

## SOLUTIONS OF TYPE $r^m$ FOR A CLASS OF SINGULAR EQUATIONS

ABDULLAH ALTIN

Faculty of Science  
University of Ankara  
Besevler, Ankara, TURKEY

(Received July 28, 1981)

**ABSTRACT.** We obtain all solutions of radial type for a class of singular partial differential equations of even order. The essential operators here are elliptic or ultrahyperbolic.

**KEY WORDS AND PHRASES.** Iterated elliptic or ultrahyperbolic equations, solutions of radial type, Lorentzian distance, hyperconoidal domain, homogeneous polynomial solutions, oscillatory solutions.

**1980 MATHEMATICS SUBJECT CLASSIFICATION CODES.** 35A08, 35J99, 35L99.

### 1. INTRODUCTION.

This paper concerns solutions of type  $r^m$  for the class of partial differential equations

$$\left( \prod_{j=1}^p L_j^{q_j} \right) u = \left( L_1^{q_1} \dots L_p^{q_p} \right) u = 0 \quad (1.1)$$

where  $p$  and  $q_1, \dots, q_p$  are positive integers and

$$L_j = \sum_{i=1}^n \left( \frac{\partial^2}{\partial x_i^2} + \frac{\alpha_i^{(j)}}{x_i} \frac{\partial}{\partial x_i} \right) \pm \sum_{i=1}^s \left( \frac{\partial^2}{\partial y_i^2} + \frac{\beta_i^{(j)}}{y_i} \frac{\partial}{\partial y_i} \right) + \frac{\gamma_j}{r^2}. \quad (1.2)$$

The iterated operators  $L_j^{q_j}$  are defined by the relations

$$L_j^{v+1} u = L_j^v [L_j^v(u)], \quad v = 1, \dots, q_j - 1.$$

In (1.2),  $\alpha_i^{(j)}$ ,  $i = 1, \dots, n$ ,  $\beta_i^{(j)}$ ,  $i = 1, \dots, s$ , and  $\gamma_j$  are any real parameters and

$$r^2 = \sum_{i=1}^n x_i^2 \pm \sum_{i=1}^s y_i^2 = x^2 \pm y^2 \quad (1.3)$$

where  $x = (x_1, \dots, x_n)$  and  $y = (y_1, \dots, y_s)$  denote points in  $R^n$  and  $R^s$ , respectively.

The operators  $L_j$  are elliptic or ultrahyperbolic with the sign positive or negative, respectively. Equation (1.1) includes iterated forms of some well known classical equations such as the Laplace equation, the wave equation, and the EPD and GASPT equations. Many of these equations were studied by many authors in solving some physical problems or extending known results [1-6].

Before we find solutions of type  $r^m$  of equation (1.1), we note that if the operators  $L_j$  are ultrahyperbolic then, since the Lorentzian distance

$$r = \sqrt{x^2 + (iy)^2} = \sqrt{x^2 - y^2}, \quad i = \sqrt{-1}$$

is not real for  $|x| < |y|$ , solutions of type  $r^m$  are valid only in the hyperconoidal domain

$$D_n \times D_s = \{(x, y) \mid x \in D_n, y \in D_s, |y| < |x|\}$$

where  $|x| = \sqrt{x_1^2 + \dots + x_n^2}$ ,  $|y| = \sqrt{y_1^2 + \dots + y_s^2}$ , and  $D_n$  and  $D_s$  define spherical domains centered at the origin in  $R^n$  and  $R^s$ , respectively. We also note that, since  $r = 0$  on the hypercone

$$\partial(D_n \times D_s) = \{(x, y) \mid x \in D_n, y \in D_s, x^2 = y^2\}$$

solutions of type  $r^m$  have singularities at the points of this hypercone surface.

In the case where the operators  $L_j$  are elliptic, the regularity domain of solutions of  $r^m$  is a spherical domain centered at the origin in  $R^{n+s}$ . In this case, there is only a singularity at  $r = 0$ . However, we shall see that equation (1.1) has some polynomial solutions which are regular at all points.

## 2. SOLUTIONS OF TYPE $r^m$ .

We first establish the following lemma.

LEMMA 1. Let  $q_1, \dots, q_p$  be any positive integers. Then

$$\left( \prod_{j=1}^p L_j^{q_j} \right) (r^m) = \prod_{j=1}^p \prod_{k=0}^{q_j-1} \{ (m - 2[Q(p) - Q(j)] - 2k) \cdot (m - 2[Q(p) - Q(j)] - 2k + 2\phi_j + \gamma_j) \} r^{m-2Q(p)}$$

$$\cdot (m - 2[Q(p) - Q(j)] - 2k + 2\phi_j + \gamma_j) r^{m-2Q(p)} \quad (2.1)$$

where  $Q(j) = q_1 + \dots + q_j$ ,  $1 \leq j \leq p$ , and

$$2\phi_j = n + s - 2 + \sum_{i=1}^n \alpha_j^{(i)} + \sum_{i=1}^s \beta_i^{(j)} \quad (2.2)$$

PROOF. From the definition of  $L$  and  $r$ , we have

$$L_j(r^m) = [m(m + 2\phi_j) + \gamma_j] r^{m-2} \quad (2.3)$$

Applying the operator  $L_j$  repeatedly on both sides of (2.3), we then obtain by induction the result

$$L_j^q(r^m) = \prod_{k=0}^{q-1} [(m - 2k)(m - 2k + 2\phi_j) + \gamma_j] r^{m-2q} \quad (2.4)$$

Now replace  $j$  and  $q$  in (2.4) by  $p$  and  $q_p$ , respectively, and apply in succession the operators

$$L_{p-1}^{q_{p-1}}, L_{p-2}^{q_{p-2}}, \dots, L_1^{q_1}$$

on both sides of (2.4). By induction, we readily obtain formula (2.1).

Using Lemma 1, we can now prove

**THEOREM 1.** Let the index set  $I = \{j = 1, 2, \dots, p\}$  be separated into three parts  $I_0$ ,  $I_1$  and  $I_2$ , such that

$$I_0 = \{j \in I, \phi_j^2 - \gamma_j = 0\}$$

$$I_1 = \{j \in I, \phi_j^2 - \gamma_j > 0\}$$

$$I_2 = \{j \in I, \phi_j^2 - \gamma_j < 0\}$$

Then, solution of the type  $u = r^m$  of equation (1.1) are given by the formula

$$\begin{aligned} u(r) = & \sum_{j \in I_0} \sum_{k=0}^{q_j-1} \frac{r^{2[Q(p)-Q(j)]-\phi_j+2k}}{[c_{kj}^{(1)} + c_{kj}^{(2)} \log r]} \\ & + \sum_{j \in I_1} \sum_{k=0}^{q_j-1} \frac{r^{2[Q(p)-Q(j)]-\phi_j+2k}}{[c_{kj}^{(1)} \frac{\sqrt{\phi_j^2 - \gamma_j}}{r} + c_{kj}^{(2)} \frac{-\sqrt{\phi_j^2 - \gamma_j}}{r}]} \\ & + \sum_{j \in I_2} \sum_{k=0}^{q_j-1} \frac{\lambda_{kj} r^{2[Q(p)-Q(j)]-\phi_j+2k}}{\cos[\sqrt{\gamma_j - \phi_j^2} \log r + \omega_{kj}]} \end{aligned} \quad (2.5)$$

where  $c_{kj}^{(1)}$ ,  $c_{kj}^{(2)}$ ,  $\lambda_{kj}$  and  $\omega_{kj}$  are arbitrary constants.

PROOF. In Lemma 1, if we set

$$m - 2[Q(p) - Q(j)] - 2k = M, \quad (2.6)$$

then (2.1) can be written as

$$\left( \prod_{j=1}^p L_j^{q_j} \right) (r^m) = \prod_{j=1}^p \prod_{k=0}^{q_j-1} [M(M + 2\phi_j) + \gamma_j] r^{m-2Q(p)} \quad (2.7)$$

Since the roots of the algebraic equation

$$M(M + 2\phi_j) + \gamma_j = 0 \quad (2.8)$$

are  $M = -\phi_j \pm \sqrt{\phi_j^2 - \gamma_j}$ , we have from (2.6) the roots for  $m$  as

$$m_{kj}^{(1)} = 2[Q(p) - Q(j)] - \phi_j + 2k + \sqrt{\phi_j^2 - \gamma_j}$$

$$m_{kj}^{(2)} = 2[Q(p) - Q(j)] - \phi_j + 2k - \sqrt{\phi_j^2 - \gamma_j}$$

Thus, (2.7) can be written as

$$\left( \prod_{j=1}^p L_j^q \right) (r^m) = \prod_{j=1}^p \sum_{k=0}^{q_j-1} (m - m_{kj}^{(1)}) (m - m_{kj}^{(2)}) r^{m-2Q(p)} \quad (2.9)$$

from which it is easily seen that, for  $j = 1, \dots, p$  and  $k = 0, \dots, q_j-1$ , the functions

$r^{m_{kj}^{(1)}}$  and  $r^{m_{kj}^{(2)}}$  satisfy the given equation. Since the given equation is linear,

the sum

$$\sum_{j=1}^p \sum_{k=0}^{q_j-1} [c_{kj}^{(1)} r^{m_{kj}^{(1)}} + c_{kj}^{(2)} r^{m_{kj}^{(2)}}] \quad (2.10)$$

also satisfies (1.1).

If  $j \in I_1$ , then (2.8) has two distinct real roots. Thus, the corresponding solution of (2.10) will be

$$\sum_{j \in I_1} \sum_{k=0}^{q_j-1} r^{2[Q(p)-Q(j)]-\phi_j+2k} [c_{kj}^{(1)} r^{\sqrt{\phi_j^2-\gamma_j}} + c_{kj}^{(2)} r^{-\sqrt{\phi_j^2-\gamma_j}}] \quad (2.11)$$

If  $j \in I_2$ , then (2.8) has complex roots. By the properties

$$\begin{aligned} r^{\pm i \sqrt{\gamma_j - \phi_j^2}} &= e^{\pm i \sqrt{\gamma_j - \phi_j^2} \log r} \\ &= \cos(\sqrt{\gamma_j - \phi_j^2} \log r) \pm i \sin(\sqrt{\gamma_j - \phi_j^2} \log r), \end{aligned}$$

the corresponding solution of (2.10) will be

$$\sum_{j \in I_2} \sum_{k=0}^{q_j-1} \lambda_{kj} r^{2[Q(p)-Q(j)]-\phi_j+2k} \cos[\sqrt{\gamma_j - \phi_j^2} \log r + \omega_{kj}] \quad (2.12)$$

where  $c_{kj}^{(1)} + c_{kj}^{(2)} = \lambda_{kj} \cos \omega_{kj}$  and  $c_{kj}^{(1)} - c_{kj}^{(2)} = i \lambda_{kj} \sin \omega_{kj}$ .

If  $j \in I_0$ , then (2.8) has double root  $m_{kj}^{(0)}$ , that is,

$$m_{kj}^{(1)} = m_{kj}^{(2)} = 2[Q(p) - Q(j)] - \phi_j + 2k = m_{kj}^{(0)}.$$

So the right hand side of (2.9) has the factors  $[m - m_{kj}^{(0)}]^2$  which itself and its first derivative with respect to  $m$  are zero for  $m = m_{kj}^{(0)}$ . Thus, each of the functions

$$r^{m_{kj}^{(0)}} \quad \text{and} \quad \frac{d}{dm} (r^m) \Big|_{m=m_{kj}^{(0)}} = r^{m_{kj}^{(0)}} \log r$$

satisfies the given equation. Hence, the corresponding solution of (2.10) will be

$$\sum_{j \in I_0} \sum_{k=0}^{q_j-1} r^{2[Q(p)-Q(j)]-\phi_j+2k} [c_{kj}^{(1)} + c_{kj}^{(2)} \log r] \quad (2.13)$$

Therefore, the sum of (2.11), (2.12), and (2.13) gives (2.5). Thus, the theorem is proved.

REMARK 1. In the special case where  $\gamma_j = 0$ , the algebraic equation (2.8) has the root  $M = 0$ . In this case, since the values

$$m_{kj} = 2[Q(p) - Q(j)] + 2k$$

are nonnegative integers for  $j = 1, \dots, p$  and  $k = 0, \dots, q_j-1$ , the functions

$$r^{2[Q(p) - Q(j)] + 2k}$$

are homogeneous polynomial solutions of equation (1.1). From (2.5), we see that it is not possible to obtain polynomial solutions for equation (1.1) in all cases where  $\gamma_j \neq 0$ . It is possible, however, if the following condition is satisfied.

If the algebraic equation (2.8) has integral roots  $M_j$  for some  $j = \nu \in I$ , such that

$$m_{kj} = 2[Q(p) - Q(j)] + 2k + M_j \geq 0$$

for  $k = 0, \dots, q_j-1$ , then the functions  $r^{m_{kj}}$  are homogeneous polynomials solutions of equation (1.1). It is clear that the above inequality is always satisfied if  $M_j \geq 0$ .

REMARK 2. From (2.5), we see that, if  $j \in I_2$ , that is, the algebraic equation (2.8) has complex roots, equation (1.1) then has oscillatory solutions in the regularity domain of its solutions.

THEOREM 2. All solutions of type  $u = f(r)$  for equation (1.1) can be expressed by formula (2.5)

PROOF. Consider operator (1.2). By direct calculation, it is easily verified that

$$L_j = \frac{d^2}{dr^2} + \frac{1+2\phi_j}{r} \frac{d}{dr} + \frac{\gamma_j}{r^2} \quad (2.14)$$

which is an Euler type operator. If we set  $r = e^t$  and  $D = \frac{d}{dt}$ , then we have

$$\frac{d}{dr} = e^{-t} D \quad \text{and} \quad \frac{d^2}{dr^2} = e^{-2t} (D^2 - D)$$

Hence,

$$L_j(u) = e^{-2t} (D^2 + 2\phi_j D + \gamma_j) u \quad (2.15)$$

If we let  $F_j(D) = D^2 + 2\phi_j D + \gamma_j$ , then (2.15) may be written as

$$L_j(u) = e^{-2t} F_j(D) u \quad (2.16)$$

From ordinary differential equations, we know that, for any polynomials with constant coefficients  $G$  and  $H$  and for any constant  $\alpha$ , the following relation is valid

$$G(D) \{e^{-\alpha t} H(D) u\} = e^{-\alpha t} G(D - \alpha) H(D) u. \quad (2.17)$$

Considering the properties of (2.17) and applying the operator  $L_j$  repeatedly on both sides of (2.16), we then obtain by induction the result

$$L_j^q(u) = e^{-2qt} \prod_{k=0}^{q-1} F_j(D - 2k) u. \quad (2.18)$$

We remark that the product of the operators  $\prod_j F_j(D)$  are commutative. Now replace  $j$  and  $q$  in (2.18) by  $p$  and  $q_p$ , respectively, and apply in succession the operators

$$L_{p-1}^{q_{p-1}}, L_{p-2}^{q_{p-2}}, \dots, L_1^{q_1}$$

on both sides of (2.18). By induction, we obtain the formula

$$\left( \prod_{j=1}^p L_j^{q_j} \right) u = e^{-2Q(p)t} \prod_{j=1}^p \prod_{k=0}^{q_j-1} F_j(D - 2k - 2[Q(p) - Q(j)]) u \quad (2.19)$$

Equating this last expression to zero, we obtain an ordinary differential equation with constant coefficients and of order  $2Q(p) = 2(q_1 + \dots + q_p)$ . The indicial equation for this equation is

$$\prod_{j=1}^p \prod_{k=0}^{q_j-1} F_j(m - 2k - 2[Q(p) - Q(j)]) = 0.$$

Substituting  $m - 2k - 2[Q(p)-Q(j)] = M$  in this equation, we find

$$\prod_{j=1}^p \prod_{k=0}^{q_j-1} [M(M + 2\phi_j) + \gamma_j] = 0. \quad (2.20)$$

This was obtained previously on the right hand side of (2.7). It is obvious that the corresponding solution for this equation is given by (2.5).

We note that, if we substitute  $u = r^m$  in (2.19) then, by considering  $r^m = e^{mt}$  and  $e^{-2Q(p)t} = r^{-2Q(p)}$  and

$$\begin{aligned} & \prod_{j=1}^p \prod_{k=0}^{q_j-1} F_j(D - 2k - 2[Q(p)-Q(j)]) e^{mt} \\ &= e^{mt} \prod_{j=1}^p \prod_{k=0}^{q_j-1} F_j(m - 2k - 2[Q(p)-Q(j)]), \end{aligned}$$

we see that (2.19) reduces to (2.1).

#### REFERENCES

1. ALMANSI, E. *Annali di Mathematica, serie II, III* (1890), pp. 1-59.
2. ALTIN, A. and YOUNG, E.C. *Some Properties of Solutions of a Class of Partial Differential Equations* (to appear).
3. ALTIN, A. *Some Expansion Formulas for a Class of Singular Partial Differential Equations*, *Proc. Amer. Math. Soc.*, 1982.
4. DIAZ, J.B. and YOUNG, E.C. *A Singular Characteristic Boundary Value Problem for the Euler-Poisson-Darboux Equation*, *Ann. di Mat. Pura ed Appl.*, IV 95, pp. 115-129 (1972).
5. MILES, E.P. and YOUNG, E.C. *Basic Sets of Polynomials for Generalized Beltrami and Euler-Poisson-Darboux Equations and Their Iterates*, *Proc. Amer. Math. Soc.* 18, (1967), pp. 981-986.
6. WEINSTEIN, A. *On a Class of Partial Differential Equations of Even Order*, *Annali di Mat.* 39, pp. 245-254 (1955).

## Special Issue on Space Dynamics

### Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/mpe/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

|                        |                 |
|------------------------|-----------------|
| Manuscript Due         | July 1, 2009    |
| First Round of Reviews | October 1, 2009 |
| Publication Date       | January 1, 2010 |

#### Lead Guest Editor

**Antonio F. Bertachini A. Prado**, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; [prado@dem.inpe.br](mailto:prado@dem.inpe.br)

#### Guest Editors

**Maria Cecilia Zanardi**, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; [cecilia@feg.unesp.br](mailto:cecilia@feg.unesp.br)

**Tadashi Yokoyama**, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; [tadashi@rc.unesp.br](mailto:tadashi@rc.unesp.br)

**Silvia Maria Giuliatti Winter**, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; [silvia@feg.unesp.br](mailto:silvia@feg.unesp.br)