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ABSTRACT. Relationship between existence of solutions for certain classes of
nonlinear boundary value problems and the smallest or the largest eigenvalue of
the corresponding linear problem is obtained. Behavior of the solutions, as the

parameter increases, is also studied.
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1. INTRODUCTION.

Equations of the form

y'(x) + p(x) y(x) + A (x) yn(x) =0, (1.1)

where A is a parameter and n is a positive integer, arise in many physical problems,

for examples, in linear (n = 1) and nonlinear (n # 1) oscillaticr problems
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[1, 2, 3, 4], and in nuclear energy distribution [5, 6]. In these problems, the
parameter has physical significance, such as the energy level or the stiffness

factor of the system under consideration.

In this work, relationship between existence of solutions for classes of
nonlinear boundary value problems with equations of the form (1.1) and the smallest
or the largest eigenvalue of the corresponding linear problem is obtained. The
case of the coefficient q(x) being a negative constant has been investigated in
[7]. Conditions on the coefficients of the equation, under which the solution

remains bounded as the parameter increases, are obtained.

2. EXISTENCE OF SOLUTIONS FOR NONLINEAR BOUNDRY VALUE PROBLEMS AND EIGENVALUE

OF CORRESPONDING LINEAR PROBLEMS.

In this section, relationship between existence of solutions for equations of
the form (1.1) with zeroboundary conditions and the smallest or largest eigenvalue
of the corresponding linear problem is obtained. The analysis used here is similar
to that in [7]. It would be assumed that the functions p(x) and q(x) are in the
class C[0,1].

In the first two theorems, the nonlinear boundary value problem
Y +p(x) ¥ - qx) vy (x) =0, 2.1
y(0) =0, y@) =0, (2.2)
and the corresponding linear eigenvalue problem

z"(x) + p(x) z(x) - Aq(x) z(x) =0 , 2.3)
z(0) =0, z(1) =0, (2.4)

are considered.

THEOREM 2.1. If (1) p(x) > 0 and (2) q(x) > 0, then (2.1) and (2.2) has a
positive solution if and only if the largest eigenvalue of (2.3) and (2.4) is

positive.
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PROOF. Suppose (2.1) and (2.2) has a positive solution. To show that the

largest eigenvalue A, of (2.3) and (2.4) is positive, let z, be a corresponding

1
eigenfunction of (2.3) and (2.4) satisfying z, # 0 for 0 < x <1 [8]. Multiplying
(2.1) by ) (2.3) by y and subtracting the equations, we get

'z, - yzg - q(x)ynz1 + )\lq(x)yz1 =0. (2.5)

Integration of (2.5) from O to 1 and the boundary conditions (2.2) and (2.4) lead to

1 1
-.f q(x)ynz1 dx + A1~S q(x)yz, dx = 0 ,
0 0 1
therefore,
! n
7 a@y"z dx
N B
1 1
7 a(x)yz, dx
0
and A, is positive.

1
Suppose now that the largest eigenvalue of (2.3) and (2.4) 1is positive. Note

first that if y is positive and M denotes its maximum, then

y <M <Y s

where
R = max B%z%
xelo, 119
To apply an existence theorem for nonlinear eigenvalue problems in [9], equa-

tion (2.1) is written in the form

Ly = F(x, y) ,
where
Ly = -y" + a(x)y, a(x) >0,

F(x, y) = [p(x) + a(x)ly - q(x)y .

To show that a positive solution of (2.1) and (2.2) exists, we must find curves
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u(x), v(x) such that
0 < u(x) < v(x),
v(0) 2 0, v(1) =

u(0) < 0, u(l)

IN

and a(x) must be chosen so that F(x, y)

all (x, y) in the set

S={(xy) | 0<sxx<1,

Let 1

v(x) = Rn-1

then

Lv ~ F(x, v)

]

N
Ee

I\
o

and v satisfies all the requirements.
Let

u(x) = zl(x) ,

where zl(x‘ is normalized such that

[
—

0 <« ZI(X) < ,\T

then

Lu = -z

In

VgV

F(x, u).

LING

for all x e (0, 1),

0, Lv 2 F(x, v),

0, Lu < F(x, u),

is a monotonic increasing function of y for

u(x) sy < vx)l.

alx)v - [p(x) + a(x)1v + q(x) v°

b o

[Q(x)R - p(x)]

, for x ¢ (0, 1),

1 + a(x) z,
p(x) z; ~ N q(x) z, + a(x) z,
[p(x) + a(X)]z1 - N q(x) zy

[p(x) + a(X))Z1 - q(x) Z?
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From the fact that

g_i. = p(x) + a(x) = q(x)nyn-l ’

F(x, y) is increasing in y in S if

a® 2 q@Wny" 7 - P
so choose
a(x) 2QnR - Py s
where
- X € ?gf 1] 10, fo " X € ?é? 1] PO

By [9], the nonlinear problem (2.1) and (2.2) has at least one solution in S.

THEOREM 2.2. (1) If p(x) > 0, (2) g(x) >0 and (3) n 1is odd, then (2.1)
and (2.2) has a negative solution if and only if the largest eigenvalue of (2.3)

and (2.4) is positive.

PROOF. Suppose (2.1) and (2.2) has a negative solution. Then as in the proof

of Theorem 2.1, it can be shown that if A, is the largest eigenvalue of (2.3) and

1

(2.4) and z, is a corresponding eigenfunction, then

1

a(®) ¥ 2, dx

q(x) y z; dx

and since n is odd, A, is positive.

1
Conversely, suppose that the largest eigenvalue of (2.3) and (2.4) is positive.

Note first that if y is negative and m denotes its minimum at say Xg» then

y" = -plxp) m+ q(xo)mn >0,
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n P(xo)
m > m ,
a(xg)
_ p(x,)
mn 1 < . 0) .
q xO
Since (n - 1) is even, 1
pxg) "
Tlaayl Y
and so
1
n-1
- R Sy.

To apply the existence theorem in [ 9], equation (2.1) is written in a form as
in the proof of Theorem 2.1. To show that a negative solution of (2.1) and (2.2)

exists, this time we must find curves u(x), v(x) such that

u(x) < v(x) < 0, for xe (0, 1),

v(0) 0, v(1) = 0, Lv = F(x, Vv),

u(0) < 0, u(l) < 0, Luc< F(x, u)

and a(x) must be chosen so that F(x, y) is a monotonic increasing function of y for

all (x, y) in the set
S={(x,y) | 0<sx<1, u)<ysvx}.

Let 1

then

Lu - F(x, u) = a(x)u - [p(x) + a(x)Ju + q(x) u”

uq@ ! - p3
1

- [q) R - p0)]

<0
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and u satisfies all the requirements.
Let

v(x) = zl(X) s

where zl(x) is normalized such that

1 1
n- n-1

—Al < zl(x) <0 and - R < zl(x), for xe (0, 1) ,

—

then

n
-Al q(x) z, > -q(x) z;
and so

Lv = [p(x) + a(x)]z1 - Al q(x) z,
2 [p(x) + a(x)] z, - q(x) z?

= F(X, V) .
From the fact that

%=p@)+aw—qmmyml,

F(x, y) is increasing in y in S if
a® 2 q@ay" " - p(x)
SQnR-p,,
so let
a(x) 2QnR - Py -

It follows from [9] that the nonlinear problem (2.1) and (2.2) has at least
one solution in S.

In the next Theorem, the nonlinear problem

¥'(x) + p(x)y + qx) ¥y =0, (2.6)
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y(0) = y(1) =0, 2.7
and the corresponding linear eigenvalue problem
z"(x) + p(x)z + Aq(x)z =0 , (2.8)
z(0) = z(1) =0, (2.9)
are considered.

THEOREM 2.3. If (1) p(x) > 0, (2) q(x) > 0 and (3) n is even, then (2.6) and
(2.7) has a negative solution if and only if the smallest eigenvalue of (2.8) and

(2.9) 1is negative.

PROOF. Let

y(x) = -Y(x), then

SY' () - p(R)Y + q(x) [-¥Y(x) 1" = 0
and so Y(x) satisfies
Y'(x) + p(x) Y(x) - q(x) Y (x) =0, (2.10)
Y(0) =1, Y(1) =0 . (2.11)

By Theorem 2.1, (2.10) and (2.11) has a positive solution Y if and only if the
largest eigenvalue of (2.3) and (2.4) is positive, and hence if and only if the
smallest eigeuvalue of (2.8) and (2.9) is negative. The conclusion of the theorem

now follows.

3. BOUNDEDNESS OF THE SOLUTION AS THE PARAMETER INCREASES.

In this section, boundedness of the solution of
y'(x) + p(R)yY + Aq()y" =0, (3.1)
y(0) =0 , (3.2)

as the parameter ) increases, is studied. It would be assumed that the functions

p(x) and q(x) are in the class Cl[O, 11].
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THEOREM 3.1. If (1) p(x) > 0, p'"(x) <0, (2) q(x) >0, q"(x) <0, (3) n is

]
odd or y 2 0 and (4) {fé?l is bounded as A + », then y is bounded as A + .
A

PROOF. Multiplication of (3.1) by y' and integration of the resulting equation

over [0, x] lead to

2 % ZE x x 23 nt+l x X n+l
- ] - A =
LZ ‘|)+p(s)2 (|) S(;p(s)zds+)\q(s)-L—n+l(|))\Oq(s)-z—n+1ds 0,
2 2 S 2 2 n+l 2 % n+l 2
Y@ +p@y ) - [ p'(e)yTds + i MY (%) - T M ey ds =y (0.
0 0
Therefore,

a@® vl <y,

n+1
2
n+1 n+1 z' (V)
y O 2 q(x)

and the conclusion follows.

THEOREM 3.2. If (1) p(x) > 0, p"(x) >0, (2) q(x) >0, q'(x) <0, (3) n is

odd or y > 0 and (4) y'(0) is bounded as A + =, then y is bounded as A + =,

PROOF. As in Theorem 3.1, equation (3.1) is multiplied by y' and the result-

ing equation integrated over [0, x], obtaining

X
p@Y @ < y'20) +§ p'(e)y” ds ,
0

X '
P2 ) < y'2(0) +£ p(e)y” B8 as

and by Gronwall's inequality [10],

p(s)

- 2 p(x)
y'(0) p(0) °

X 1
p()y2(x) < v'2(0) exp { B8 gs
0

therefore,
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and

10.

R. LING
2
2 AR ()
y (x)S p(0)

the result follows.
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