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ABSTRACT. This paper extends the operational calculus of Meller for the operator
_ e d ol d
o dt dt

14
Mikusinski calculus and uses Meller's convolution process with a fractional deriva-

B to the case where a € (0, ®). The development is a la

tive operator.
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1. INTRODUCTION.

Familiarity with integral transforms of distributions is assumed. This paper
is accessible to readers familiar with references [1-3]. The generalist reader
Interested in this area may start with these references.

Meller [4], [5] constructed an operational calculus for the operator

B, = t™ % o+l % with -1 < o < 1 by embedding it in a field of convolution
quotients. The convolution process was given by the formula:
t €
1 d -0 d d-
* = qa - a4 p a
He*el®) = oy ora- o a fo (-0 gty fo dn x

1
x [ dx 11 - 0 @Ml - x)(E -] . 1.1
0

d
This calculus reduces to Ditkin's calculus [6], [3] for gg t 3t when a = 0.
Recently, Koh [7], [8] and Conlan [9] extended Meller's calculus to the case

a € (-1, ®), A modified convolution process was used which yields results analogous
to Meller's., In the present work, we give a direct extension of Meller's calculus
1
by treating the operator —Li _d (t - E)-adg in (1.1) as a fractional deri-
I'l - o) dt 0

vative,
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Specifically, we let n be the least integer greater than a 2 0. For any n-
times differentiable function f(t), the ath-order derivative of f(t) is:

p%£(t) = D" 1™ £(¢) (1.2)

where D is é%'and 1¥ 1is the Riemann-Liouville integral of order v > 0 given in

Ross [10] by
t

1E(t) = F(l—\,) fo t - &V e ae. 1.3)

It is easy to see that IV satisfies the semigroup property
%8 = o (1.4)
but Da does not. Thus DaD in (2.1) below cannot be written Da+1.

2. THE CONVOLUTION QUOTIENTS.

Let o 2 0 be a fixed real number. Let COo denote the linear space of infinite-
ly differentiable functions on [0,%). For every pair of functions ¢(t) and Y(t)

in Cw, define their convolution by

t 1l
$(eY*Y(e) = ety DDeD JO fo n*( - 0% EYIA - ) (e - )ldxdn.  (2.1)

From this definition, the following properties are clear: (i) Cw is closed under
convolution, (ii) convolution is bilinear on ¢ x Cm, (iii) convolution is distri-
butive with respect to the usual addition of functions. It also follows immediately
that equation (2.1) specilizes to Meller's convolution for @ < 1 and to Ditkin's
for o = 0. Not so immediate are the following properties.

PROPOSITION 1., Convolution is commutative.

PROOF, Let x =1 - % and n = t - t§ in (2.1) and noting that the Jacobian

20,0 1 for all t € (0,»), we have

3(v,8)

1t
$(EI*U(E) = ey DDeD fofo(c - 0TI = T (e - LD WIY (£6)]dvdE

t(l
= sy oen jOJO vi(1 - O ENSIA - £) (t - v)]dEdv

= P(t)*¢(t). q.e.d.

PROPOSITION 2. For every complex number A, and any ¢(t) € Cm, Axp(t) = Ap(t).
t

PROOF.  A*¢(t) = ————— p®DtD f

1
T(a + 1) 0 n fo 1 - 0%\ (xn)dxdn

1
A
= TYG;:fIT-DGDta+1 jo (1 - x)a¢(xt)dx
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t
_ A o
- TGF D p°D JO (t = u) ¢(u)du

A non-a [t o-1
= T?ajiffy DI fo a(t - u) ¢(u)du

AT 1% (E) = Ad(E).

The last step follows from (1.4) and (1.2). q.e.d. In view of Proposition 2, there
is no distinction between constants and constant functions in our calculus.
PROPOSITION 3. Convolution is associative.

PROOF. A direct calculation shows that, for nonnegative integers q and r,

et = <qqiri>rf?(2 : B%ig(i e 1)1) S (2.2)
Hence on using (2.2) again,
tp*(tq*tr) _ plq!r! T(ptot+l)!T(qtot+l) I (r+o+l) (PHatr
(p+q+r) ! T (o+1) I (p+q+r+o+l) T (atl)
= (&P x ) x T, (2.3)

Due to the bilinearity of our convolution, equation (2.3) still holds for polynom~
ials, Our proposition follows from Weierstrass's Approximation Theorem and the
fact [9] that the space of Cw functions with compact support is dense in Cw. q.e.d.

PROPOSITION 4. ¢” has no zero divisors, i.e. if ¢(t) and Y(t) belong to c
and ¢(t) * Y(t) = 0, then either ¢(t) = 0 or Y(t) = O.

PROOF. o¢(t) * Y(t) = 0 implies that

t e £ (1
J (e - " ! é% £ ﬁl f f %@ - 0% E)VIA - ) (E - n)ldxdn
0 0’0
tn‘l tn—2
= C1 (n-1)! + Cz (n - 2)! LR Cn . (2.4)

As t > 0, Cn = 0. Now, by an argument leading to (2.3), we see that, if Ci # 0 for
some i, then ¢(t) and Y(t) have to be polynomials. But if they are polynomials,
the left side of (2.4) will be of degree at least n. Hence, the right side of (2.4)

has to be zero. A similar argument, together with Titchmarsh's Theorem [2], yields

t (1
fo fo n*@ - 0%eEmua - x)(t = n)]dxdn = 0. (2.5)
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To complete the proof, let x = % ,N=2Tand t = vT in (2.5). We then have

v 1 o a

f f z (T - y) ¢(yz)¥[(T - y)(v - 2z)]dydz = O.

0’0
By a theorem of Mikusinski and Ryll-Nardzewski [11], it follows that za¢(yz) =0 or
y*W(yz) = 0. Thus, ¢(t) = 0 or Y(t) = O. g.e.d.

The above properties establish C°° as an integral domain under the operations

of addition and convolution as multiplication. By virtue of Proposition 2, the
multiplicative identity for C°° is the number 1. We may now extend c” into the
field F of convolution quotients consisting of equivalence classes of ordered pairs

(¢,9) of elements in Coo with ¥ # 0. The equivalence relation is given by
~ * = *
As usual, convolution quotients are called operators [ 2] and are denoted by
% . Operators of the form i%%l constitute a subring of F isomorphic to Cw through

the canonical maps Q%Fl- > ¢(t).

3. AN OPERATIONAL CALCULUS.

We now show that the operator Ba belongs to F, First, note that a right

inverse to Ba is given by

t 1 (8
Ap = f gl f n*$(n)dndE;
0 0

i.e., Ba Ap = ¢, for ¢ € €. If we restrict the domain of Ba to {¢ € Cwl¢(0) =0},
then A is also a left inverse; i.e., ABa¢ = ¢.

PROPOSITION 5. For any ¢(t) € C , = = T % 0(e) = M(e).

PROOF. We shall assume that a is not an integer. Otherwise, the proof is

more straightforward, obviating the use of fractional integrals.

t 1
a i T * () = —_'_'r(al+ 3 p*peD [o jo @ - x0%(x ) 51_-_&(%11 dxdn

t N
-1 % f “—';‘lj (m - 5% Loceyaean

I'(a + 2) 0 n o
I SRS ti[” 5%y eyaean + L [ oFLy by ry
TG + 2) ol 0(n- $(£)dEdn + ¢ o (t - &) "¢(8)dE
1 a (1" o
"Te+D D J HJ (n - &)7¢(&)deEdn. 3.1)

0 0
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Let Y(&) = 1“¢(£) where n = least integer greater than o. Then (3.1) becomes

t n a-n
t o 1 n-
—L % ¢(t) =D fo : fo B e

t n-o-1 (u n a-n
n (t = u 1 (n-2¢8

1

t t
D -1 = _ py0-n _ yn-0 .
~ T(a-o+1) T (o-n+l) !0 v ,{g noM- 9T (e - n)T dndd

o-n
The inner integral reduces, via the Beta function, to {('f') -1} (0=-n+1)T(n - a).

Thus, n ¢ ‘
t a-n _
T e -“'“Io v 1}dg
n 1 _
- nD_ 5 th(wt) W = 1)dw
0

1 a-n _
= f ( "'_n___;_i ) Wltd(we) + nwo 1I<1>(wt))dw
0

t
f L5 - (EHMemas

n - t
0 a

t 1 50. _;n EJE
+J0n_a[(t) ‘(t)](g)0¢(u)dud£

t
J O £y - 1jae

o—a

t t
[ £%4(8) f n*! anag
0 0

t n
[ n”"‘lf £2p(E)dEdn = Ad(t). q.e.d.
0 0

This result implies that operators of the form Q(Tt—) with ¢(0) = 0 may be identified

with locally integrable functions f(t) such that Af(t) < « for every t > 0, Indeed,

O - gy e L [0, 1ff  ¢(t) = txE(e) = (@+ 1) A £ <w, ve>O.
The next result follows from Proposition 5 and Equation (2.2) by induction.

PROPOSITION 6. Let k be a positive integer. Then, for any ¢(t) € Cw,

k
T ST * 0 = M%) where A%(t) = ACAC-+-(A$))) .
’ k-times

+ 1

Let V be the operator & and Vk the k-times application of V.
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PROPOSITION 7. For any 2k times differentiable function ¢(t),

k
_ gk k~j 3
vo(e) = BXo(e) + Zl By 00 | g v (3.2)
JB
PROOF.  ¢(t) = AB 4(t) + 6(0) = = j T * Bo(t) + 6(0). Thus,

Vo(t) = Ba¢(t) + ¢(0)V and (3.2) is proved for k = 1. Suppose now that (3.2) is

true for k = m - 1. Then for any 2m times differentiable function ¢(t),

w1
_ m-1 m-1-j 8]
Poce) = VT ace) + jzﬂ YO Y R
m-1
- m-1 m—1 . m—1-j j+1
= BB, 0(t) +B T (B 4 V- jgl B, o) 4 V

m

BY ¢(t) + gi B:—j(b(t)lt_’d- v,

The proposition follows by induction.
A number of operational formulas such as those in Theorems 5 and 6 of [7] may
be generated by using (3.2). The proofs are similar, mutatis mutandis. A generali-

zation of Theorem 5 of [7] is obtained by parametric differentiation.

a+m
s _ Te+1)  m T2
PROPOSITION 8. Tl T oot (av) 1a+m(2\/at)
(V- a)
at+m
s _ Te+1) m T2
= ———=t (at) Jam(Z\/at)

1
v+ a)m+l m!
where Iv(x) and Jv(x) are Bessel functions of order v.

REMARKS. 1. All the results of Meller are extendible to the case o ¢ (0,)
via the methoa given in this paper.

2. The operational calculus may be applied to certain time-varying systems
and to Kratzel's problem as done in [8].

3. In [12], a convolution for the operator A = t_n-.1 é% tn+1 é% , where n is
a natural number, is given which is associative, commutative, and distributive with
respect to addition. However, the ring under convolution as multiplication contains
zero divisors.
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