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ABSTRACT. Restricted isomorphism between two queueing systems implies that they
have equivalent distribution function for at least one (but not all) output
elements (e.g. waiting time, queue size, idle time, etc.). Quasi-isomorphism
implies an approximate equivalence. Most of the single-server queueing systems
can be approximated by a quasi-isomorphic system which has a gamma inter-arrival
and gamma service distributions (Ep/Eq/l).

This paper deals with the derivation of simpler isomorphs (in quasi-restricted
sense) for such gamma-gamma (E /E /1) systems.
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1. INTRODUCTION.
The concept of isomorphism, in the restricted and quasi-sense, between two

queueing systems was developed by Ghosal (1977, 1978) who also exhibited the
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usefulness of this concept in deriving approximate solutions to practical
problems. Most of the single-server queueing systems in real life are of the
type GI#G/1 in which the inter-arrival time between consecutive customers follows
a general probabilitydistribution function (d.f.), the service time also follows
a general d.f.. The analytical solution for the d.f. of waiting time, queue size
or idle time (of server) etc. is available only for a limited class of problems.
Most of the studies in approximation concentrate on deriving an approximate
solution of either an integral equation or a difference-differential equation.
The method of isomorphs, developed by Ghosal (1977), is directed towards finding
a simpler system for which the solution is known but which is equivalent to the
parent system in respect of the required output property, e.g. d.f. of waiting
time or d.f. of idle time or d.f. of inter-departure process, etc.. Equivalence
in d.f. in one or two but not all output elements is called restricted isomorphism.
If two systems have approximately equivalent (in d.f.) output elements, one may
be called a quasi-isomorph of the other : if approximate equivalence relates only
to one or two (but not all) of the output elements, this phenomenon is called
quasi-restricted isomorphism.

Throughout this paper, whenever we refer to d.f. of an element (waiting
time, queue size, idle time, etc.), we imply the equilibrium d.f. Concepts and
notations of Ghosal (1977) have been used in this paper.

It has been observed by Kendall (1964), Lilliefors (1966) that any GI/G/1
can be approximated by an Ep/Eq/l system, in which the inter-arrival time (tn)

follows a gamma distribution with parameter p,u.

pr(x < t o <x + dx) = OP /(p-1)!} exp(-2rx) xp_ldx (1.1)

xe (0, ») , A 2 1:

and the service time (sn) follows a Gamma distribution with parameter q, 1i.e.
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Pr(x<s_<wrdx) = (n¥/q-1)!} exp(ux) x37 ax, (x € (0,205 w2 1) (1.2)

The choice of p, q, A and ¥ may be made from experimental studies by
actually studying statistical distributions of waiting time, queue size, etc..
A few practical studies, done by the authors (not reported here) lead to an
interesting observation: the quasi-restricted (Q.R.) isomorph which approx-
imates the parent system in respect of waiting time d.f. in the best possible
manner may have a set of parameters different from one which approximates the
parent system in respect of idle time d.f. in the best possible manner. Thus
the best Q.R.isomorphs in respectof waiting time d.f. and idle time d.f. may have
the parameter sets (pl,ql,kl,ul) and (pz,qz,xz,uz) respectively (pl#pz,ql#qz,...).

This paper deals with the problem of determining simpler Q.R. isomorphs
of type M/M/1 or M/Er/l for parent Ep/Eq/l systems. In practical problems
we have to estimate errors in two stages of approximation: (a) while using a
Ep/Eq/l Q.R. isomorph for the parent system, (b) while using an M/M/1 or
M/Erll Q.R. isomorph for a parent Ep/Eq/l . The paper concentrates on deter-
mining Q.R. isomorphs of simple forms (M/M/1 or M/Er/l) rather than on

the estimation of isomorphs in two-step approximation.

2. SOME RESULTS.

This paper rests on the following known theorem:

THEOREM 2.1. 1If there are two single-server queueing systems

{w(l), “(1)} s {W(z), u(z)} , where w(i)
1) _ @D 1) s(i)

customer, u =s -t

is the waiting time of the n th

(CO RN

, where is the service time and t

the interarrival time between two customers (i = 1,2), then if u(l) and

eH) @

u(z) have equivalent d.f.s, and W are also equivalent in d.f.

(see Lindley (1952), Ghosal (1970)).

From the above we derive the following corollary in queues which are
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isomorphic in the quasi- or quasi-restricted sense.

COROLLARY 2.1.1. 1If there are two single-server systems exemplified by
1
{W(l), u( )} and {W(z), u(z)}, then if u(l) is approximately equivalent to

2)

u(z) in d.f. then W(l) is also approximately equivalent to W( in d.f.,

in other words the two systems are isomorphic in the quasi-restricted sense
(w.r.t. waiting time d.f.).

In our search for Q.R. isomorphs for an Ep/Eq/l system, we are to look
for another system which have approximately equivalent d.f. w.r.t. u.. Let
the interarrival time follow d.f. ("~ stands for "has the probability dist-

ribution")

t~IP/(p-1) !} exp (-ax) ¥ 1 dx, (A>0: xe (0, =) p> 1) (2.1)
and the service time (s) follows the d.f.

s~/ (q-1) !} exp (-ux) x¥ 1 dx, (W > 0: x € (0, =), q > 1) (2.2)

Let u=s8 -t and G(x) = prob(u < x), and let its Laplace transform (L.T)

be given by

¥eo) = [ exp (-6x) d G (x) , (2.3)

If T() and S(®) be respectively L.T.'s of t and s , then we get

Y@ = S ®B)T (),

so that in the above case

be) = 2"

5-p 6,-q
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2
= 1-p¢2 _ Py .87 la(gtl) p(ptl)_ 2
el - B+ 5 [uz + v -E‘ijw
_33[ +1) (@#2) _ 3palarl) | 3pa(ptl) _ p(ptl +2]+ @.4)
6 3 2 2 3 sree oo A5
u noA HA A

Let there be a second system for which s, (6) 1is the L.T. of service time
(sz) and Tz(e) is the L.T. of interarrival time (tz) . If 8, follows an
exponential d.f. with parameter , and t2 follows an exponential d.f. with

parameter AZ’ then ¢2(0) s L.T. of u, (=s2-t2) is given by

4,(8) =5, (8) T,(-6)

-a-dta+rHt
2 H2

=-1-e(l-71-)+e2(—l-+i2-)‘l ) + ... (2.5)
20N B g MW

If the coefficients of 6 and e2 are equal in (2.4) and (2.5), we get

11 _gq9_¢p (2.6)
My )‘2 oA
1 1 1 q(q+l) , p(p+l) _ 2pq
25+ =5 - )= + - 2.7
"‘% )‘% e’ u2 22 Au
From (2.6) and (2.7) we get
L_Ll_49,2 (2.8)

The two equations (2.6) and (2.8) give a complete solution for W and >‘2 .

We shall elucidate the solution by giving a few practical examples.

Service No. Parameters in Parameters in the M/M/1
system 1 Isomorph (System)2
Pp=2,q=3 A2 = 0.2150,, = 0.3350
1. A =0.3, y=0.6 o, = 0.6418 2
p=3,q=2 = 0.2 = 0.40
2. A =0.4, y=0.4 222=0.50 ¥
Pp=3,q=4 32 = 0.2874, W = 0.4034
3. A =05 ,=0.8 o = 0.7124

Table 2.1
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It may be observed from Table 2.1 that we do not get good approximation for
the parameters of the M/M/1 isomorph by equation Hy = u/q, Az = )A/p. However,
by applying the approximation method as given above we can estimate difference in
third moments between the parent system and the isomorph. A good approximation
for traffic intensity is obtained from the M/M/1 isomorph (p2 =1, /uz), hence

probability that waiting time is zero 1s approximately

Pr(W=0) =1~ Py . (2.9)

It may be borne in mind that the traffic intensity (p) in the Ep/Eq/l system does

not enable us to determine prob(W = 0), as in (2.9).

3. ISOMORPHS OF M/Ek/ 1 TYPE.

It may be interesting to probe into the problem of determination of isomorphs
of M/Ek/l type with respect to the waiting time d.f.. The L.T. ¢(p) of the parent
Ep/Eq/l system is given by (2.4). In the isomorph of M/Ekll type, let the inter-

arrival time follow the d.f..
Azexp(-kzx) dx , x e O,») ,
and the service time follow the d.f..

{ugl(k-l)!}exp (-uzx) xk-1 dx , (u2 >0, xe O,») , k> 1)

(2)

Then the L.T. ¢2(e) of u is given by
8,0 = (- HH7TH 14 Lk
2 Uy
2
k 1 +
=1_e(__>‘_)+6_2-(ﬂ%l+%_)‘2_k) , (3.1)
L] 2 uy Ay 242

If the coefficients of ¢, 92 and 93 are to be the same in (2.4) and (3.1), we get

i.p_x_ 1 (3.2)
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(q+1) p(p+l) 2pq _ k(k+l) 2 _ 2k
S e anb oty mal e Sl wrrl (3.3)

i

u A Au Hy AZ 272

q(qt1)¢q#2) p(p+l) (p+2) . 3p(p+l)q _ 3q(g+l)p

u3 A3 A2u Auz
k(ktl) (k#2) _ 6 , 3k (k+l) _ 6k ’ (3.4)
3 A3 A 2 AZ
) 2 2%2 2%2
From (3.2) and (3.3) we get
SR U A R (3.5)
2 AZ XZ u2
Y2 M
From (3.2) and (3.4) we get
2 2 2
3k~ + 2k 5 3k 3k _ 3q  +2q 3p + 2p 3pq 3pq
—_— . = - + = - + - « (3.6)
3 A3 ZA A2 3 AZ AZ ) 2
Hy L) 2y u u u

The three parameters of the isomorph, k, A, and M, can be numerically solved from

2
the set of equations (3.2) through (3.6) by method of iteration. One approach
would be to select various integral values of k and solve for Az and H, and hence

to estimate for what value of k the difference between the right hand side and

the left hand side in (3.6) is minimum.

4. CONCLUDING REMARKS.

It has been shown in this paper how quasi-isomorphs of the type M/M/1 or
M/Er/l for an Ep/Eq/l can be derived on the assumption of Theorem 2.1 and
Corollary 2.1.1. Some numerical experiments (which have not been reported in
this paper but will be reported subsequently in detail) suggest practical utility
of approximation through isomorphs. These experiments indicate the effect of
approximations given in Section 2 and 3 on waiting time distributionms.

There is scope for extending the approach of isomorphs in approximating

waiting time distribution or queue size distribution in complicated network queues.
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