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There are some errors in the above paper. There is a line missing at the
bottom of page 672. Also, pages 681-683 are organized incorrectly.

These errors are corrected as follows:

Replace the last sentence on page 672 with:

-I
gE(Y)g E(S). In particular E(Y) J # @ for all J U(S). More-

gG

over the length of any maximal chain in U(S) equals dim Y..

Replace page 681 beginning from line 14 (from the top), the entire page

of 682 and the first seven lines (from the top) of page 683 with:

"PROOF. We can assume that e is the identity element of S (otherwise we work

with eSe). By Lemma i.i we are reduced to the case when f is the zero of S. By

Corollary 1.5, we are reduced to the case when S is also a d-semigroup. By Lemma

2.2 and Theorem 2.7, we can assume that S is as in Theorem 2.7, with

e-- (i i), f (0 0). Let V
1 {(ml(a a) n(a ,a))la K},

S
1

VI. Then e, f SI, dim S
1

i, SIC_ S. Define 8:K / S
1

as

@(a) (ml(a a),...,mn(a ,a)). Then @ is a *-homomorphism. So S
1

is

connected. This proves the theorem.
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3. POLYTOPES

If X C_ n, then we let C(X) denote the convex hull of X (see[4]). The con-

vex hull of a finite set in n is called a polytope [4]. If the vertices of P

are rational, then P is said to be a ra.tional polytope. If X

_
P, then X is said

to be a face of P [4; p. 25] if for all a, b P, e (0, i), a + (i )a X if

and only if a, b X. Let X(P) denote the set of all faces of P. Then [4; p. 21],

(X(P),C_) is a finite lattice. Dimension of P is defined to be the dimension of

the afflne hull of P [4; p.3]. Then dimension of P (length of any maximal chain

in X(P)) I. Two polytopes PI’ P2 have the same combinatorial type if X(PI

X(P2) (see [4; p. 38]). By [4; p. 244], every polytope of dimension ! 3 has the

same combinatorial type as some rational polytope. However this is not true in

n
general [4: p. 94]. If u (i an), v (81 ,8n) then let u v

n

iSi denote the inner product of u and v.

Let S be a semlgroup. An ideal I of S is said to be semIprlme if for all

2
a C S, a I implies a I. I is prime if for all a, b S, ab I implies a I

or b I. Let

I(S) {All ideals of S}

A(S) {All principal ideals of S}

F(S) {All semiprime ideals of S} ’ {}

A(S) {All prime ideals of S} {@}.

X(S) {S\III C A(S)}.

D(S) Maximal semilattice image of S.

It is easy to see that (A(S),

_
(A((S)), is a complete lattice. If S is

finitely generated, then (S) is finite and so (A(S),

_
is a finite lattice.

THEOREM 3.1. Let S be a connected d-semigroup with zero. Define :[(S) +

F((S)) as (I) {XIX E (S), x(a) 0 for all a

_
I}. Define 8:F((S)) + (S)

as 8(W) {ala S, x(a) 0 for all X W}. Then eare inclusion reversing

-i
bijections and 8 e Moreover e(A(S)) A((S)).
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PROOF. Clearly ,B are inclusion reversing. Let I A(S). Then I eS for

some e E(S). So (I) {XIX (S), x(e) 0}. It follows that (I) A((S)).

Clearly I B((I)). We claim that I B((I)). Suppose not. ’Then there exists

a B((I)) such that a I. Let a Hf, f E(S). Then f I, f B((I)). So

e

_
f. By Lemma 2.1 (2), there exists X (S) such that x(f) i, (e) O. So

X (I) and f B((I)), a contradiction. So

for all I A(S), (I) A((S)) and B((I)) I (12)

Let P C A((S)). We calim that B(P) A(S) and (B(P)) P. By Lemma 2.1, this

is true for P (S). So assume P # (S). Then F (S)\P is a subsemigroup of

(S). By Lemma 2.2 we can assume that S is a closed submonoid of some (Kn .)

0 (0 O) C S and that (S) < X1 n > where i is the i
th

projection of

S into K, i 1 n. Let A {XilXiC F}. Then <A> F. Let e (e I e
n

where e.l 1 if Xi A, ei 0 if Xi A. We claim that e S. Suppose not. Then

by Lemma 2.3, there exist u, v F(X
1

Xn) such that u(a) v(a) for all a S

and u(e) # v(e) Since u(e)
2

u(e) and v(e)2 v(e) we can assume that u(e) i,

v(e) O. Clearly U(Xl ,Xn) v(
1 Xn). Since u(e) i, u(XI ,Xn
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