

CORRIGENDUM

ON LINEAR ALGEBRAIC SEMIGROUPS III

MOHAN S. PUTCHA

School of Physical and Mathematical
Sciences, Department of Mathematics,
North Carolina State University,
Raleigh, North Carolina 27650

There are some errors in the above paper. There is a line missing at the bottom of page 672. Also, pages 681-683 are organized incorrectly.

These errors are corrected as follows:

Replace the last sentence on page 672 with:

" $\bigcup_{g \in G} gE(Y)g^{-1} = E(S)$. In particular $E(Y) \cap J \neq \emptyset$ for all $J \in U(S)$. More-

over the length of any maximal chain in $U(S)$ equals $\dim Y$. "

Replace page 681 beginning from line 14 (from the top), the entire page of 682 and the first seven lines (from the top) of page 683 with:

"PROOF. We can assume that e is the identity element of S (otherwise we work with eSe). By Lemma 1.1 we are reduced to the case when f is the zero of S . By Corollary 1.5, we are reduced to the case when S is also a d-semigroup. By Lemma 2.2 and Theorem 2.7, we can assume that S is as in Theorem 2.7, with

$e = (1, \dots, 1)$, $f = (0, \dots, 0)$. Let $V_1 = \{(\omega_1(a, \dots, a), \dots, \omega_n(a, \dots, a)) \mid a \in K\}$, $S_1 = \overline{V}_1$. Then $e, f \in S_1$, $\dim S_1 = 1$, $S_1 \subseteq S$. Define $\theta: K \rightarrow S_1$ as $\theta(a) = (\omega_1(a, \dots, a), \dots, \omega_n(a, \dots, a))$. Then θ is a *-homomorphism. So S_1 is connected. This proves the theorem.

3. POLYTOPES

If $X \subseteq \mathbb{R}^n$, then we let $C(X)$ denote the convex hull of X (see [4]). The convex hull of a finite set in \mathbb{R}^n is called a polytope [4]. If the vertices of P are rational, then P is said to be a rational polytope. If $X \subseteq P$, then X is said to be a face of P [4; p. 25] if for all $a, b \in P$, $\alpha \in (0,1)$, $\alpha a + (1 - \alpha)b \in X$ if and only if $a, b \in X$. Let $X(P)$ denote the set of all faces of P . Then [4; p. 21], $(X(P), \subseteq)$ is a finite lattice. Dimension of P is defined to be the dimension of the affine hull of P [4; p. 3]. Then dimension of P = (length of any maximal chain in $X(P)$) - 1. Two polytopes P_1, P_2 have the same combinatorial type if $X(P_1) \cong X(P_2)$ (see [4; p. 38]). By [4; p. 244], every polytope of dimension ≤ 3 has the same combinatorial type as some rational polytope. However this is not true in general [4; p. 94]. If $u = (\alpha_1, \dots, \alpha_n), v = (\beta_1, \dots, \beta_n) \in \mathbb{R}^n$ then let $u \cdot v = \sum_{i=1}^n \alpha_i \beta_i$ denote the inner product of u and v .

Let S be a semigroup. An ideal I of S is said to be semiprime if for all $a \in S$, $a^2 \in I$ implies $a \in I$. I is prime if for all $a, b \in S$, $ab \in I$ implies $a \in I$ or $b \in I$. Let

$$I(S) = \{\text{All ideals of } S\}$$

$$A(S) = \{\text{All principal ideals of } S\}$$

$$\Gamma(S) = \{\text{All semiprime ideals of } S\} \cup \{\emptyset\}$$

$$\Lambda(S) = \{\text{All prime ideals of } S\} \cup \{\emptyset\}.$$

$$X(S) = \{S \setminus I \mid I \subseteq \Lambda(S)\}.$$

$$\Omega(S) = \text{Maximal semilattice image of } S.$$

It is easy to see that $(\Lambda(S), \subseteq) \cong (\Lambda(\Omega(S)), \subseteq)$ is a complete lattice. If S is finitely generated, then $\Omega(S)$ is finite and so $(\Lambda(S), \subseteq)$ is a finite lattice.

THEOREM 3.1. Let S be a connected d-semigroup with zero. Define $\alpha: I(S) \rightarrow \Gamma(\Phi(S))$ as $\alpha(I) = \{x \mid x \in \Phi(S), x(a) = 0 \text{ for all } a \in I\}$. Define $\beta: \Gamma(\Phi(S)) \rightarrow I(S)$ as $\beta(W) = \{a \mid a \in S, x(a) = 0 \text{ for all } x \in W\}$. Then α, β are inclusion reversing bijections and $\beta = \alpha^{-1}$. Moreover $\alpha(A(S)) = \Lambda(\Phi(S))$.

PROOF. Clearly α, β are inclusion reversing. Let $I \in A(S)$. Then $I = eS$ for some $e \in E(S)$. So $\alpha(I) = \{x \mid x \in \Phi(S), x(e) = 0\}$. It follows that $\alpha(I) \in \Lambda(\Phi(S))$. Clearly $I \subseteq \beta(\alpha(I))$. We claim that $I = \beta(\alpha(I))$. Suppose not. Then there exists $a \in \beta(\alpha(I))$ such that $a \notin I$. Let $a = f$, $f \in E(S)$. Then $f \in I$, $f \in \beta(\alpha(I))$. So $e \neq f$. By Lemma 2.1 (2), there exists $x \in \Phi(S)$ such that $x(f) = 1$, $x(e) = 0$. So $x \in \alpha(I)$ and $f \notin \beta(\alpha(I))$, a contradiction. So

$$\text{for all } I \in A(S), \alpha(I) \in \Lambda(\Phi(S)) \text{ and } \beta(\alpha(I)) = I \quad (12)$$

Let $P \in \Lambda(\Phi(S))$. We claim that $\beta(P) \in A(S)$ and $\alpha(\beta(P)) = P$. By Lemma 2.1, this is true for $P = \Phi(S)$. So assume $P \neq \Phi(S)$. Then $F = \Phi(S) \setminus P$ is a subsemigroup of $\Phi(S)$. By Lemma 2.2 we can assume that S is a closed submonoid of some (K^n, \cdot) , $0 = (0, \dots, 0) \in S$ and that $\Phi(S) = \langle x_1, \dots, x_n \rangle$ where x_i is the i^{th} projection of S into K , $i = 1, \dots, n$. Let $A = \{x_i \mid x_i \in F\}$. Then $\langle A \rangle = F$. Let $e = (e_1, \dots, e_n)$ where $e_i = 1$ if $x_i \in A$, $e_i = 0$ if $x_i \notin A$. We claim that $e \in S$. Suppose not. Then by Lemma 2.3, there exist $u, v \in F(x_1, \dots, x_n)$ such that $u(a) = v(a)$ for all $a \in S$ and $u(e) \neq v(e)$. Since $u(e)^2 = u(e)$ and $v(e)^2 = v(e)$ we can assume that $u(e) = 1$, $v(e) = 0$. Clearly $u(x_1, \dots, x_n) = v(x_1, \dots, x_n)$. Since $u(e) = 1$, $u(x_1, \dots, x_n)$

Special Issue on Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/jamds/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	June 1, 2009
First Round of Reviews	September 1, 2009
Publication Date	December 1, 2009

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be