

SHORT PROOFS OF THEOREMS OF LEKKERKERKER AND BALLIEU

MAX RIEDERLE

Eberhardstr. 14
79 Ulm/Donau
West Germany

(Received October 16, 1981)

ABSTRACT. For any irrational number ξ let $A(\xi)$ denote the set of all accumulation points of $\{z: z = q(q\xi - p), p \in \mathbb{Z}, q \in \mathbb{Z} - \{0\}, p \text{ and } q \text{ relatively prime}\}$. In this paper the following theorem of Lekkerkerker is proved in a short and elementary way: The set $A(\xi)$ is discrete and does not contain zero if and only if ξ is a quadratic irrational. The procedure used for this proof simultaneously takes care of a theorem of Ballieu.

KEY WORDS AND PHRASES. Lekkerkerker's Theorem, Approximation of numbers, Quadratic Irrationals.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 10F05, 10F35.

1. INTRODUCTION.

This paper is easily readable by anyone familiar with the elements of continued fractions, as far as Lagrange's theorem on the periodic representation of quadratic irrationals. Throughout this paper, ξ denotes an irrational number which is represented by the regular continued fraction $\xi = [b_0, b_1, b_2, \dots] = [b_0, b_1, \dots, b_{n-1}, \xi_n]$ and $A(\xi)$ stands for the set of all the real accumulation points of $\{z: z = q(q\xi - p), p \in \mathbb{Z}, q \in \mathbb{Z} - \{0\}, p \text{ and } q \text{ relatively prime}\}$. Obviously, $A(\xi)$ describes those Dirichlet approximation qualities which occur infinitely often. Furthermore, for any sequence (a_n) let $H(a_n)$ denote the set of all its limit points and for $x \in \mathbb{R}$ and $\varepsilon > 0$ set $B(x, \varepsilon) = (x - \varepsilon, x + \varepsilon)$. The main purpose of this paper is to give a simple proof of the following theorem of Lekkerkerker [1] (cf. also [2]).

The set $A(\xi)$ is discrete and does not contain zero if and only if ξ is a quadratic irrational.

The proof of the sufficient part of the theorem mainly depends on the irreducible polynomial of ξ , whereas the necessary part is a consequence of the relation between $A(\xi)$ and the sequence (ξ_n) and simultaneously establishes the following theorem of Ballieu [3]:

The set $H(\xi)$ is finite and (ξ_n) is bounded if and only if ξ is a quadratic irrational.

Finally for any quadratic irrational ξ we shall show how to evaluate $A(\xi)$ in an easy way.

2. BASIC FORMULAS.

In this section we state the formulas used in the sequel. Let A_n/B_n denote the n -th convergent of $[b_0, b_1, b_2, \dots]$ where A_n and B_n are relatively prime. Set $\rho_n = B_n/B_{n-1}$ and put $\delta_n = B_n(B_n\xi - A_n)$. Then the following formulas hold for all $n \in \mathbb{N}_0$:

$$\delta_n = \frac{(-1)^n}{\xi_{n+1} + 1/\rho_n} \quad (2.1)$$

$$\delta_{n-1} = \frac{(-1)^{n-1}}{\rho_n + 1/\xi_{n+1}} \quad (2.2)$$

$$\xi_{n+1} = \frac{1 + \sqrt{1 + 4\delta_n\delta_{n-1}}}{2\delta_n} (-1)^n. \quad (2.3)$$

PROOF. Equation (2.1) is an easy consequence of the well known identity $\xi - A_n/B_n = (-1)^n/(B_n(\xi_{n+1} + 1/\rho_n))$, formula (2.2) can be derived from (2.1) when using the identities $\xi_n = b_n + 1/\xi_{n+1}$ and $\rho_n = b_n + 1/\rho_{n-1}$ and, finally, (2.3) can be obtained when combining (2.1) and (2.2).

3. PROOF OF LEKKERKERKER'S THEOREM.

(i) Suppose ξ is a quadratic irrational. There exists an indefinite quadratic form $f(x, y) = ax^2 + bxy + cy^2$ with $a, b, c \in \mathbb{Z}$ and $f(\xi, 1) = 0$. If ζ denotes the algebraic conjugate of ξ then it follows by Vieta's theorem that

$$f(p, q) = a(p - q\xi)(p - q\zeta) = aq(q\xi - p)(\zeta - p/q) \quad (3.1)$$

for all $(p, q) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$ which implies that

$$q(q\xi - p) = \frac{f(p,q)}{a(\zeta - p/q)} . \quad (3.2)$$

When using the notation $\tilde{Z} = \{(x,y) : x, y \in \mathbb{Z}, y \neq 0, x \text{ and } y \text{ relatively prime}\}$

equation (3.2) implies that

$$A(\xi) \subset \frac{f(\tilde{Z})}{a(\zeta - \xi)} , \quad (3.3)$$

since if $(p_n, q_n) \in \tilde{Z}$ with $\lim_{n \rightarrow \infty} q_n(q_n\xi - p) \in A(\xi)$ then $\lim_{n \rightarrow \infty} p_n/q_n = \xi$. Clearly, $f(\tilde{Z}) \subset \mathbb{Z}$ and we conclude that $A(\xi)$ is discrete. Now from (3.1) we can see that $f(p,q) \neq 0$ for all $(p,q) \in \tilde{Z}$ and hence it follows by (3.3) that $0 \notin A(\xi)$.

(ii) Suppose that $A(\xi)$ is discrete and $0 \notin A(\xi)$. From equation (2.1) we can see that $|\delta_n| \leq 1$ for all $n \in \mathbb{N}_0$. Therefore and since all the numbers δ_n are distinct, $H(\delta_n)$ is a compact subset of $A(\xi)$ and hence $H(\delta_n)$ is finite and $0 \notin H(\delta_n)$. Now by (2.3) it is easy to see that $H(\xi_n)$ is finite and (ξ_n) is bounded. Therefore, in order to complete the proof, it suffices to prove Ballieu's theorem.

4. PROOF OF BALLIEU'S THEOREM.

(i) Suppose that (ξ_n) is bounded and $H(\xi_n)$ is finite, say $H(\xi_n) = \{z_1, \dots, z_m\}$. It follows from the identity $\xi_n = [b_n, b_{n+1}, \dots]$ that there exists a $k \in \mathbb{N}$ such that $b_n \leq k$ for all $n \in \mathbb{N}$, and hence $b_n + 1/k \leq \xi_n \leq b_n + 1 - 1/(k+1)$. Therefore, the set $H(\xi_n) \cap \mathbb{Z}$ is empty and we can find a number $\varepsilon > 0$ such that the sets $B(z_v, \varepsilon)$ are pairwise disjoint and contained in $\mathbb{R} - \mathbb{Z}$.

Let $I(z)$ denote the greatest integer not exceeding z and for $z \notin \mathbb{Z}$ put $\tau(z) = (z - I(z))^{-1}$. Clearly, $\xi_{n+1} = \tau(\xi_n)$ for all $n \in \mathbb{N}_0$. Also the function τ is continuous on $H(\xi_n)$, therefore $\tau(H(\xi_n)) \subset H(\xi_n)$ and we can find a δ , $0 < \delta < \varepsilon$, such that $\tau(B(z_v, \delta)) \subset B(\tau(z_v), \varepsilon)$ for all $v \in \{1, \dots, m\}$. There exists a number n_0 such that $\xi_{n_0} \in B(z_1, \delta)$ and $\xi_n \in \bigcup_{v=1}^m B(z_v, \delta)$ for all $n \geq n_0$. Therefore, when writing $\tau^{(p)}$ for the p -th composition map of τ , we obtain by induction that $\xi_{n_0 + p} \in B(\tau^{(p)}(z_1), \delta)$ for all $p \in \mathbb{N}_0$. Since $\tau(H(\xi_n)) \subset H(\xi_n)$ and $H(\xi_n)$ is finite, the sequence $(\tau^{(p)}(z_1))$, $p \in \mathbb{N}_0$, is periodic. From the identities $b_{n_0} = I(\xi_{n_0} + p) = I(\tau^{(p)}(z_1))$ we conclude that the sequence $(b_{n_0 + p})$, $p \in \mathbb{N}_0$, is periodic and thus, by Lagrange's theorem, ξ is a quadratic irrational.

(ii) The other direction of Ballieu's theorem is an easy consequence of

Lagrange's theorem.

5. CONCLUDING REMARKS.

The inclusion in (3.3) is actually an equality. In order to prove this, we need the following well known theorem (cf. [4], p. 22-23):

Let $f(x, y)$ be an indefinite quadratic form with integer coefficients and let ξ be one of its roots. Then for any pair $(p, q) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$ there are infinitely many relatively prime integers p_n, q_n such that $f(p_n, q_n) = f(p, q)$ for all $n \in \mathbb{N}$ and $\lim_{n \rightarrow \infty} (q_n \xi - p) = 0$.

In fact, this result combined with (5) and (6), leads to the following:

THEOREM. Suppose that ξ is a quadratic irrational, say $f(\xi, 1) = 0$ for some indefinite quadratic form $f(x, y)$ with integer coefficients. Moreover, let ζ be the algebraic conjugate of ξ . Then

$$A(\xi) = \frac{f(\tilde{z})}{f(1, 0)(\zeta - \xi)} .$$

REFERENCES

1. LEKKERKERKER, C.G. Una questione di approssimazione diofantea e una proprietà caratteristica dei numeri quadratici I, II. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. 21 (1956) 179-185, 257-262.
2. JURKAT, W.B. and PERERIMHOFF, A. Characteristic approximation properties of quadratic irrationals, Intern. J. of Math. and Math. Sci. 1 (1978) 479-496.
3. BALLIEU, R. Sur des suites de nombres liées à une fraction continue régulière, Acad. Roy. Belg. Bull. Cl. Sci. 29 (1943) 165-174.
4. CASSELS, J.W.S. An Introduction to Diophantine Approximation. Cambridge Univ. Press, Cambridge, 1965.
5. PERRON, O. Die Lehre von den Kettenbrüchen. Teubner Verlag, Stuttgart, 1954.

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	February 1, 2009
First Round of Reviews	May 1, 2009
Publication Date	August 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Department of Physics, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk