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ABSTRACT. We obtain all solutions of radial type for a class of singular partial
differential equations of even order. The essential operators here are elliptic or
ultrahyperbolic.
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1. INTRODUCTION.
This paper concerns solutions of type ™ for the class of partial differential
equations
P q 4, q
(L id)yuwu=(rt.LP)u=o0 1.1
T R .1
where p and ql,...,qp are positive integers and
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The iterated operators LJ.J are defined by the relations
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where x = (xl,...,xn) and y = (yl,...,ys) denote points in R" and Rs, respectively.
The operators Lj are elliptic or ultrahyperbolic with the sign positive or negative,
respectively. Equation (1.1) includes iterated forms of some well known classical
equations such as the Laplace equation, the wave equation, and the EPD and GASPT
equations. Many of these equations were studied by many authors in solving some
physical problems or extending known results [1-6].

Before we find solutions of type £ of equation (1.1), we note that if the

are ultrahyperbolic then, since the Llorentzian distance

r = x2 + (:i.y)2 = sz - y2 , 1=V-1

is not real for Ix! < Iyl, solutions of type ™ are valid only in the hyperconoidal

operators L

]

domain

D XD, = {x,y) | x ¢ D,yeD, ly] < |x|}

2 xi syl = Vyz + ...+ yi » and D and D define spherical

1 1

domains centered at the origin in R' and RS, respectively. We also note that,

where x| =Vx

since r = 0 on the hypercone

2 _ y2}

a(Dn X Ds) = {(x,y) | x ¢ D,yeD, x
solut ions of type ™ have singularities at the points of th;s hypercone surface.
In the case where the operators Lj are elliptic, the regularity domain of
solutions of r™ is a spherical domain centered at the origin in Rn+s' In this case,

there is only a singularity at r = 0. However, we shall see that equation (1.1)

has some polynomial solutions which are regular at all points.

2. SOLUTIONS OF TYPE r .

We first establish the following lemma.
LEMMA 1. Let ql,...,qp be any posiiive integers. Then

Ch L4 mo_omom o 2( 1 - 2k)
il ) (xr) = LU (m - 2[Q(P) - Q)] -

S@-2[Q(p) - Q)] - 2k + 20+ v, } (2@ o gy

3

where Q(j) = q, + ... +qj, 1<3j<p, and

1

S

26, =n+s -2+ a(j) +ZB§j) (2.2)
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PROOF. From the definition of L and r, we have

L ™ = [m@m + 20 + 7,1 2 (2.3)

Applying the operator Lj repeatedly on both sides of (2.3), we then obtain by

induction the result
q-1
9™ = T [(@m- 2k)(m - 2k + 26,) +v,] ™29 (2.4)
3 k=0 j j

Now replace j and q in (2.4) by p and qp, respectively, and apply in succession

the operators

q q
p-1 p-2 1
Lp_l , L Ty e Ly

on both sides of (2.4). By induction, we readily obtain formula (2.1).
Using Lemma 1, we can now prove
THEOREM 1. Let the index set I = {j = 1,2,...,p} be separated into three

parts IO’ Il and 12, such that

(Ge1, ¢> - v, =0}

1
0 h| J

[anl
]

. 2
N {JeI,¢j—Y.>0}

-
"

{jel ¢§ - y. <0}

Then, solution of the type u = " of equation (1.1) are given by the formula
q.-1 2[Q(P)-Q@)1- ¢ +2k

J
u@ = - [c(l) + cé?) log r]
jel, k=0 J
qJ—l 2[Q(p)-Q(j)]-¢j+2k W \/ @ \} 2
+ :Z: r [C r J
jeIl, k=0 kj kj
1
qj—l 2[Q(P)-Q(3) 1-9.+2k
+ :Z: A r ’ cos[ Vy. - ¢2 log r +w .] (2.5)
je1, k=0 k3 33 kj
where Céﬁ), Céj), ij and wkj are arbitrary constants.

PROOF. In Lemma 1, if we set

m - 2[Q(p) - Q)] - 2k = M, (2.6)
then (2.1) can be written as q.-1
p |
it J 2 m_zQ(P) 2.7
(J‘l L, )(r ) = J—l kEO [M(M + ¢j) + Yj] r )
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Since the roots of the algebraic equation

MM + 2¢j) + Yj =0 (2.8)
are M = - ¢j + V@? - 50 we have from (2.6) the roots for m as
(1) . \/ 2
= - - 2 -
™y 2[Q(p) - QD] ¢j + 2k + ¢j Y5
(2) . \/ 2
= - - 2k - -
oS 2[Q() - Q)] ¢j + 2k ¢j Y;
Thus, (2.7) can be written as
(j=l Lj ) (x) = L (m - ™ ) (m - ™ )T (2.9)

from which it is easily seen that, for j = 1,...,p and k = 0,...,q,-1, the functions
1) 2) ]
rmkj X

and r 3 satisfy the given equation. Since the given equation is 1linear,

the sum » q1.-1 mél) mliz)
€D ] 2) J
;; [ij r + ij r ] (2.10)

also satisfies (1.1).
If j € Il, then (2.8) has two distinct real roots. Thus, the corresponding

solution of (2.10) will be

qj-l 2[Q(p)—Q(j)J-¢j+2k V¢§-Yj ‘\[¢§-Yj
Z or [CS') r + cli?) r ] (2.11)
JeT, k=0 J J

If j € 12, then (2.8) has complex roots. By the properties

sy, - ¢? 1 Vy, - ¢§' log r

J J 2

r = e

2
= cos ( Yj - ¢j log r) * i sin ( Yj - ¢§ log r),

the corresponding solution of (2.10) will be

Z qj—l 2[Q(P)-Q(j)]‘¢j+2k
2
. cos[Vy.-¢, log r + ] (2.12)
7T, &0 g i3 g
1) 2) _ (1) 2) _ . .
where ij + ij = Akj cos wkj and ij ij = l‘xkj sin wkj‘
. ) .
If j € IO’ then (2.8) has double root mkj , that is,
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Do (2 ; _ O
my = my = 200 - Q) - ¢y + 2k = m

So the right hand side of (2.9) has the factors [m -

mé?)]z which itself and its

first derivative with respect to m are zero for m = mé?). Thus, each of the func-

tions

(0) (0)

mkj and é% (rm) [m=mé9) = rmkj log r
J

r

satisfies the given equation. Hence, the corresponding solution of (2.10) will be
qj-l 2[Q(p)~Q(j)]-¢j+2k

25: 2T lCé}) + Céﬁ) log r] (2.13)
jeI, k=0
0

Therefore, the sum of (2.11), (2.12), and (2.13) gives (2.5). Thus, the theorem
is proved.
REMARK 1. In the special case where Yj = 0, the algebraic equation (2.8) has
the root M = 0. In this case, since the values
mey = 2[Q(@) - QD] + 2
are nonnegative integers for j = 1,...,p and k = 0,...,qj—l, the functions

20e0) - Q)] + 2k

are homogeneous polynomial solutions of equation (1.1). From (2.5), we see that

it is not possible to obtain polynomial solutions for equation (i.l) in all cases

where Yj # 0. It is possible, however, if the following condition is satisfied.
If the algebraic equation (2.8) has integral roots MU for some j =V € I,

such that

ney, = 200 - QT + 2k + M 20
"ku

for k = 0,...,qU—1, then the functions r are homogeneous polynomials solutions

of equation (1.1). It is clear that the above inequality is always satisfied if

M > 0.
v

REMARK 2. From (2.5), we see that, if j € I_, that is, the algebraic equation

2
(2.8) has complex roots, equation (1.1) then has oscillatory solutions in the re-
gularity domain of its solutions.

THEOREM 2. All solutions of type u = f(r) for equation (l.1) can be expressed

by formula (2.5)
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PROOF. Consider operator (1.2). By direct calculation, it is easily verified

that
1+2¢, Y.
L,=£2-—+——J- 4,3 (2.14)
j 2 r dr 2
dr r
which is an Euler type operator. If we set r = et and D = é%, then we have
d -t d2 -2t , 2
— = e D and — = e (" - D)
dr 2
dr
Hence,
L(w)=e2t 0 +20D+7v.) u (2.15)
3 k| i
If we let Fj(D) = D2 + 2¢jD + Yj’ then (2.15) may be written as
L) = o2t Fy0) u (2.16)

From ordinary differential equations, we know that, for any polynomials with con-
stant coefficients G and H and for any constant o, the following relation is valid

-at

) {e™® HD) u} = ¢ G - ® HD) u. (2.17)

Considering the properties of (2.17) and applying the operator Lj repeatedly on

both sides of (2.16), we then obtain by induction the result

-1

q -2qt q

L: = I F,(D- 2k . 2,18
5 (u) =e oo ( )u . ( )

3

We remark that the product of the operators ? Fj(D) are commutative. Now re-
place j and q in (2.185 by p and qp, respectively, and apply in succession the op-

erators

q q q
1 -2 1
LP e 1)

on both sides of (2.18). By induction, we obtain the formula
q.-1

J
I F.(0-2k-2[Q(P)-Q)]) u (2.19)

P q
R - —2Q(p)t
CE yuse k=0 3

P
.I[1
j=1

Equating this last expression to zero, we obtain an ordinary differential equation
with constant coefficients and of order 2Q(p) = 2(q1 + ... + qp). The indical

equation for this equation is
q.-1
P ]

jI=11 kL[O Fym - 2k - 2[Q(P)-Q(3) D) = 0.
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Substituting m - 2k - 2[Q(p)-Q(j)] = M in this equation, we find
-1
43

P
I I MM + 2 .1 =0. 2.20
LA MM + ¢j) + YJ] ( )

J
This was obtained previously on the right hand side of (2.7). It is obvious that

the corresponding solution for this equation is given by (2.5).

We note that, if we substitute u = ™ in (2.19) then, by considering ™= emt

4 e-20®)E _ 200

an
p Y7t ot
I I F. (D -2k - 2[Q(P)-Q(3)]) e
j=1 k=0 -3
q.-1
S I T F (m- 2k - 200@-a(D D)
e 591 k=0 3 m Q(p)-Q@ s
we see that (2.19) reduces to (2.1).
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