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ABSTRACT. By using PSlya's theorem of enumeration and de Bruijn's generalization of
Pslya's theorem, we obtain the numbers of various weak equivalence classes of func-
tions in RD relative to permutation groups G and H where RD is the set of all func-
tions from a finite set D to a finite set R, G acts on D and H acts on R. We present
an algorithm for obtaining the equivalence classes of functions counted in de Bruijn's
theorem, i.e., to determine which functions belong to the same equivalence class. We
also use our algorithm to construct the family of non-isomorphic fm-graphs relative

to a given group.
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1. INTRODUCTION.

Motivated by Carlitz's work in [1] on the invariantive properties over a finite

field K, Cavior ([2],[3]) and Mullen ([4],[5],[(6],[7]) studied several families of
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equivalence relations of functions from K into K. These equivalence relations can be
described in more general forms as follows: Let D = {1,2,...,m}, R = {1,2,...n},
RD be the set of all functions from D into R, G be a permutation group acting
on D and H be a permutation group acting on R.
(I) Let f,g € RD. f 1is said to be weakly equivalent to g relative to G
and H, 4if and only if there exist a 0 € G and a T € H such that 10 = g,
i.e., t_lf(od) = g(d) for every d € D. There are three subfamilies:
(a) When H is the identity group, f is said to be right equivalent to g
relative to G, i.e., fo = g.

(b) When G is the identity group, £ 1is said to be left equivalent to g
relative to H, i.e., Tl - g.

(c) When G =H and o_lfc =g, f is said to be similar to g relative to
G.

(II) Let f,g € RD. f is said to be strongly equivalent to g relative to G
and H, if and only if there exist a 0 € G and T € H such that fo = g and
f = g.

Clearly, all of these relations above are equivalence relations. One of
Cavior's and Mullen's main results was to obtain the number of equivalence classes of
functions over K relative go symmetric groups, and to cyclic groups. Here by using
Pélya's theorem of enumeration and de Bruijn's generalization of Pbélya's theorem, we
shall point out that the numbers of various weak equivalence classes of functions in
RD relative to G and H can be obtained. We shall present an algorithm for ob-
taining the equivalence classes of functions counted in de Bruijn's theorem, i.e., to
determine which functions belong to the same equivalence class. Our method is to
associate each function with its incidence matrix. Various weak equivalence re-
lations correspond to products of matrices, and from the entries of the incidence
matrices, equivalent functions can be obtained. Our algorithm does not use the
cycle indices of the permutation groups. We use our algorithm to construct the
family of non-isomorphic fm-graphs relative to a given group. The numbers of strong
equivalence classes do not appear to be obtainable from Pslya's and de Bruijn's

theorems. Cavior, in [2], obtained the number of strong equivalence classes relative
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to the symmetric groups. We apply our algorithm to strongly equivalent functionms.
With the help of Pslya's and de Bruijn's theorems, our algorithm enables us to deter-
mine the numbers of strong equivalence classes relative to some subgroups of the sym-

metric groups.

2. THEOREMS OF POLYA AND DE BRULJN.
Let G be a permutation group acting on a set D = {1,2,...,m}. Since every
permutation can be uniquely written as a product of disjoint cycles, the cycle index
of G 1is defined as the following polynomial in Q[xl,xz,...,xm] where Q 1is the
field of rational numbers and xixJ = xjxi for 1i,j = 1,2,...,m:
b b
P (xl, 2,...,xm) T—T- Z L SR xmm

oeG

where IGI is the order of G and b, is the number of cycles of length i in the

i
disjoint cycle decomposition of o for i =1,2,...,m.

THEOREM 1. (Polya [81,[9],[10]). Let R’ be the set of all functions from a
finite set D into a finite set R, G be a permutation group acting on D, w be
a function from R into R' where R' is a commutative ring with an identity con-
taining the rational numbers Q, and a relation =~ be defined on RD such that
f ~ g if and only if there exists a o € G with f(od) = g(d) for every d e D.
(This relation is an equivalence relation. Consequently, RD is partitioned into
disjoint equivalence classes {F}, where each F 1is called a pattern.) Then the
total patterns, denoted by X W(F), is

F
Lv = p( 1 v, 1 N, 1 wEnk,. o)
reR reR reR
where P, 1is the cycle index relative to G. If w(r) = 1 for every r € R, then

G

the number of total patterns is

[T wE| = PoURLLIRI, . R], (2)
F

where |R| is the cardinality of R.

THEOREM 2. (de Bruijnm [11],[12]). Let RD be the set of all functions from a
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finite set D into a finite set R, G be a permutation group action on D, H be
a permutation group acting on R, and a relation ~ be defined on RD such that

f - g if and only if there exist a 0 € G and a T ¢ H with f(od) = tg(d) for
every d € D. (This relation is an equivalence relation. Consequently, RD is par-
titioned into disjoint equivalence classes {F}, where each F is called a pattern.)
Then the number of total pattermns is

z 4z, +... 2(22+z4+...) 3(z 4z, +...)

9 t) 9 172 376
[PG(SEI R 5;; , —3;; sese) PH(e > e , e yeoo)] (3)

evaluated at z, = Zy = o0 = 0.

1
If H is the identity group acting on R, then (3) is (2) in PSlya's theorem.

THEOREM 3. Let DD be the set of all functions from a finite set D whose
cardinality is m into itself, G be a permutation group acting on D, and a rela-
tion ~ be defined on -DD such that for every f and g ¢ DD, f ~ g if and only
if there exists a o0 € G with c—lf(od) = g(d) for every d € D. (This is an equi-
valence relation. Consequently, DD is partitioned into disjoint equivalence classes

{F}, where each F is called a pattern.) Then the number of total patterns is

1 n 1

TeT Yy mo(C hi Cj) (4)
oeG i=1 j|i

where ¢y is the number of cycles of lenght i in the disjoint cycle decomposition

of o for i-=1,2,...,m.

The number of equivalence classes in o is TéT z (number of functions f
oeG

such that fo = 0f) and the number of f € DD such that

m ey
fo=0f is T ( j ¢,) ~. For details, see [7].
i=1 j[1 3
3. AN ALGORITHM.

Let G and H be permutation groups acting on D = {1,2,...,m} and R =
{1,2,...,n} respectively. For convenience, we shall call the weak equivalence rela-

D

tion in RD relative to G and H the G-H-relation, i.e., f and g in R~ are

said to be G-H-related if and only if there exists a o € G and a T € H such that
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T-lf(od) = g(d) for every d € D. Clearly, it is an equivalence relation, and RD
is partitioned into disjoint classes each of which is called a G-H-class. Let G*
be the m x m permutation group corresponding to G, i.e., G*£2 G, H* be the

n X n permutation group corresponding to H, i.e., H*<2 H, and I be the set of
all m xn (0,1)-matrices A = (aij) where each row of A consists of exactly one
1 and all other entires are zero. Two matrices A and B are said to be G*-H*-
related if and only if there exist a P ¢ G* and a Q € H* such that PAQ_1 = B,
Clearly, this relation is an equivalence relation called a G*-H*-relation, and I

is partitioned into disjoint equivalence classes each of which is called a G*-H*-
class.

Similar to Lemma 1 in [13], we have

THEROEM 4. Let n: RD + I be defined by n(f) = A where A = (aij) with
3,4 T 1 for i=1,2,...,m, and all other entries 0. Then
(1) n is a bijective map, and

(2) n preserves the G-H-relation in Rp and the G*-H*-relation in 1I.

PROOF. (1) Clearly, n is well defined. Let n(f) = A = (aij) with 3y f(1)"

1 for i=1,2,...,m and all other entries 0, and n(g) = B = (bij) with

bi,g(i) =1 for i=1,2,...,m and all other entries 0. If A = B, then ai,f(i)g
by g1y for i=12,...,m, i.e., f=g. Hence, n is injective. Since
|RD| = |1| = n", n 1is bijective.

(2) Let f and g belong to the same G-H-class, i.e., there exist a
0eG anda T € H such that Tnlfo =g, n(f) = A= (aij) and n(g) =B = (bij)

with a =1 and b =1 for i=1,2,...,m and all other entries 0.

i, £(1) i,g(i)

Then b -1 =1 for i=1,2,...,m and all other entries O.
i,t “f(oi)

Let P = (pij) and Q = (qij) be the permutation matrices corresponding to o

and T respectively. By using the properties of permutation matrices, we have

-1 B ~ ~ _
(PAQ )ij - E g Pis?stdit ~ Pivluvlyv T Zuv T Foi,14 (%)

for all 1 =1,2,...,m and j =1,2,...,n with oi=u and Ttj = v. But since all
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=0 except a =1 for 1=1,2,...,m, T3 = f(oi), i.e., J =

351,13 oi,f(oi)

T-lf(oi) and (PAQ-l) -1 =1 for i=1,2,...,m and all other entries O.
i,T “£(oi)

Hence, PAQ—1 =B, and A and B belong to the same G*-H*-class.

Conversely, if A and B belong to the same G*-H*-class, then there exist a
PeG* and a Q € H* such that PAQ-1 = B, Since n 1is bijective, L exists,

say nlA=f and nlB =g. Since by (5) (PAQD) "= all (PAQ™D) 4 are

1" %oi,ty’ i

-1
0, except aci,f(ai) =1 for 1=1,2,...,m, i.e., tj = f(oi) or j = 1 £f(oi).
Also, all the entries of B = (b

) are 0, except b =1 for i=1,2,,..,m.

i3 i,g(1)

Since (PAQ‘l)i = @ for 1=12...n ad §=12...,m, e (o1) = g(1)

3

for 1=1,2,.,.,m, 1i.e., T_lfO =g, and f and g belong to the same G-H-class.

D

From our Theorem 4, we know that for each f € R there exists a unique n(f) =

A= (a in I with a =1 for i=1,2,...,m and all other entries 0 (A

1) 1,£(9)
is called the incidence matrix of f). Now for every o €¢ G and every T € H,

a
g

1 -1 =1 for 1i=1,2,...,m and all other entries 0 determine a matrix
i,t £(1)
B in I. Let P = (pij) and Q = (Qij) be the permutation matrices corresponding
to ¢ and T respectively. Then PA.Q-1 =B and A and B are G*-H*-related.

From Theorem 4, for each B € I there exists a unique n—l(B) =g in RD and f
and g are G-H-related. Consequently, we have the following algorithm for obtaining

all equivalence classes, i.e., for determining which functions are in the same equi-
valence class:

Step 1. Select any f ¢ RD and write

al,f(l) = aZ,f(Z) = .. = am,f(m) =1,
Step 2. For every o0 € G and every T € H, compute
a_y, =a _; =...=a ;4 = 1.
o "1,t £(1) o 2,T £(2) o m,t £(m)

Each computation determines a function in Rp, and the equivalence class containing

f consists of these distinct functions.

Step 3. Select a function in Rp which is not a member of the equivalence class

obtained in Step 2. Repeat Steps 1 and 2. Continue the process until every function
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in RD appears in an equivalence class.
EXAMPLE 1. Let G = {01 = (1), g, = (23)} act on D= {1,2,3} and H =
{Tl = (1), T, = (12)} act on R = {1,2}. Then the cycle indices of G and H are,

respectively,
P (x,,x, ,X,) = ;-(x3 + x.x.), and
G1272°73 2 1 1727
1 2
Pp(y1:39) =3 G + 3.

Therefore, by using (3), the number of weak equivalence classes in RD is 3. If the

8 functions in RD are given as

then the algorithm can be used to determine the 3 classes so that

D
R = {f,65) V {£,, £y, £, £,} U {£,,£).
4, APPLICATIONS,
We consider the weak equivalence classes in RD relative to the groups G and H.

D 1

Let £ e R and C(f) = {(0,7) € G x H; v fo = f}. Clearly, C(f) 1s a subgroup

of the product group G x H,

THEOREM 5. The cardinality of the weak equivalence class f containing f in
Rp relative to the groups G and H is equal to the index of C(f) in the product
group G x H. Hence, lf| divides |G|'|H|.

The proof is not difficult and hence is omitted.

COROLLARY 5.1, The cardinality of the right equivalence class f containing f
in RP relative to the group G 1is equal to the index of the subgroup C(f) =

{0 €G; fo = £} 4in G. Hence, |F| divides |G]|.
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COROLLARY 5.2. The cardinality of the left equivalence class f containing f

in RD relative to the group H is equal to the index of the subgroup C(f) =

1

{t eH; T f=f} in H. Hence, |E| divides |H].

COROLLARY 5.3. The cardinality of the similar class f containing f in Rp

relative to the group G is equal to the index of the subgroup C(f) = {0 € G; oo

= £} in G. Hence, |F| divides |g].

A. The cycle indices for many families of groups are known, e.g., see p. 36 in
[9]. In particular, the cycle index of the cyclic group Cq of order q on p

points is
9

i
$(1)x
i}q t

Q=

ch(xl,xz,...,xq) =

where ¢(i) is the Euler's phi-function.

EXAMPLE 2. Let G = <(123...q)> be the cyclic group generated by (123...q)

acting on q+k points. Then

PG(xl,xz,...,xq,xq+1,...,xq+k

q
1 i _k
) = 3 i%q (¢(i)xi xl). (6)

Let G be the permutation group acting on D = {1,2,...,q,q+l,...,q+k = m} and H
be the identity group acting on R = {1,2,...,n}. Then, by using (3), the number X
of the right equivalence classes in P relative to G is:

n(z,+z +...+zn+...)

3 3 ] 172 _
N = [PGCEEI , 5;; goeey 3;—)(2 )]zl—z2=...=0
m
g
-1 % (o(0a’ 0. -
4 q

In particular, if G, = <(1234)> acts on D = {1,2,3,4,5} and H is the iden-

tity group acting on R = D, then by (7) the number of right equivalence classes in

DD relative to G is 825.

1
We show the following:
(a) There are 25 right equivalence classes each of cardinality 1. By using our

algorithm, the function corresponding to
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=1

213 T 824 T 233 T 344 T 35y

is not changed for any o0 € G i=1,2,...,5 and j =1,2,...,5.

1’
(b) There are 50 right equivalence classes each of cardinality 2. Applying

o = (1234), o% = (13)(24), o> = (1432) and o = (1) to

843 T ¥k T

for i+#3j, i,j =1,2,...,5 and k = 1,2,...,5, we have

31723 "33 "33 3, " b ®
333 T 35 =3y T ay; “ag =1L, 9
ay; = a3j =a, = alj =ag = 1, and (10)
a;; = aZj = a5, = al‘j =ag = 1. (11)

Since (8) and (9) are the same as (10) and (11) respectively, there are
5 (ééé) = 50 right equivalence classes each of cardinality 2.

(c) Since by Corollary 5.1 there is no right equivalence class of cardinality 3, the
number of right equivalence classes of cardinality 4 is 825-25-50 = 750. Our
results in this example with G1 = <(1234)> coincide with the results on p. 113
in [12].

EXAMPLE 3. Let H = <(123...q)> be the cyclic group generated by (123...q)
acting on q+k points. Then the cycle index of H is the same as (6). Let G be
the identity group acting on D = {1,2,...,m} and H be the group <(12...q)> act-
ing on R = {1,2,...,q,q+1,...,q+k = n}. Then, by using (3), the number N of the

left equivalence classes in RD relative to H is given by

N=2m™+ § el (12)
q i[q
i>1
In particular, let G be the identity group acting on D = {1,2,...,5} and H1

be the group <(1234)> acting on R = D. Then the number of left equivalence classes



754 C.Y. CHAO AND C.I. DEISHER

in p° relative to H, is 782 by using (12), or by using (3) and (7).

1
We show the following: By using our algorithm, the function corresponding to

=a _=1

815 T 835 T 835 T 85 % 355

is in an equivalence class by itself. Now consider

= = = = = 1
1,3, T %2,3, T 73,35 7 4,3, T 5,35
where jk are not all 5 for k = 1,2,...,5.
Then with T = (1234), we have
a4 =a 4 =a 4 =a 4 =a =1,
a = a = g = g = g = 1
2,-1 2,-1 2,-1 2,-1 2,-1 ’
L™, 2,6, 3,ahTy, sa@hHTh, s aH T
a = a = a = a = a =1
3,-1 3,-1 3,-1 3,-1 3,-1 ?
1,(T ) jl 2,(": ) jz 3,(1' ) j3 4,(7 ) j4 59(1 ) js
= = = =g =1,
1,3, #2,1, 3,1, 24,1, #5,45

All of the functions corresponding to the above matrices are different and therefore,
the cardinality of the equivalence class is 4. Hence, there is only one equivalence
class of cardinality 1 and all the others are of cardinality 4, that is, there are
782 - 1 = 781 equivalence classes of cardinality 4. Our results in this example
thus coincide with the results on p. 353 in [4].

B. A labeled directed graph with m vertices is said to be an fm-graph if the
out-degree at every vertex is 1. Thus, the incidence matrix of an fm-graph belongs
to the set of m X m matrices I. Conversely, every matrix in I determines a uni-
que fm—graph. Llet G be a permutation group acting on m points. Two fm—graphs
X, and X

1 2

that o maps the vertices of Xl onto the vertices of X2, and o preserves the

are said to be G-isomorphic if and only if there exists a ¢ € G such

directed edges, i.e., [ca, ob] 1is a directed edge in X, if and only if [a,b] 1is

a directed edge in Xl. A G-isomorphism of Xl onto itself is said to be an auto-
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morphism of Xl. Let A, and A2 be the incidence matrices of Xl and X2 re-

1
spectively. Then it is well known that Xl and X2 are G-isomorphic if and only if
there exists a permutation matrix P corresponding to a ¢ € G such that PAlP-l =

Since the set of all functions from m points into itself is in one to one cor-
respondence with the set of all f -graphs, we may use (4) to count the number of non-
isomorphic classes of fm-graphs relative to G, 1i.e., the number of nonisomorphic
classes of fm-graphs relative to G 1is

1 ¢4

m
n ( i c)
ToT o o Gl

where ey is the number of cycles of lenght i in the disjoint cycle decomposition

(13)

of o for 1=1,2,...,m.

EXAMPLE 4. Let G = <(123)> act on {1,2,3}. Then the number of nonisomorphic
classes of f3-graphs relative to G 1is, by using (13), %»[(1-3)3 + (3-1)1 + (3-1)1]

= 11, By using our algorithm, we have the following nonisomorphic f3-graphs relative

] o Qo
1 1 1 1
62 30 o e 2 3

to G:

(1) (ii) T (441) (1v)
e
i @//\- 1
2 3
2 3 2 3
(v) (vi) (vit) (viii)
1
2 3 3
(ix) (x) (x1)

EXAMPLE 5. Replace G = <(123)> in Example 4 by the symmetric group S3 on
{1,2,3}. Then the number of nonisomorphic classes of f3-graphs relative to S3 is,

by using (13), %[(1-3)3 + 3((1-1)1(1-1+2°1)1) + 2(3-1)1] = 7, and the nonisomorphic
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f3-graphs (relative to 83) are: (i), (di), (iv), (v), (vi), (viii) and (x), i.e.,
(ii) is isomorphic to (iii) by (23), (vi) is isomorphic to (vii) by (12), (viii) is
isomorphic to (ix) by (13), and (x) is isomorphic to (xi) by (23).

By applying (4), de Bruijn in [12] obtained the number N of similar equi-

valence classes relative to the symmetric group Sm as

m k k
No=) T () 3 k) 1(ki! 1 Ht (14)
(k) i=1 jl|i
where the first summation is over all m-tuples (k.,k,,...,k ) of non-negative in-
1’72 m
tegers ki which satisfy kl + 2k2 + ...+ mkn = m. The first few values of N

are given by N, =1, N, = 3, N, = 7, N, =19, Ng= 47, Ng = 130. Formula (14)
gives the answer to the problem posed by Cavior in [2, p. 128] concerning the number
of similarity classes relative to the symmetric group.

C. On p. 129 in [2], Cavior obtained the number of strong equivalence classes
in DD relative to Sm and Sm where D = {1,2,...,m} and Sm is the symmetric

group on D, Here, with the help from the theorems of PGlya and de Bruijn, we apply

our algorithm to obtain the following theorems.

THEOREM 6. Let D = {1,2,...,m} where m is an odd integer, R = {1,2}, G
be any permutation group acting on D and H be the group <(12)> acting on R.
Then every strong equivalence class in RD relative to G and H consists of only

one function, i.e., the number of strong equivalence classes is 2%,

PROOF. Let f be any function in RD and Af = (aij) be the incidence matrix

f with

1

mayy =ee=agy =1

a
2,1 3 m

a
1,1 )

and all other entries O where ik is either 1 or 2 for k = 1,2,...,m. Then, by
using our algorithm, the right equivalence class relative to G containing f con-
sists of the functions corresponding to the set of matrices {Afc; o eG, and

a 4 =a_; =a _; = ... = a _ = 1 and all other entries 0}. The
1 3 o m,i

o 1,1 4 2,12 o 73,1 m
left equivalence class relative to H containing f consists of the set of matrices
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{Arf; tTeH and a ; = a = a 1 = e.-=a =1 and all other

1,71 1 2,714 -1

3,t iy m,T 4
l,r‘liz,...,r'lim} # {11,12,...,1m} for

T = (12). Hence, the intersection of the left equivalence class relative to G con-

entries 0}. Since m is odd, the set 7l

taining f and the right equivalence class relative to H containing f 1is {f}.
Consequently, the number of strong equivalence classes relative to G and H is
-] = |r| [Pl = om,

In [8], Theorem 5.3 states: Let Sn be the set of all one-to-one functions
from a finite set D = {1,2,...,n} onto itself, G be a permutation group acting on
the domain D, H be a permutation group acting on the range D and an equivalence
relation relative to G and H in Sn be defined as follows: f v g if and only
if there exist a o €G anda T eH such that r-lf(od) = g(d) for every d e D,

Then the number of patterns (equivalence classes) is

9 9 )
[PG(E;.— » 32 * Bas yeee) PH(zl,222,323,...)] (15)
1 2 3
evaluated at z) =2, =23=...= 0. (15) is also equal to
[p (_.3._ 9 9 ) P (z,,22,,3z )1 (16)
H'9z, ? 3z, ® 9z, *°°° G 1772273000
1 2 3
evaluated at Z] =2y = 23=...= 0.

Let p be a prime, G be the cyclic group Cp of order p generated by
(12 ... p) acting on D = {1,2,...,p}, and H be the identity group acting on D.
By using (15) and Corollary 5.1 restated for one-to-one functions, it can be shown
that there are (p-1)! right equivalence classes in SP relative to Cp each of
order p. Similarly, the number of left equivalence classes in Sp relative to H =
Cp is (p-1)! and the cardinality of each equivalence class is p. These results

are in agreement with those concerning permutation polynomials over finite fields ob-

tained by Mullen in [6].

THEOREM 7. Let D = {1,2,...,p} and R = {1,2,...,q} where p is a prime and
q 1is an integer greater than 1, Cp be the cyclic group of order p generated by
(12...p) acting on D, and Cq be the cyclic group of order q generated by

(12...q) acting on R.
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(a) If q 4is not a multiple of p, then every strong equivalence class in RD
relative to Cp and Cq consists of only one function, i.e., the number of
strong equivalence classes in Rp relative to Cp and Cq is qp.

(b) If q=p (i.e., D=R and Cp = Cq), then the number of strong equivalence

D
classes in D relative to Cp and Cp is pp - (p—l)z.

PROOF. (a) We claim that the number of weak equivalence classes relative to

Cp and Cq is %-(qp-l + p - 1), and that there are %-(qp-1~1) weak equivalence

classes each having cardinality pq, and there is one weak equivalence class having

. =L (P
cardinality q. Since P. (xl,xz,...,xp) = (x1 + (p-l)xp) and Pq (xl,xz,...,xq)

P
- % ? ¢(1)x2/i, by (3), the number of weak equivalence classes |W| 1is
ilq

q(z +z,+..0)

+ T)]z (17)

=z, =,..=0

P
Wl =2 1E—+ (-1 e
P g,P p 4 17%2

1
where the function T does not involve zy and zp. The reason is that every non-

identity permutation in Cq has no fixed points and p and q are relatively prime.

Hence, (17) is equal to
lw| = f%'(qp + (p-1q) = %'(qp_l +p-1. (18)

Applying our algorithm to the function fl € RD corresponding to 2,1 =8y =

837 = ee0 = apl = 1, we have the weak equivalence class T

1 consisting of the gq

functions corresponding to

ay) T ay) a3 T ... =ay = 1,

pl
319 =@y =23 = ... =2, =1,
(19)
813 = 853 = 833 % ... = ap3 =1,
alq = an = a3q = il = apq =1,

Not counting the weak equivalence class above, we still have
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1 (qp-l

(qp_1 +p-1) -1= ? - 1) weak equivalence classes. Since there are |RD|

oo

qp functions and since each weak equivalence class can have its cardinality at

most pq, the cardinality of each of these -11;-(qp-1 - 1) weak equivalence classes

is pq.

Now we show that every strong equivalence class in RD relative to Cp and Cq

consists of only 6ne function. Clearly, applying our algorithm to each function in

f we have that each function belongs to a strong equivalence class consisting of

1’
only itself. Let f and g be strongly equivalent functions in RD and not in El’

i.e., there exist a o ¢ Cp anda T € Cq such that fo = g and f = g. Assume

f ¥ g. Then none of 0 and T could be the identity, and we would have e, fo

and (t1)7lfe, in the same weak equivalence class in R® relative to Cp and C

1 q
where e and e, are the identities of Cp and Cq respectively, Since £ # El’
the weak equivalence class containing f has cardinality pq, 1{i.e., ez_lfa 4

(I-l)-lfe But e, lfo = g = (1-1)-1fe1. That is a contradiction, and the cardi-

1° 2

nality of every strong equivalence class in RD relative to Cp and Cq is 1,
i.e., the number of the strong equivalence classes in RD relative to Cp and Cq
is [RD| = qp.

(b) First, we consider the set Sp of all one-to-one functions in DD. We
claim that if f belongs to normalizer of Cp in the group Sp’ then the cardi-
nality of the strong equivalence class containing f relative to Cp and Cp is p.
The cardinality of any right equivalence class in Sp relative to CP is p. Let
f and g be any two right equivalent functions relative to Cp. Then there exists
a oe¢ cp such that fo = g, Since f ¢ sp, £l exists. Let 1 = fof !, Since
f 1is a normalizer of Cp and since o € Cp, T e Cp. Then 1©f = (fof 1)f = fo = g.
Consequently, the cardinality of the strong equivalence class containing f relative
to Cp and Cp is p. We note that if f 1is a normalizer of Cp in Sp’ then fo
is also a normalizer of Cp in sp for every o ¢ Cp.

We claim that if f belongs to Sp and f 1s not normalizer of Cp in Sp,
then the cardinality of the strong equivalence class containing f relative to Cp

and Cp is 1. Let f and g be strongly equivalent functions, i.e., there exist

o and T in Cp such that fo = g and tf = g. Assume that f ¥ g. Then neither
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6 nor T 1is the identity, fo = tf and fcff—1 = T, Since o 1is not the identity,

1 ot Y (gor™ .. (gof™h = ot e C for 1=1.2,...p, i.e., fisanorm-

alizer of Cp in Sp' That is a contradiction. Hence, f = g, and the cardinality

foif

of the strong equivalence class containing f relative to Cp and Cp is 1.

We claim that if f € DD and f k Sp, then the cardinality of the strong equi-
valence class containing f relative to Cp and Cp is 1. First, we shall con-
sider the number |W| of weak equivalence classes in p° relative to Cp and Cp:
By using (3), we have

1 5P p(z,+z +...) p(z +...)
W =2 G+ -0 e b2 +(p-De P )lzymz,=...=0
P 5P 3z " 'p 172
Zl P
(20)
p-2

P +p-1.

Let ]§p| be the number of weak equivalence classes in Sp relative to Cp and Cp.

By (15), we have

5= 5 3L (P e
151 = 15 5+ (p—l)'ég;')(p (] + (p-1) (pz )1z =2,=...=0

1
(21)

% ((p-1)! + (p-1)D).

Since a one-to-one function can only be weakly equivalent to a one-to-one function and
since a non-one-to-one function can only be weakly equivalent to a non-one-to-one

= D
function, the number INI of weak equivalence non-one-to-one functions in D  re-

lative to C and C is
P P
I8} = [l - [5] = @P2+p-1 -% (-1 + (p-1)3). (22)

Applying our algorithm to the function fz € DD corresponding to a;; =8y, =

= = a

a; ees = 1, we have the weak equivalence class fz congisting of p func-

pl

tions corresponding to
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a1 =3 =333 = - =3, =L
a1y T 8y S a3 = ... =2, =1,
(23)
a, =a, =a, = ...=a =1,
1p  "2p  “3p PP
Not counting the weak equivalence class above, we still have lﬁ] - 1 weak

equivalence classes of non-one-to-one functions in DD. Since there are ]DDI - lSpI
= pP - p! non-one-to-one functions and since each weak equivalence class can have

its cardinality at most p2, the cardinality of each of these Iﬁ‘ - 1 weak equi-

valence classes is pz, because
- 2 - 2
p+ pPUNI-D = p+ P LGP 4+ p - 1) - 2 (-1 + -D1 - p® = pP - p1.

Similar to the proof in (a) with q = p, we may conclude that every strong
equivalence class of non-one-to-one functions relative to CP and Cp consists of
only one function.

We know that |DD| = pp, Ispl = p! and the cardinality of the normalizer of
C_ in Sp is p(p-1) (see 2.3 on p. 12 in [14]). Since the cardinality of the

P
strong equivalence class f containing the normalizer £ of Cp in S is p

P
and since every function in f is also a normalizer of CP in Sp’ there are p-1
strong equivalence classes each of which has cardinality p. Since every other

strong equivalence class has cardinality 1, the number of strong equivalence classes

in DD relative to Cp and Cp is

®P - p1) + (p! - p(p-1)) + (p-1) = pP = (p-1)7.
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