'"(a) £'(b)
Al " o = ” " —
£r ()™ (a) < 5 [£"(@)f"(b) ] ) () (2.5)
. £ . f'(b
Since f"'(x) > 0, ﬁi 1, and since f"(x) <O, f'(a; <1
Hence the inequality (2.4) holds.
CASE 2. f'(b) < 0 . Since f"'(a) > 0,
£1(B)E™ () -2 £"(a)E"(b) < 0 . (2.6)
This completes the proof. Q.E.D.
EXAMPLE 1. f(x) = rx(1-x), 0 <r < 4 . Since f]':"(x) =0, and f'r'(x) <0,
§f_(a,b) < 0 for all (a,b) in (0,1).
-2x . 2] -
EXAMPLE 2. fa(x) = xe , >0, defined on [0,; ' , where the critical
El

point c¢ = (—]; and the point of inflection is at x = 2/« . It is easy to verify
that fa(x) satisfies all the conditions of Lemma 1.
3. MAPS DEFINED BY CONVOLUTION,

Let f:[0,1]~[0,1] satisfy £(0) = f(1) = 0 and let g:[(0,1]>[0,») be a map

such that g(x) > 0 and .

J( g(x)dx < 2 . 2.7

0

We extend both f and g to (-, ») by letting f(x) = g(x) = 0 outside of
[0,1] and use the same symbols to denote these extended functions on (-=,*) . The
convolution of f and g is given by

F(x) = g(x-t)f(t)dt = g*f(x) . (2.8)
The support of F is [0,2] and (2.7) guarontees that the range of F is contained
in [0,2}. Hence F:[0,2]>[0,2] is a well-defined map.

LEMMA 2. Let f:[0,1]-[0,1], £(0) = f(1) = 0, be in C3 and assume

(Sf)(a,b) - 0 for all points a,b in [0,1] . Let g(0,1)~[0,~] be in C3, let
(2.7) be satisfied, and assume g(0+) and g(17) exist. Then F(x) has a contin-
uous third derivative everywhere except possibly at x = 1, where at least F'(x)

is continuous, and F(x) has negative Schwarzian derivative for all x€ (0,2).
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PROOF. Notice that in (2.8), 0 <x-t <1 and 0 <t < 1. Hence for

0<x<1l, 0<t<x, andwe have

x
F(x) = J g(x-t)f(t)dt .

0
Similarly, for 1 < x <2,

X
F(x) = J g(x-t)f(t)de .
x<1

Using Leibnitz's Rule, we obtain

X
F'(x) = J g'(x- )E()dt + g(0)E(x), 0 <x <1

0
and
X + -
F'(x) = J g'(x-t)f(t)dt + g(0 )f(x) - g(1 )f(x-1) ,
x<1

- +
where 1 <x <2, Now F'(1)=F' (1) Iif

g@HEAT) = g0hH ) - g0

which is so since £(0) = f(1) = 0. Hence F'(x) is continuous on (0,2).

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

That

F"'(x) 1is continuous on (0,2), except possibly at x = 1, follows from the fact

that f,g€ C3 .

To prove (SF)(x) < 0 , we differentiate (2.8) to get

F'(x) = " g'(x-t)f(t)dt .
J

Integrating by parts,

F'(x) = - g(x-t)f(t)[m + J g(x-t)f'(t)dt

-0
-

= [ g(x-t)f'(t)dt .

-

Similarly,

F'"(x) = )f g(x - t)f"(t)dt
and

F'"' (x) = J g(x-t)f" (t)dt .
Thus,

[ g(x-t)f'(t)dtJ' g(x=-y)E" (y)dy

-0 ©

(SF) (x)

3 [ g(x-t)f“(t)dtj g(x - y)E"(y)dy

- © _—-

[

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

J [ g(x-t)g(x~y) ; f'(t)f"'(y)-%f"(t)f"(y) dtdy .
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Since g(&) > 0 and (S£)(a,b) < 0 for all a,b€ (0,1) by Lemma 1, we have
(SF)(x) < 0 and hence {F,x} < 0 for all x€ (0,2). ) Q.E.D.
Note that if f and g can be extended smoothly at the endpoints O and 1, then
boundary conditions can be derived which will ensure that FGC3 everywhere. Under
such conditions it would be possible to avoid £f(0) = 0 , f(1) = 0 .

From (2.9) we see that F(0) = 0 and from (2.11) it follows that
F'(0+) = g(0+)f(0) < 1. Hence O is a stable fixed point.

THEOREM 3. Let f and g be as in Lemma 2 and assume that f is a unimodal
map, strictly increasing on [0,c) and strictly decreasing on (c,1]. Then
F(x) = g*f(x) has O as a stable periodic point and at most one other stable period-
ic orbit in (0,2).

PROOF. F(x) is unimodal on [0,2] with critical point ¢ = 1, since f is

unimodal on [0,1]. By Lemma 2, F'" (x) is continuous everywhere except possibly
at 1, where F'(x) is continuous, and {F,x} < 0 . Clearly O is a stable period-
ic point. Applying Theorem 2 we obtain the desired result. Q.E.D
+
Since F'(0 ) = 0 there exists a point 0 < a < 1, such that F(a) = a. Let
-1
b= F "(a)N(1,2) . Then clearly [0,2)U(b,1] is in the domain of attraction of a.

COROLLARY. If F(c¢) > b, then F has 0 as a stable periodic point and no
other stable periodic orbits.
PROOF. If F has a stable periodic orbit in (0,2) , Theorem 2 implies that it
is the w-1limit set of ¢ = 1. Here, clearly, the w-limit set is equal to {(0}.
Q.E.D.
EXAMPLE 1. Let f(x) = rx(1-x) and g(x) = k. Then, for 0 - x <1,

rx
F(x) = (g*f)(x) = kJ re(l-t)de
0
- fl_x 2.19
krx L2 3/ . (2.19)
By symmetry, we have
F(x) = F(2-%x) ,1 < x < 2 (2.20)
Thus,
Meex?’ L _ % )
. krx \27°3/ , 0<x -1
F(x) = : (2.21)
lkr(x-Z)2 %—%, 1 <x 2

For F:[0,2)-[0,2] to be well-defined we need

kr

F() = T = 2. (2.22)

By Theorem 3, we know that F(x) can have at most one stable periodic orbit in (0,2).
For kr = 6, the point ¢ =1 is a stable fixed point.
Note that in this example F"'(x) is not continuous at 1, but F'(x) is.

EXAMPLE 2. Let f(x) = rx(1-x) on [0,1},0 < r -~ 4, and g(x) = px(1l-x)
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on [0,1]. Then F(x) = g*f(x) is given by

5

4, x
+?) on [0,1]

i?(x3-x
F(x) = (2.23)
F(2 - x) on [1,2]

For F to be well-defined, we require

- IR
F() = B2,

i.e., rp © 60 . For rp= 42, F(x) = x at X = .51. Hence, by the symmetry of
F,[0,.51)VU (1.49,2.00] is in the domain of attraction of 0. Since F(1l) = 1.4,

¢ =1 1is not in the domain of attraction of 0, and hence it is possible for a
stable periodic orbit to exist in (.51,1.49). However, for rp = 48,
|0,.46) Y (1.56,2.00) is in the domain of attraction of O. Since F(1) = 1.6,
c =1 1is in the domain of attraction of 0. Hence, by Theorem 3, 0 is the only

stable periodic orbit. The same is true for 48 < rp < 60 .
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