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ABSTRACT. For any irrational number & let A({) denote the set of all accumulation
points of {z: 2=q(q€ - p), P € Z, q € Z~- {0}, p and q relatively prime}. In this
paper the following theorem of Lekkerkerker is proved in a short and elementary way:
The set A(£) is discrete and does not contain zero if and only if £ is a quadratic
irrational. The procedure used for this proof simultaneously takes care of a

theorem of Ballieu.
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1. INTRODUCTION.

This paper is easily readable by anyone familiar with the elements of continued
fractions, as far as Lagrange's theorem on the periodic representation of quadratic
irrationals. Throughout this paper, & denotes an irrational number which is repre-
sented by the regular continued fraction & = [bO’bl’bZ""] = [bo,bl,...,bn_l,En]
and A(E) stands for the set of all the real accumulation points of {z: z = q(q&-p),
peZ qec Z- {0}, p and q relatively prime}. Obviously, A(f) describes those
Dirichlet approximation qualities which occur infinitely often. Furthermore, for
any sequence (an) let H(an) denote the set of all its limit points and for x € R
and € > 0 set B(x,e) = (x - €, x + €). The main purpose of this paper is to give a

simple proof of the following theorem of Lekkerkerker [1] (cf. also [2])-
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The set A(§) is discrete and does not contain zero if and only if & is a
quadratic irrational.

The proof of the sufficient part of the theorem mainly depends on the irre-
ducible polynomial of £, whereas the necessary part is a consequence of the relation
between A(£) and the sequence (En) and simultaneously establishes the following

theorem of Ballieu [3]:

The set H(En) is finite and (£n) is bounded if and only *f & is a quadratic
irrational.

Finally for any quadratic irrational & we shall show how to evaluate A(§) in

an easy way.
2. BASIC FORMULAS.
In this section we state the formulas used in the sequel. Let A.n/Bn denote

the n~-th convergent of [bo’bl’bz""] where A.n and Bn are relatively prime. Set
P, = Bn/Bn-l and put Gn = Bn(BnE - Ah)' Then the following formulas hold for all
n eN : n

0’ _ (-1)
5 = (2.1)
n En+l + 1/pn

_1)n—1

6 =
n-1 pn + l/€n+l

2.2)

1+ vV 1+48 8
n n-1 n

£n+l = 26n -0 (2.3)

PROOF. Equation (2.1) is an easy consequence of the well known identity
£ - A.n/Bn = (-l)n/(Bn(BnEn+1-+ Bnél»,formula (2.2) can be derived from (2.1) when
using the identities ﬁn = bn+ 1/5n+l and P, = bn + llpn_l and, finally, (2.3) can
be obtained when combining (2.1) and (2.2).

3. PROOF OF LEKKERKERKER'S THEOREM.

(1) Suppose & is a quadratic irrational. There exists an indefinite quadratic
form f(x,y) = ax2 + bxy + cy2 with a,b,c € Z and £(§,1) = 0. If Z denotes the
algebraic conjugate of & then if follows by Vieta's theorem that

f(p,q) = a(p - q8)(p - q2) = aq(q€ - p)(C - p/q) (3.1)

for all (p,q) ¢ Z x(Z- {0}) which implies that
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- p) = —L(9)
a(q€ - p) N AT (3.2)

When using the notation Z= {(x,7): %,y e Z, y# 0, x and y relatively prime}
equation (3.2) implies that
£(Z

a(c -8’ (.3

A(E) <

since if (pn,qn) e Z with n13mm qn(qng - p) € A(E) then nlynOD pn/qn = g. Clearly,
f(Z) < Z and we conclude that A({) is discrete. Now from (3.1) we can see that
f(p,q) # 0 for all (p,q) € Z and hence it follows by (3.3) that 0 ¢ A(§).

(ii) Suppose that A(§) is discrete and 0 ¢ A(£). From equation (2.1) we can
see that ]6n| < 1 for all n € N,. Therefore and since all the numbers § are
distinct, H(én) is a compact subset of A(£) and hence H(Gn) is finite and 0 ¢ H(Gn).
Now by (2.3) it is easy to see that H(&n) is finite and (En) is bounded. Therefore,

in order to complete the proof, it suffices to prove Ballieu's theorem.

4. PROOF OF BALLIEU'S THEOREM.

(1) Suppose that (En) is bounded and H(&n) is finite, say H(En) = {zl,...,zm}.

It follows from the identity En = [bn’b ] that there exists a k € N such that

RERER
bn < k for all n € N, and hence bn +1/k < &n < bn +1-1/(k +1). Therefore, the

set H(En) n Z is empty and we can find a number € > 0 such that the sets B(zv,e)
are pairwise disjoint and contained in R -Z.
Let I(z) denote the greatest integer not exceeding z and for z ¢ Z put

1(z) = (z - I(z))-l. Clearly, En = T(&n) for all n e N Also the function T is

+1 0°

continuous on H(En), therefore T(H(En)) c H(En) and we can find a §, 0 < § < ¢,

such that T(B(zv,é)) c B(T(zv),s) for all v € {1,...,m}. There exists a number n

m
such that En € B(zl,d) and En € \_} B(zv,é) for all n 2 n_. Therefore, when
o v=1

®) for the p-th composition map of T, we obtain by induction that

®

writing T

€ B(T (zl),é) for all p e N Since T(H(&n)) c H(gn) and H(En) is finite,

)

3
n +p

the sequence (T(p)(zl)), P eN

0
is periodic. From the identities bno = I(£no +p

), P eimo, is periodic and thus,

0’

= I(T(p)(zl)) we conclude that the sequence (bn +
o TP

by Lagrange's theorem, £ is a quadratic irrational.

(ii) The other direction of Ballieu's theorem is an easy consequence of
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Lagrange's theorem.

5. CONCLUDING REMARKS.

The inclusion in (3.3) is actually an equality. In order to prove this, we
need the following well known theorem (cf. [4], p. 22-23):

Let f(x,y) be an indefinite quadratic form with integer coefficients and let
¢ be one of its roots. Then for any pair (p,q) € Z X(Z -{0}) there are infinitely
many relatively prime integers P> 9, such that f(pn,qn) = f(p,q) for all n ¢ W
and nl;mOU (qn€ - p) = 0.

In fact, this result combined with (5) and (6), leads to the following:

THEOREM. Suppose that & is a quadratic irrational, say f(£,1) = 0 for some
indefinite quadratic form f(x,y) with integer coefficients. Moreover, let ¢ be

the algebraic conjugate of £. Then
£(2)

AR = fToc B ¢
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