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ABSTRACT. The representation of the Hardy-Lebesque space by means of the shift
operator is used to prove an existence theorem for a singular functional-differen-
tial equation which yields, as a corollary, the well known theory of Frobenius for
second order differential equations.
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1. INTRODUCTION.

Consider the singular functional-differential equation

m

Zzy"(Z) +zp(2)y' (2) + q(2)y(z) + 2. ai(Z)y(in) =0, |q
i=1

I\

1 (1.1)
where

[ee) [ee} o
- n - n - J .
p(z) = 2: az, q(z) = 2: bnz and ai(z) = 2: aijz , 1=1,2,...,m
n=0 n=0 j=0

are analytic functions in some neighborhood of the closed unit disk A=Az « ¢:
|z| < 1}.

We consider the problem of finding conditions for Equation (1.1) to have solu-

Sx

tions in the space HZ(A)’ i.e. the Hilbert space of functions f(z) = :E:a(n)zn-l
n=1

which are analytic in the open unit disk 4 = {z e ¢: |z| < 1} and satisfy the con-
00

dition :Z;la(n)lz < + x , We shall prove the following.
n=
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THEOREM. Let

k(k - 1) + a k + b0 =0 (1.2)

0
be the idicial equation of the unperturbed equation (1.1).

(i) 1f2k+a,-1=6= kl - k2 #+n, n=1,2,..., then Equation (1.1) has

0

two linearly independent solutions of the form:

k, k,
yl(z) =z "u(z) and Y2(2) =z “u(z),

where kl and k, are the roots of Equation (1.2) and u(z) belongs to HZ(A).

2

(11) 1If 2k + a; - 1=6= kl - k2 =0, i.e. k

only one solution of the form:

1= kZ’ then Equation (1.1) has

y(2) = Z5u(2),
where k is the double root of Equation (1.2) and u(z) belongs to HZ(A)'

(iii) If 2k + a; - 1=6-= kl - k2 =n, n=1,2,.,.., then EQuation (1.2) has

always a solution of the form:
y(@) = 2,
where kl is the greatest root of Equation (1.2) and u(z) belongs to HZ(A)'

This theorem obviously generalizes the well known Frobenius theory [1] for the
Fuchs differential equations:

227" (@) + 2p(2)y' (2) + a(2)y(2) = 0,
which is a particular case of Equation (1.1).

Denote an abstract separable Hilbert space over the complex field by H, the
Hardy~Lebesque space by HZ(A)’ an ortho-normal basis in H by {en}:=1, and the uni-
lateral shift operator on H(V: Ven = en+1) by V. We can easily see that the
following statements hold:

(1) Every value z in the unit disk (|z| < 1) is an eigenvalue of

Vk(Vk: V*en =e o0 $1, V*el = 0), the adjoint of V. The eigenelements
00

fz = :E: zn.len form a complete system in H, in the sense that if f is orthogonal
n=1

to fz’ for every z: |z| <1 then £ = 0.

(11) The mapping f(z) = (fz,f), f ¢ H 18 an isomorphism from H onto HZ(A).
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(iii) The diagonal operator C C =ne ,n=1,2,..., has a self-adjoined

0o’ “0%n

extension in H with a compact inverse B: Ben =

BB

e,n= 1,2,..., . Moreover, if

f(z) = (fz,f) then

2"f(z) = (fz,an) (1.3)
£M™ (5 = (£, ,(Cov%)™) (1.4)
26'(2) = (£,,(C, - D). (1.5)

We shall use the proposition 1 of Reference [2].

2. PROOF OF THE THEOREM.

The transformation y(z) = zku(z), reduces Equation (1.1) in the following:

m
20" (2)+(h +h_z+h 224, .. )u' (2)+(0 40, 240, 22+ . Ju(2)+ Y q¥a (2)ualz)=0, (2.1)
o™=, 0"P17*0; P R

where k(k - 1) + ka, + bO =0, 2k +a, = ho, al=h1, a2=h2, a3=h3,... and ka.+b =Pq>

0 171

Following Reference [2], we define the operators

0

ka2 + b2 = pl, ka3 + b3 = Ppsece e

RI’RZ""’Rm on HZ(A) as
Ru( = u@z), la] €1, Ru) = u(@’2) = KBu)...Ru@) = u(gyz) = K u(@).

m
Thus the operator R: Ru(z) = 2: qikai(z)u(qiz), |q| <1, on HZ(A) is represented
i=1
in the space H by the operator
m
R: Ru= ) Ka*v) B 1u
= i 1

where il is defined on H as Rlen = qn-len, n=1,2,... . The equation (2.1) has a

solution in HZ(A) if and only if the operator equation

V(C.v%)2 + ¢ (V)C.U* + ¢_(V) + RJu = O (2.2)
0 1 0 2
has a solution u in the abstract separable Hilbert space H.
=]
2
Here u 3;& (u,en)en, ¢1(V) = (2k + ao)I + hlv + h2V + ...,
0, (V) = p L +p )V + pzv2 e,
where the bar denotes complex conjugation.
Taking into account the relations
* = - - = -
V2C0V V(C0 I) and VC0 C0 v,

Equation (2.2) can be written as
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LECO + (2k +ay - DI+ BO(V) - Bzv¢i(V)] VA + Bo, (V) + B%J u=0, (2.3

where
(V) = h V+h i +h, V> + ... and ¢'(V) = h, + 20V + 3h,v° +
1 2 3 1 1 2 3 e
Also, if we put 2k + ag = 1 = & in Equation (2.3), we have
VA[I + VK] u=0 (2.4)
where the operator
N 2 2 2~
K = 3BV* + B“O(V)C V¥ + B 0, (V) + BR
is compact. Relation (2.4) implies that
(I +VK) u-= ce;s c = const. (2.5)
Now it follows that the operator (I + VK).-1 exists, In fact,
(I +VK)u=0=u-=-VKu =>(u,el) = —(Ku,V*el) = 0. Also,
(u,e,)) = —(U,K*el) => (u,ez)(l + (S) =0 (2.6)
Relation (2.6) if & # -1 $>(u,e2) = 0. Similarly,
3§
= - % = 2y =
(u,e3) (uk e2) ->(u,e3)(l +3 ) 0. 2.7)

Relation (2.7) if & # -2 = (u,e3) = 0. By the same way and if § # -n, n = 1,2,...,

we find

[+
[}

g;; (@e e = 0.

Since also the operator VK is compact Fredholm alternative implies that the operator
(I + VK)-_l is defined every where. Thus from Equation (2.5), we have

u=c-* (I+ v1<)'l e .

This means that

(1) If 2k + ag = 1=8-= kl - k2 # + n withn = 1,2,..., then the operator

(I + VK)_l always exists. Therefore, Equation (1.1) has two linearly independent
solutions of the form
y,() = 290 and  y,(2) = 2u(),

where kl and k2 are the roots of Equation (1.2) and u(z) belongs to HZ(A) and is

given by the relation

oo
-1 -1
u(z) = (uz,u), u, = EZ; 2" e,u=c e (I + VK) e
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(ii) If 2k + ag - 1=4= kl -k, =0, i.e. k. = k,, then the operator

2 1

(I + Vl()-.1 always exists. Therefore, Equation (1.1) has only one solution of the
form
y(2) = 2u(2),
where k is the double root of Equation (2.1) and u(z) as in (i).
(iii) If 2k + ay - 1=06=% -k, =n,n=1,2,..., then

1 2

2kl + ay - l1=n, n=1,2,...,

2k2 + ay - l1==-n,n=1,2,...,
From the above and the Relations (2.6) and (2.7), we see that Equation (1l.1) has
always a solution of the form

y(2) = (),
where kl is the greatest root of Equation (1.2) and u(z) as in (i). All the

above complete the proof of the theorem.
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