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ABSTRACT. Let Al’ A2 be commutative semisimple Banach algebras and Al 03 A2 be

their projective tensor product. We prove that, if Al 08 Az is a group algebra
(measure algebra) of a locally compact abelian group, then so are Al and A2. As a
consequence, we prove that, if G is a locally compact abelian group and A is a
commutative semi-simple Banach algebra, then the Banach algebra Ll(G,A) of A-valued
Bochner integrable functions on G is a group algebra if and only if A is a group
algebra. Furthermore, if A has the Radon-Nikodym property, then the Banach algebra
M(G,A) of A-valued regular Borel measures of bounded variation on G is a measure
algebra only if A is a measure algebra.
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1. INTRODUCTION.

Let A be a commutative Banach algebra. We shall say that A is a group algebra
(measure algebra) if A is isometrically isomorphic to Ll(G) (M(G)) for some locally
compact abelian group G. Let G be a locally compact abelian group and A be a com-
mutative semi-simple Banach algebra. The space Ll(G,A) of A-valued Bochner inte-
grable functions on G becomes a commutative Banach algebra (see [1], [2] and [3]).

A natural question arises: when is Ll(G,A) a group algebra? If A = Ll(H) for some
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locally compact abelian group H, then it is well known (Theorem 3.2 ot [3])

that Ll(G,A) is isometrically isomorphic to Ll(G x H). Thus Ll(G,A) is a group
algebra if A is a group algebra. We shall prove that the converse is also true.
There is another way of léoking at this problem. It is known that Ll(G,A) is iso-

metrically isomorphic to Ll(G) Ga A (see 6.5 of [4]). Thus, if A and A, are group

1

algebras, then so is Al 88 A2. Conversely, we shall show that, if Al and A2 are

two commutative Banach algebras and Al @a A2 is a group algebra, then so are Al

and A2. It seems proper to remark that we are concluding properties for Al and A2,
assuming corresponding properties for Al Ga A2. This is in contrast to the apprcach
of Gelbaum [5] and [6]. Our result for Ll(G,A) readily follows from this. The

main tool in our investigation is a theorem of Rieffel [7] characterizing group

algebras. In this paper, Rieffel also characterized measure algebras. Accordingly,

we investigate whether the fact that A, 8, A, is a measure algebra implies that A

1 73 2 1

and A2 are measure algebras. We shall show that this is indeed the case. As a
consequence, we shall show that, if A is a commutative Banach algebra having the
Radon Nikodym property and M(G,A) is the Banach algebra of A-valued regular Borel
measures of bounded variation on G, then M(G,A) is a measure algebra only if A is
a measure algebra.
2. PRELIMINARIES.

Let E and F be Banach spaces. The projective tensor product of E and F (see
[8]) is denoted by E Ba F. Every element t ¢ E Ga F can be expressed as

oc 0
(-3
i

e, 8 f., with each e, ¢ E and f, € F, such that z: [le.ll I£:]] < =. The
-1 & i i i iz1 i i
norm of t is given by

lelly= sne (2 (legll gl e = Tey0g),
where the infimum is taken over all possible expressions of t.

Let f ¢ E*, g ¢ F*, and t ¢ E 8, F with t = e, 8 f,. We define
i=1

9
fots= E: ffe Yf. and go t = z: g(f.)e,. The series defining f o t and g o t
1 1oL T i’7i
converge because E: ”eiH HfiH < e, It is obvious that ]}f o tH £||fH Ihlland

1
Hg o t“ < ilgH ]itH. The norms here, as well as elsewhere, -« fer to the norms
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in the spaces containing the elements. t >~ go t and t >~ f o t define bounded

linear maps from E 83 F to E and E 83 F to F, respectively. These maps will be

frequently used in the sequel.
Let (S,Z,)) be a measure space and X be a Banach space. Ll(S,X) denotes the
Banach space of X-valued functions integrable with respect to A. We shall often

use the fact that Ll(S) ®, X is isometrically isomorphic to Ll(S,X).

3

Gelbaum [5] and Tomiyama [9] have shown that, if A and B are commutative

Banach algebras, then A 8, B forms a commutative Banach algebra whose maximal ideal

3
space is homeomorphic to the cartesian product of the maximal ideal spaces of A

and B. The maximal ideal space of a commutative Banach algebra A will be denoted
by A(A). An element of A(A) will be regarded as a multiplicative linear functional
(m.1.f.) of A. All the Banach algebras in our discussion will be taken to be com-

mutative and semisimple. It is proved in [6] that A 8, B has an identity if and

3
only if both A and B have identities. It is also known [6] that A 83 B is Tauber-
ian if A and B are Tauberian. The following lemma, though simple, does not seem
to have appeared in print.

LEMMA 2.1. 1If A Ga B is Tauberian, then so are A and B.

PROOF. Let us show that B is Tauberian. It can be shown in the same way that
A is Tauberian. Let b ¢ B and ¢ > 0, Take ¢ ¢ A(A) and a € A such that ¢(a) = 1.
Let t = a 8 b. Choose s € A ea B such that § has compact support K and Hs—t“ < €.

Let Kl ={y ¢ AB): (¢,¥) € K}. Then Kl is compact. Let x = ¢ o s. Then X is

supported in Kl and
Hb—x“ =|l¢ot - ¢os|| = ]h -s]| <e.
This proves that B is Tauberian.
Let (S,L) be a measurable space and X be a Banach space. Let u be an X-valued
set function on X. The total variation V(M) of y is defined for any E c S as

follows.

n
V(W) (E) = Sup {§:|lu(Ei)H: E;'s disjoint, E; < E for i <{ < n},
1

the supremum being taken for all possible choices of Ei’s.
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An X-valued measure on (S,X) is a countably additive set function from I into
X. p is said to be of bounded variation if V(p) is finite. The space E(S,Z,X) of
X-valued measures of bounded variation on S forms a Banach space under the norm
[lully = vaw (s).

Let X be a positive measure on (S,I) and Ll(S,X) be the Banach space of X-
valued functions on S, integrable with respect to A, If F € Ll(S,X), then we can
define the mapping Up? L > X by uF(E) = £ F dA. Then Hp is an X~valued measure
of bounded variation on S. Let p € M(S,Z,X). We say that p has the derivative F
with respect to A if U equals uF for F € Ll(S,X). We say that X has the Radon-
Nikodym property (X has RNP) if every X-valued measure | of bounded variation on
an arbitrary measurable space (S,L) has a derivative with respect to V(p). If X is
separable and the dual of a Banach space or is reflexive, then X has RNP (see [10]
and [11]). An example of a separable Banach space which does not have RNP is
110,11 (see [12D).

Let G be a locally compact abelian group and let A be a commutative Banach
algebra. M(G,A) denotes the Banach space of A-valued regular Borel measures of
bounded variation on G. Suppose the range of every uy € M(G,A) is separable. This
is true if A has RNP or if G is second countable. Under these conditions, we can
define the convolution of measures p and v belonging to M(G,A). This makes M(G,A)
a commutative Banach algebra (see [13]). The algebra Ll(G,A) is an ideal in M(G,A)
(see [14]). There is a natural isometric isomorphism from M(G) Oa A into M(G,A)
(Theorem 4.2 of [15]). This is a Banach algebra isomorphism and, if A has RNP,
then it is onto (Theorem 4.4 of [15]).

Let A be a commutative and semisimple Banach algebra and m ¢ A(A). Let
Po= {aeA: m(a) =||m|l [|al|}. Then P is a cone in A and therefore introduces
an order in A. Let R = {a-b: a,b ¢ Pm}° m is said to be L'-inducing if the
following conditions are satisfied:

@ |lal|=1.

(2) Pm is a lattice.

(3) IfabeR andaAb=0, then ||a+b|| = ||a-b

[
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(4) 1f a € A, then there exists unique elements, a, a, € Rm’ such that

2

a = al + 1 az.
(5) Let |a| = vi{Re (e ¥ a): 6 ¢ [0,21]}. Then |la||=|| |a] ||.
[V and A respectively denote supremum and infimum. Re (a) = a; where

a=a +1ia € Rm]. We note that if (1) - (3) hold, then Rm forms a real ab-

1 20 %4
stract L-space in the sense of Kakutani [16], and hence Rm is a boundedly complete
lattice (see page 35 of [7]). Therefore, |a| is well defined.

In [7), a L'-inducing m.1l.f. is defined to be a m.1l.f. which satisfies the
following condition in addition to (1) - (5).

(6) For a,b € A, |a.b| < |a| * |b].

However, White [17] has shown that a m.1l.f. satisfying (1) - (5) automatically
satisfies (6), and hence our definition is equivalent to that of [7]. We now
state Rieffel's characterization of a group algebra.

THEOREM Rl' Let A be a commutative semisimple Banach algebra. A is a group
algebra if and only if

(a) every m.1.f. of A is L'~inducing, and

(b) A 1is Tauberian.

Let A be a commutative semisimple Banach algebra and let D be the collection
of L'-inducing m.1.f.'s of A. Consider the w*-topology on D. A continuous function
p on D is said to be a D-Eberlein function if there exists a constant k > 0 such
that for any choice of points ml,...,mn of D and scalars al,...,an; we have

n n '
I3 oy pp | < kellF oy myll 4
The following theorem of Rieffel characterizes a measure algebra.

THEOREM R2. Let A be a commutative Banach algebra and let D be the set of L'-
inducing m.1.f.'s of A. Then A is a measure algebra if and only if

(1) D is a separating family of linear functionals of A,

(ii) D is 1locally compact in the w*-topology, and

(iii) every D-Eberlein function is the restriction to D of the Gelfand trans-

form of some element of A.
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The 'if' part is nothing but Theorem B of [7]. The 'only if' part follows
from the following and the familiar properties of Fourier-Stieltjes transforms.

PROPOSITION 2.1. The L'-inducing m.l.f.'s of M(G) are precisely those that
are given by I', the dual of G.

PROOF. Let S be the structure semigroup of M(G) (see 4.3 of [18]). M(G) can
be identified (3.2 of [18]) with a weak*-dense subalgebra of M(S). Under this
identification, the m.l.f.'s of M(G) are given by §, the collection of semicharact-
ers of S. Let f € §. Then, using the arguments of Proposition 2.5 of [7] (see
also Proposition 2.8 of [7]), we can prove that f represents an lL'-inducing m.l.f.

if and only if f(s)| = 1 for all s € S. By 4.3.3 of [18], 1f « oy Ify = 1} is

the canonical image of I' in S. This proves our proposition.

3. MAIN RESULT.
Our main result is the following theorem. All other results are derived as a
consequence of this.
THEOREM 3.1. Let Al’AZ

A= Al 83 A7. Let ", ~ “(a) be given by (i,,) for ¢ L(Al) and . « 2(A,). Then n

be commutative semisimple Banach algebras and

is L'-inducing if and only if ; and . are L'-inducing.
PRUOF. Suppose 1 is L'-inducing. We shall show that ; satisfies (1) - (5)
for § to be L'-inducing. Since 1 = n;;=s || |jv) € 1, if follows that

W9 =ivil=1. Let P ={t e A: n(t) = |jtj}and P, = {re A a(r) = iril . Choose
¢

a fixed s ¢ A, such that u(s) = llsii= 1. Let t € Pﬂ and r = , o t. Then

p(r) = ¢(y o t) =n(t) = HtH = Nq:. Therefore, r ¢ P¢. On the other hand, if
i

r - P, then 1(r 8s) = ¢(r)v(s) = o(r) = lirjl = [[r]| [;sj;=r@s; and sor8scP.

Thus we have shown that, if € Aand t, 2 t then 4 o t

tl’tZ 1 29 2y o t, and, if

1

€ A and r. = T then r. 8 s 2 r_ O s.

Tt 1 17 T 1 2

Now, let r»r, < P:. Then it is easy to see that rl \ r, =

) ((rl 8 s) v (r, 8 s)) and r, AT, =4 o0 ((r1 8 s) A (r, 8s)). For example, if

r=,o0 ((rl ® s) v (r? ® s)), then, since (r1 8 s) v (r, 8s) - r, ® s, il follows

On the other hand, if r' > r and r' > r,, then

that r » r.. Similarly, r - r | )

1 2°
r' 9s 2 r es and r' ® s > r, 8 s, Therefore, r' - r. Note that r, Vo, aud
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r, A r, depend only on r and r, and not on s. Therefore, P¢ is a lattice. We

can also see that (rl v r2) ® s = (rl ® s) Vv (r2 ® s) and (rl A r2) 8 s = (rl 8 s)

(r

2 8 s). For example, it is obvious that (r1 v r2) 8 s > (r1 8 s) v (r, ® s) and

furthermore,
]|(rl v, 8s - (rl 8s) v (r,® s)||

=n [(r1 Vr)8s-(r;8s)Vv (r,8s)]

1
= ¢ [rl v t, - Y o ((rl ® s) Vv (r2 8 s))] = 0.

Next, if t ¢ Rn and r ¢ R¢, then y o t ¢ R¢

relations are true for r. Vr, and r, A r, for r
12 17 "2 1’52

and r 8 s € R.. Moreover, all the above

r, € R

®° 1’72 0
8 s € Rrl and (rl 8 s) A (r2 ® s) = 0. Therefore,

€ R Now, let r

and r, A r, =0, Then r, 8 s, r

1 2 1 2

Hr 8s+r 8 s|=|r, 8s-1r 8 sr, and hence ||r, + r H=|r -r !L Hence ¢ sat-
1 2 1 | TR LA

2 2

isfies (3).

Suppose now that r ¢ A/, Then r 8 s ¢ Aand r 8 s = t, + it2, with tltz € Rh'

1 1
Then r = y o (r ®s) =y o tl +1ivyo t2. Also, if r = r, + ir2 =1, + irA for
r, € R¢, then r 8 s = T ® s + 1 r, ® s = ry ® s + 1 T, 8 s. Therefore,
rl o s = r3 o s and r2 ® s = rA ® s, Hence, r, = r3 and r, = ra. We have also

shown that(Re r)@ s = Re (r 8 s). Thus ¢ satisfies (4). We now show that ¢ satis-
fies (5). Let r ¢ Al. First, we show that |r| = ¢ o |r 8 s| and |r ® s| = ]r!@s.
We have

Y o ]r 2] s] - Re (eier) =y o fr 2] sl - ¢ o (Re (eio r 8 s))

=y o [[r®s| -Re (eia r ®s)],

for every 08 € [0,27m]. Therefore, { o }r 23 sl 2 ]rl. On the other hand,
|r] = Re (eie r). Hence |r| 8 s > Re (eie r) 8 s = Re(eie (r 8 s)). Therefore,
[r] @ s > |r @ s|, so that |r| 2 { o |r 8 s|. Thus we have |r| = yo |r 8 s].

Also, since |r| @ s z |r ® s|, we get

| irles-jres| || =nlir|8s- [resl]
=¢[|r] ~vo |res|]=o0.
Therefore, [r| @ s = |r @ s|. Now ||r|[=|[l| [Isl[=lir @ si/=|| [r & s| |[= [| |z] & |-
I iel 1l Usll =1l irl ||. This proves that ¢ satisfies (5). Hence ¢ is L'-inducing.

[

We can show similarly that y is L'-inducing.
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Conversely, suppose ¢ and Y are L'-inducing. We shall show that N is L'-indu-

cing. It is obvious that ||n|| = 1. Since ¢ is L'-inducing m.1.f. of A , by Propo-

1'
sition 2.3 of [7], there exists a locally compact Hausdorff space X and a positive

regular Borel measure U on X such that A, is isometrically linear isomorphic and,

1

under the order induced by ¢, order isomorphic to Ll(X,u). The dual of Al is then

represented by L®(X,u) and, under this representation, ¢ is represented by the con-
.1 L1 _

stant function ||¢|| = 1 on X, Now, Al 83 A2 = L (X,n) Oa A2 = L (X,u,Az). Hereaf:

ter, we shall not distinguish between elements of A and Ll(x,u,Az) and, for

F e Ll(X,M,Az), statements like "F € A" will be used without explanation. For

F € A, we observe that F ¢ % if and only if ¢ o F € P This 18 so, because

v
Fll 21l¢ o H| 2|W($ o F)|. We also have

[¥l| = fllmx)ll du(x) 2 |y [J F(x) du(x) ]|

= | Jw(r(x» du(x) |.

This shows that F € Pn if and only if F(x) € PW a.e. (). Let Fl,FZ € Pn.

Using the continuity and other properties of the lattice operations, it is easy to

prove that the function F, Vv F2 defined a.e. (M) by (F1 \ Fz)(x) = Fl(x) v F2(x),

1
belongs to Ll(x,u,Az) and consequently defines an element of Pn. This proves that

Pn is a lattice. Other details involved in showing that n is L'-inducing are also

now easy to verify and hence we omit them. This completes the proof of our Theorem.
Having proved our main theorem, we now proceed to give its consequences.
THEOREM 3.2. Let A1 and A, be commutative semisimple Banach algebras. Then

2

Al 83 A2 is a group algebra if and only if Al and A2 are group algebras.

PROOF. As mentioned in the introduction, it is well known that, if Al and A2
are group algebras, then so is Al 83 A2. The converse follows from Lemma 2.1,

Theorem Rl and Theorem 3.1.

The following is an immediate consequence of Theorem 3.2.

THEOREM 3.3. Let G be a locally compact abelian group and let A be a commu-
tative semisimple Banach algebra. ThenLl(G,A) is a group algebra iff A is a group

algebra.
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PROOF. The result follows from Theorem 3.2 and the fact that the Banach al-
gebras Ll(G,A) and Ll(G) Oa A are isometrically isomorphic.

THEOREM 3.4. Let A1 and A, be commutative semisimple Banach algebras and

2

A= Al Oa A2. If A is a measure algebra, then Al and A2 are measure algebras.

PROOF. Let D, D,, D, be the set of L'-inducing m.1l.f.'s of A, A, and A, re-

spectively. Theorem 3.1 implies that D = D, x D Since D satisfies condition

1 2°

1 and D2 also satisfy this condition.

Since D is locally compact in the w*-topology, Dl and D2 are also locally compact

in the w*-topology. It remains to show that A1 and A2 satisfy condition (iii) of

Theorem R2. We shall do this for A2, the case of A1 being similar. Since A is a

measure algebra, it has an identity. It follows that A1 and A2 have identities.

-Eberlein function. Define the function

(1) of Theorem R, it easily follows that D

Let e be the identity of A Let p be a D

1° 2
P on D by P(¢,¥) = p(¥). Obviously, P is continuous. Moreover,

n n n
|2 oy Pog. 00| = 120y p)] < k]l 2 ay vl Ay
However, for any a € AZ’
n n
<a, % ai qji> = <e © a, § ai(¢i’wi)>
n
< ”{ ai(¢i’wi)||A*|(a||'

n

Therefore, ll{ ay wi”A; < IQ ai(¢i,wi)HA*. This shows that P is a D-Eberlein funct-
ion and therefore there exists t ¢ A such that E(n) = P(n) for every t € A(A).
Choose ¢ € A(Al) and let b = ¢ o t. Then B(Y) = p(Y) for every y € A(A,)). This

shows that A, satisfies condition (iii) of Theorem R

2 and the proof of our theorem

2
is complete.

THEOREM 3.5. Let G be a locally compact abelian group and A be a commutative
semisimple Banach algebra having RNP. Then M(G,A) is a measure algebra only if A
is a measure algebra.

PROOF. The theorem follows from Theorem 3.4 and the fact that the algebras

M(G) Oa A and M(G,A) are isometrically isomorphic under the hypothesis of our

theorem.
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