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ABSTRACT. The n-th order nonlinear functional differential equation

@ x®™ 1Y = e, x@®))
is considered; necessary and sufficient conditions are given for this equation to
have: (i) a positive bounded solution x(t) * B > 0 as t + ©; and (ii) all positive
bounded solutions converging to 0 as t > «, Other results on the asymptotic behav-
ior of solutions are also given. The conditions imposed are such that the equation
with a discontinuity

r©x®™ 01 = qx?, 250
is included as a special case.
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1. INTRODUCTION.
Kitamura and Kusano [1] have recently studied the problems of the existence
and asymptotic behavior of positive solutions of the equation
[r(e)x']" = q(e)x* 1.1
where r and q are positive and continuous on [0,®) and A is a positive constant.
Other authors, including Taliaferro [2] and [3], have studied the behavior of the

solutions of (1.1) with either q(t) < 0 or A < 0. However, as pointed out in [1],
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there seems to be no literature concerning (1.1) with q(t) > 0 and A > 0 other
than [1] and a superficial treatment of some of its special cases by Kamke[4].

Here we are concerned with the existence and the asymptotic properties of the
positive continuable solutions of the functional differential equation

rox™ 01 = £e,x(e®)) (1.2)

where 1 < v <n-1, r,g: [to,w) -+ R are continuous, r(t) > 0, Jm[l/r(s)]ds = o
g(t) >~ as t > © and f(t,y) is positive, continuous, and nonincreasing with respect
to y on [to,w) x (0,®). Clearly (1.1) is a special case of (1.2) and the results

here extend some of those obtained in [1].

2. EXISTENCE AND ASYMPTOTIC PROPERTIES.

We first state two lemmas which will be used in some of our proofs.

LEMMA 1. ([5,6; Lemma 1]). Let u be a positive (n-V)-times continuously
differentiable function on the interval [a,~) and let U be a positive continuous
function on [a,®) such that

r[l/u(t) ldt = =,
_ (n-v)

and the function w = ju is y-times continuously differentiable on [a,»).

Moreover, let

u(k), if 0 < k £ n-v-1

Luk=
w(k-n+v), if n-v < k < n.

If wn(t) = w(v)(t) is of constant sign and not identically zero for all large t,
then there exists t, > a and an integer £, 0 < £ < n, with n + % even for w_~non-

negative or n + £ odd for wn non positive, and such that for every t 2 tu

2 > 0 implies wk(t) >0 (k = 0,1,..., 2-1)
and
2 < n -1 implies (—l)l+kwk(t) >0 (k = 2, 241,..., n-1).
LEMMA 2. ([5,6; Lemma 2]). If the functions u,u,w and wk are as in Lemma 1
and for some k = 0,1,...,n-2 wk(t) + ¢ as t > », then wk+l(t) + 0 as t > o,

It will be convenient to make use of the following notation in the remainder

of this paper. For any T 2 tO and all t > T we let
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2(t) = t(©)x "™ (),

x(k)(t), 0 <k < n-v-1

w, (t) =
k ( z(k—n+v)(t), Ay < k € o,

t
I(T,t) = J [(t-8)" V"LV L/ e (s) 1ds/ (n-v-1) 1 (u-1) !,
T
and
t v-1 n-v-1
S(T,t) = J [(t-s)" ~s /r(s)1ds/ (n-v-1)! (v-1)!.
T

From our assumptions regarding the functions in (1.2), it ;s easy to see that
if x(t) is a positive continuable solution of (1.2), then there exists t 2 to such

that x(t) belongs to one of the two classes:

[\
[ad

@ w_© =YD >0 for e

or

In w, () = z(v-l)(t) <0 for t

v

tl.
As is indicated in the discussion following its proof, our first theorem is
very near being a necessary and sufficient result.

THEOREM 1. Let x(t) be a positive solution of type (I).

(i) If for every constant c > 0
0O
J f(s,cJ(tO,g(S))ds < o, (2.1)

then there exists a positive constant A such that

[x(t)/J(T,t)] > Aas t > = (2.2)
for all sufficiently large T.

(ii) If (2.2) holds then (2.1) holds for some constant c > O.
PROOF. let x(t) be a positive solution of (1.2) of type (I), then there exists

t, > max {tl,O} such that x(t), x(g(t)), and z(v_l)(t) are all positive on [tz,w).
Since x(t) > 0 implies that z(v)(t) > 0, we see that z(v—l)(t) is increasing on
[tz,m). It then follows from Lemma 2 that wk(t) > o a5 t > » for k = 0,1,...,n-2.

Then, by repeated application of L'Hopital's rule, we obtain

lim [x(t)/J(tz,t)] = lim z(v-l)(t)/(v-l)! > K (2.3)

Lo oo
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for some positive constant K. Thus there exists T 2 t2 so that

x(g(t)) 2 KI(T,g(t)) (2.4)
for t 2 T. To show that (2.2) holds it suffices (in view of (2.3)) to show that
x(t)/J(T,t) is bounded above. For this purpose we integrate (1.2) n-times over
[T,t] obtaining

n-v-1

t
x(t) =Q_,_1(6) + JT[(t-s) /r(s)]PV_l(s)ds/(n—v-l)!

S
n-v-1

t
+ J [(t-s) /x(s)] f (s—u)v—lf(u,x(g(u)))duds/(n-v—l)!(v—l)!, (2.5)
T

T
where Qn—v—l(t) and Pv-l(t) are polynomials of degree at most n-v-1 and V-1 respect-

ively. By (2.4), we see that

S t
f (s-w) VL (u,x(g(u)du < sV7T f £(u,KI (T, g(u)))du,
T T

and therefore we have

x(t)/J(T,t) < fm f(x,KI(T,g(s)))ds + H
T

for some positive constant H. (2.1) implies that x(t)/J(T,t) is bounded above.

Now suppose that (2.2) holds; then there exists positive constants A1 and

T1 2 T such that x(t) < AlJ(Tl,t) and x(g(t)) < AlJ(Tl,g(t)) for t 2 Ti. But (2.5)

holds with T replaced by T1 so we have

Al > x(t)/J(Tl,t)

t n-v-1
z [1/3(T, 01, () + f [(t-s)
T
1
S

t

+ f [(t-s)“'v'llr(s)] f (s-u)v-lf(u,AlJ(Tl,g(u)))duds/(n—v—l)!(v—l)!}.

T T
1 1

/r(s)]PV_l(s)ds/(n—v—l)!

Therefore

t
A, 2 lim [x(t)/J(T,,t)] = lim f f(s,A,J(T,,g(s)))ds
1 1 1 1

which implies that

f(s,A,J(T,,g(s)))ds < =,
[: 171

1
and it is not difficult to see that this implies that (2.1) holds for some positive

constant c.
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Notice that if the function f were such that condition (2.1) holding for some
¢ > 0 implies that (2.1) holds for all positive constants, then condition (2.1)
would be necessary and sufficient for every positive solution of (1.2) of type (I)
to satisfy (2.2). This would be the case if f(t,y) were homogeneous of some degree
o in y, i.e. f(t,sy) = saf(t,y). Since f(t,y) = q(t)y-x, A > 0, is homogeneous of
degree s = -\, we see that our Theorem 1 includes Theorem 1 and part (ii) of Theorem
4 in [1]. A simple example to which Theorem 1 applies is the equation

[x'()/t]" = 6(lnt + £)%/e%2 @), ©>1

which has the positive solution x(t) = 1lnt + t3. Notice that here J(T,t) =

3

(t” - T3)/3 so that

A = lim [x(t)/J(T,t)] = lim 3(Ilnt + t3)/(t3 - T3) = 3,

£ tow
THEOREM 2. A necessary and sufficient condition for (1.2) to have a bounded
positive solution x(t) satisfying x(t) - B > 0 as t > » is that JwS(T,s)f(s,c)ds < ®
for some constant c > 0 and all sufficiently large T.
PROOF. To prove necessity let x(t) be a positive bounded solution of (1.2)
and let ¢ > 0 and T > max {to,O} be such that

0 < x(g(t)) <c, t

[\

T. (2.6)
Notice that from (1.2) we have z(v)(t) >0 for t 2 T so that the hypotheses of
Lemma 1 are satisfied. Also, it is easy to see that the boundedness of x(t) implies
that the integer % assigned to x(t) by Lemma 1 must satisfy % < 2. Moreover, since
z(v)(t) > 0 implies that n + % is even, we see that £ = 0 for n even and 2 = 1 for
n odd. Consequently, by Lemma 1, we have for n even that
D' () >0, 1=1,2,...,0-1 2.7
and for n odd that
DM e >0, 1=1,2,... 001 (2.8)
for t 2 T. Next we multiply (1.2) by S(T,t) and integrate to obtain
t t
[ S(T,s) £(s,x(g(s)))ds = f $(1,8)z™" (s)ds. (2.9)
T T

But successive integration by parts yields
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t
J $(,8)zM (s)ds = s(T,0)2 V@) - s (1) Dy + .o+ 1V YD L
T

+ VeV EV-D oy e + D™ k() + L

where L is a constant. Therefore, in view of (2.7) and (2.8), it follows from

(2.9) that I“;(T,s)f(s,x(g(s)))ds < © and by (2.6) we see that
T

r»S(T,s)f(s,c)ds < oo,
I

To prove sufficiency, let T, > max {tO,O} and ¢ > 0 be such that

0

{co
J S(To,s)f(s,c)ds < c (2.10)
T

and consider the integral equation

V=1, () 1du | £(s,x(g(s)))ds/ (v-1) ! (n-v-1)! .

x(t) = 2¢ + (-7 fw fs[(s-u)v'l(u-t)
E\t (2.11)
It is not difficult to verify by differentiation that a soluticn of (2.11) is also
a solution of (1.2). We will show that (1.2) has a solution x(t) * B >0 as t + @
by using the following special case of Tychonov's fixed point theorem:
THEOREM. Let F be a Fréchet space and X be a closed convex subset of F, If
G : X > X is continuous and the closure 6?27 is a compact subset of X, then there

exists at least one fixed point x in X.

min g(t)} and let F be the

t2t
0

Fréchet space of all continuous functions x: [uo,w) -+ R with the topology of uni-

In order to utilize this theorem, let u, = min{To,

form convergence on compact subintervals of [uo,m). Let the closed convex subset
X of F defined by
X={xe F:cc<x(g()) <3, t=2ul},

and define the operator G on X by

2¢ + (-1)%(r), if t

v
—

(©x) () = .
2c + (-1) Q(TO), if U, < <

where

S
Q(m) = fm f [s=w " L) ™™ ru) 1du | £(s,x(e(s)))ds/ (a-v-1)1 (v-1) 1.
m

m
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To complete the proof we show that G satisfies all the hypotheses of the fixed
point theorem stated above. First observe that for any x € X
[ (Gx) (£) - 2¢]| < Q(Ty)
for t 2 Uy and that
Q(T,) < S(T.,s)f(s,c)ds < c.
0 0
To

Thus we see that G maps X into X.

To show that G is continuous let {XA}, A =1,2,... be any sequence of functions
in X converging uniformly to x € X on every compact subinterval of [u,,®). Let
t 2 U and T2 > max{t,To}, then f(t,x (g(t))) > £(t,x(g(t))) uniformly on [UO’TZJ'

However,

T
[ (Gx) () - Gx) ()] < f 2 S(TO,S)If(s,xA(g(S))) - f(s,x(g(s)))|ds,

T

0

and we see from (2.10) that GxA converges uniformly to Gx on any compact subinter-
val of [uo,w). Hence, we conclude that G is continuous.

Finally, in order to show that GX is a compact subset of X, it is sufficient
to show that GX is relatively compact since GX < X and X is closed. Furthermore,
since X is bounded, it suffices to show that GX is equicontinuous. For this pur-
pose, we distinguish two cases. If n - v # 1, then from the definitions of GX, S,

and X, we have that there exists a constant Ll such that

0 s
[x)'(v) ] < f f [-w Y ue) "2/ r () ldu | £0s,x(g(s)))ds/ (v-1) ! (n-v-2)!
T t
00
< L1 J S(To,s)f(s,c)ds
T
for t 2 Uy Hence it follows from (2.10) that there is constant L2 such that

is independent of both x and t. It then follows that GX

[Gx)'(t)] = L, where L,

is equicontinuous on [uO,W).

If n - v =1, we have for each t 2 TO that

[@x)' )| < Ly fm(s-t)v-lf(s,X(g(S)))dS/r(t)
t

for some positive constant L Since Gx is constant on [uO,To], then

3
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[(Gx)' (£) ] < L, fm (s—To)v_lf(s,c)ds/r(t)
To

for all t 2 u

0° Noticing that [(s—TO)v_l/S(To,s)] > 0 as s > ©, we see that

[@0' (] < [L,/x®)] fw S(Ty,8)£(s,c)ds
Ty

for some constant L4. Therefore, for any given closed subinterval [u ,Tl], of

[uo,w), with T1 > TO’ there exists a constant L(Tl) such that

[0 (®)] < L))
where L(Tl) is independent of both x € X and t in [u ,T1]. Also, if t, > tl 2 Tl’

then

I(Gx)(tz) - (Gx)(tl)l < fm S(T;,s)f(x,c)ds + fw S(T,,s)f(s,c)ds
t t

IA

2 f” S(Tl,s)f(s,c)ds .
T

1 1’ t2 in

[Tl,m). If is now easy to see that GX is equicontinuous on [uo,m) forn - v =1.

where the last integral tends to zero as T, + « independent of x € X and t

We now have all the hypotheses of the fixed point theorem satisfied and there-
fore we have the existence of x € X such that Gx = x, i.e. x is a solution of both
(1.2) and (2.11) and satisfies c¢ < x(t) < 3c. By differentiating botﬂ sides of
(2.11) we see that x'(t) has fixed sign and hence x(t) > B as t +> » for some B in
[c,3c].

REMARK. Theorem 2 reduces to Theorem 2 in [1] when r(t) = 1, f(t,y) = q(t)y_x,
A >0, and n = 2. It also includes part (iii) of Theorem 4 in [1]. The equations

3,13y, ¢ > o0, (2.12)

x(Zk)(t) = ce-ét/3(et+c)

where ¢ is any positive constaat and k = 1,2,... are examples of equations satis-

fying the hypotheses of Theorem 2. Notice that for each k, x(t) = e_t(et + ¢c) is
a solution of (2.12) satisfying x(t) - 1 as t » .

THEOREM 3. A necessary and sufficient condition for every positive bounded

solution x(t) = wo(t) of (1.2) to be such that wk(t) + 0 monotonically as t + © for

k = 0,1,...,n-1 is that
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JwS(T,s)f(s,c)ds = ® (2.13)

for every ¢ > 0 and all sufficiently large T.

PROOF., It follows from Theorem 2 that every positive bounded solution x(t)
of (1.2) satisfies wo(t) = x(t) >0 as t > «» if and only if (2.13) holds. Since
wo(t) + 0 as t > ©, then wk(t) -0 as t >~ for k = 1,2,...,n-1 by Lemma 2.

In contrast to Theorem 2 and 3, the next two theorems give sufficient condi-
tions for the positive solutions of (1.2) to be unbounded. In their proofs we

utilize the function
t
I (e,T,t) = f le(t-8)" V" h(s) /x(s) 1ds
T

where c is a positive constant and h(t) = t\)_2 for v -2 20 and h(t) = 1 for v = 1.

THEOREM 4. If for all positive constants ¢ and L and all sufficiently large T

S
n-\)_llr(s)] J (s-u)v-lf(u,Jl(c,T,g(u)))duds - LJ(T’t)} = ®,
T

t
lim sup { J [(t-s)
T (2.14)

t-)m
then every positive solution of (1.2) of type (II) is unbounded.

PROOF. Let x(t) be a positive solution of (1.2) of type (II). Since z(v-l)(t)

is eventually negative, it is easy to see from Taylor's formula that there exists

Tl > max{O,to} and a positive constant ¢, so that r(t)x(n_v)(t) = 2z(t) < clh(t),

t 2T Thus x(n-v)(t) < clh(t)/r(t) for t 2 T Integrating each member of the

1° 1°
last inequality (n-v) times we obtain x(t) < Jl(cz,Tl,t) for some constant ¢, > 0.
Hence there exists T 2 Tl such that

x(g(t)) < J,(c),T,g(t)), t =T. (2.15)
Next we integrate (1.2) n~times obtaining

n-v-1

t
x(t) = Q_, () + JT[(t-s) /x(s)]P_, (s)ds/(n-v-1)!

t n-v-1 s v-1
+ J [(t-s) /x(s)] J (s-u) f(u,x(g(u))duds/ (n-v-1)! (v-1)!
T T
where Qn-v-l(t) and Pv—l(t) are polynomials of degree at most n-v-1 and V-1 respect-
ively. But the last equation, together with (2.15), implies that there exists

constants 3 >0 and L > 0 such that
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t S
cyx(t) 2 ~LI(T,t) + f [(t—s)n-v-l/r(s)] J (s-u)v_lf(u,Jl(cz,T,g(u)))duds,
T T

and the conclusion of the theorem follows form (2.14).
REMARK. It is easy to see from the proof of Theorem 4 that, if (2.14) were

replaced by
t
lim inf { J [(t-s)" V72
T

t > ©

S
/r(s)] f (s-U)V_lf(u,Jl(c,T,g(u)))duds - LI(T,t)} >0,
T

in the hypotheses of Theorem 4, then we could conclude that every positive solution
of (1.2) of type (II) is bounded away from zero.
THEOREM 5. Suppose that

Jmf(s,Jl(c,T,g(s))ds = (2.16)

for every constant ¢ > 0 and all sufficiently large T. If x(t) is a positive solu-
tion of (1.2), then x(t) is of type (I) and there exists positive constants c, t2

and Tl > t2 such that x(t) 2 cJ(tz,t) for t 2 Tl'

PROOF. Let x(t) be a positive solution of (1.2) then there exists

t2 > max{to,O} so that x(t), x(g(t)), z(v)(t) and |z(v_1)(t)| are all positive on

[tz,w). First suppose that x(t) is of type (II), i.e. z(v_l)(t) <0 for t 2 tz.
Then, by Taylor's formula, there exists a constant ¢y >0 and T 2 t2 such that

(2.15) holds for t 2 T. From (2.15) and an integration of (1.2) we have

t t
O D) = OV + f £(s,x(g(s))ds = 2D (1) + f £(x,J (c,T,8(s)))ds.
T T

But then (2.16) implies that z(v_l)(t) + ®© as t + o contradicting the assumption
that x(t) is of type (II). Therefore, we conclude that x(t) is of type (I).
Now from L'HOopital's rule, we obtain

lin [x(6)/3(t,,0)] = 1im 2™ (0)/ (v-1) (2.17)

t>o t>o

as in the proof of Theorem 1. Since x(t) being of type (I) implies that z(v_l)(t)

is positive and increasing, from (2.17) there exists constants ¢ > 0 and T, 2 t

1 2

such that x(t) 2 cJ(tz,t) for t 2 Tl‘
REMARK. If f(s,cJ(tO,g(s)))ds = © for every constant ¢ > 0, then if follows

from Theorem 1 and condition (2.17) that [x(t)/J(tz,t)] > © gg t > o, Notice also
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that v=1, then Jl(c,T,t) = ¢J(T,t). If, in addition, f(t,y) is homogeneous of
some degree o in y, then j f(s,cJ(to,g(s)))ds = © is equivalent to (2.16). Thus
Theorem 5 includes the corollary in [1]. The equation

(tx'(£))' = @2 + Int) (tln ©)2/x2(t), t > 1, (2.18)
satisfies all the hypotheses of Theorem 5 and has the solution x(t) = tln t.
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