

PERISTALTIC VISCOELASTIC FLUID MOTION IN A TUBE

ELSAYED F. ELSHEHAWY and AYMAN M. F. SOBH

(Received 24 June 1999)

ABSTRACT. Peristaltic motion of viscoelastic incompressible fluid in an axisymmetric tube with a sinusoidal wave is studied theoretically in the case that the radius of the tube is small relative to the wavelength. Oldroyd flow has been considered in this study and the problem is formulated and analyzed using a perturbation expansion in terms of the variation of the wave number. This analysis can model the chyme movement in the small intestine by considering the chyme as an Oldroyd fluid. We found out that the pumping rate of Oldroyd fluid is less than that for a Newtonian fluid. Further, the effects of Reynolds number, Weissenberg number, amplitude ratio and wave number on the pressure rise and friction force have been discussed. It is found that the pressure rise does not depend on Weissenberg number at a certain value of flow rate. The results are studied for various values of the physical parameters of interest.

2000 Mathematics Subject Classification. 76Z05.

1. Introduction. A peristaltic pump is a device for pumping fluids, generally from a region of lower to higher pressure, by means of a contraction wave traveling along a tube-like structure. This traveling-wave phenomenon is referred to as (peristaltic). This phenomenon is now well known to physiologists to be one of the major mechanisms for fluid transport in many biological systems. The study of the mechanism of peristalsis, in both mechanical and physiological situations, has recently become the object of scientific research. Since the first investigation of Latham [6], several theoretical and experimental attempts have been made to understand peristaltic action in different situations. A review of much of the early literature is presented in an article by Jaffrin and Shapiro [5]. A summary of most of the experimental and theoretical investigations reported, with details of the geometry, fluid, Reynolds number, wavelength parameter, wave amplitude parameter, and wave shape has been given by Srivastava and Srivastava [11].

Most theoretical investigations have been carried out for Newtonian fluids, although it is known that most physiological fluids behave as non-Newtonian fluids. However, limited studies for non-Newtonian fluids have been made by Srivastava and Srivastava [12, 13], Srivastava [10], and Elshehawy and Mekheimer [4]. Bohme and Friedrich [1] have investigated peristaltic flow of second-order viscoelastic liquid assuming that the relevant Reynolds number is small enough to neglect inertial forces, and that the ratio of the wavelength and the channel height is large so that the pressure is constant over the cross-section. Peristaltic motion of a third-order fluid in a planar channel has been studied by Siddiqui and Schwarz [9], under the long-wavelength approximation assumption. El Misery et al. [2] studied the peristaltic motion of Carreau fluid in a channel. They developed the solution in a perturbation series in powers of Weissenberg

number using long-wavelength approximation and also the same problem was studied by Elshehawey et al. [3] in the case of nonuniform channel.

The purpose of this paper is to study the peristaltic motion of Oldroyd fluid in a tube. This problem can model the movement of the chyme, which may be considered as Oldroyd fluid, through small intestine. In our analysis, we assumed that the velocity components, the pressure, the shearing stress, and the flow rate may be expanded in a regular perturbation series in the wave number. Expressions for pressure rise, velocity components and friction force were obtained in terms of the flow rate, the occlusion, the Reynolds number, the Weissenberg number, and the wave number.

2. Formulation and analysis. Consider the flow of an incompressible Oldroyd fluid in a circular tube of radius a . We assume an infinite wave train traveling with velocity c along the wall. Taking \bar{R} and \bar{Z} as cylindrical coordinates, the geometry of the wall surface is

$$\bar{h}(\bar{Z}, \bar{t}) = a + b \sin \frac{2\pi}{\lambda} (\bar{Z} - c\bar{t}), \quad (2.1)$$

where b is the wave amplitude, λ is the wave length, and \bar{Z} is the same direction of the wave propagation.

Choosing moving coordinates (\bar{r}, \bar{z}) (wave frame) which travel in the \bar{Z} -direction with the same speed as the wave, the unsteady flow in the laboratory frame (\bar{R}, \bar{Z}) can be treated as steady [8]. The coordinates frame are related through

$$\bar{z} = \bar{Z} - c\bar{t}, \quad \bar{r} = \bar{R}, \quad \bar{w} = \bar{W} - c, \quad \bar{u} = \bar{U}, \quad (2.2)$$

where \bar{U}, \bar{W} and \bar{u}, \bar{w} are, respectively, the radial and the axial velocity components in the corresponding coordinate systems.

Equations of motion in the moving coordinates are

$$\begin{aligned} \frac{1}{\bar{r}} \frac{\partial}{\partial \bar{r}} (\bar{r} \bar{u}) + \frac{\partial \bar{w}}{\partial \bar{z}} &= 0, \\ \rho \left(\bar{u} \frac{\partial \bar{u}}{\partial \bar{r}} + \bar{w} \frac{\partial \bar{u}}{\partial \bar{z}} \right) &= -\frac{\partial \bar{p}}{\partial \bar{r}} - \left(\frac{1}{\bar{r}} \frac{\partial}{\partial \bar{r}} (\bar{r} \bar{\tau}_{11}) - \frac{\bar{\tau}_{22}}{\bar{r}} + \frac{\partial \bar{\tau}_{13}}{\partial \bar{z}} \right), \\ \rho \left(\bar{u} \frac{\partial \bar{w}}{\partial \bar{r}} + \bar{w} \frac{\partial \bar{w}}{\partial \bar{z}} \right) &= -\frac{\partial \bar{p}}{\partial \bar{z}} - \left(\frac{1}{\bar{r}} \frac{\partial}{\partial \bar{r}} (\bar{r} \bar{\tau}_{13}) + \frac{\partial \bar{\tau}_{33}}{\partial \bar{z}} \right). \end{aligned} \quad (2.3)$$

The constitutive equations of Oldroyd fluid are, [7],

$$\begin{aligned} \bar{\tau}_{11} + \Gamma \left[\bar{u} \frac{\partial \bar{\tau}_{11}}{\partial \bar{r}} + \bar{w} \frac{\partial \bar{\tau}_{11}}{\partial \bar{z}} - 2\bar{\tau}_{11} \frac{\partial \bar{u}}{\partial \bar{r}} - 2\bar{\tau}_{13} \frac{\partial \bar{u}}{\partial \bar{z}} \right] &= -\mu \bar{y}_{11}, \\ \bar{\tau}_{13} + \Gamma \left[\bar{u} \frac{\partial \bar{\tau}_{13}}{\partial \bar{r}} + \bar{w} \frac{\partial \bar{\tau}_{13}}{\partial \bar{z}} - \bar{\tau}_{33} \frac{\partial \bar{u}}{\partial \bar{z}} - \bar{\tau}_{11} \frac{\partial \bar{w}}{\partial \bar{r}} + \frac{\bar{u}}{\bar{r}} \bar{\tau}_{13} \right] &= -\mu \bar{y}_{13}, \\ \bar{\tau}_{22} + \Gamma \left[\bar{u} \frac{\partial \bar{\tau}_{22}}{\partial \bar{r}} + \bar{w} \frac{\partial \bar{\tau}_{22}}{\partial \bar{z}} - \frac{2\bar{u}}{\bar{r}} \bar{\tau}_{22} \right] &= -\mu \bar{y}_{22}, \\ \bar{\tau}_{33} + \Gamma \left[\bar{u} \frac{\partial \bar{\tau}_{33}}{\partial \bar{r}} + \bar{w} \frac{\partial \bar{\tau}_{33}}{\partial \bar{z}} - 2\bar{\tau}_{33} \frac{\partial \bar{w}}{\partial \bar{z}} - 2\bar{\tau}_{13} \frac{\partial \bar{w}}{\partial \bar{r}} \right] &= -\mu \bar{y}_{33}, \end{aligned} \quad (2.4)$$

where \bar{p} is the pressure, $\bar{\tau}_{ij}$, $i, j = 1, 2, 3$, are the components of the extra stress tensor, Γ is the relaxation time, ρ is the viscosity, and \bar{y}_{ij} , $i, j = 1, 2, 3$, are the components of strain-rate tensor and given by

$$\bar{y}_{11} = 2 \frac{\partial \bar{u}}{\partial \bar{r}}, \quad \bar{y}_{22} = 2 \frac{\bar{u}}{\bar{r}}, \quad \bar{y}_{33} = 2 \frac{\partial \bar{w}}{\partial \bar{z}}, \quad \bar{y}_{13} = \left(\frac{\partial \bar{u}}{\partial \bar{z}} + \frac{\partial \bar{w}}{\partial \bar{r}} \right). \quad (2.5)$$

The boundary conditions are

$$\frac{\partial \bar{w}}{\partial \bar{r}} = 0, \quad \bar{u} = 0 \quad \text{for } \bar{r} = 0, \quad \bar{w} = -c, \quad \bar{u} = -c \frac{d\bar{h}}{d\bar{z}} \quad \text{for } \bar{r} = \bar{h}. \quad (2.6)$$

Introducing the nondimensional variables and parameters

$$\begin{aligned} z &= \frac{\bar{z}}{\lambda}, & Z &= \frac{\bar{Z}}{\lambda}, & r &= \frac{\bar{r}}{a}, & R &= \frac{\bar{R}}{a}, & t &= \frac{c\bar{t}}{\lambda}, & p &= \frac{a^2 \bar{p}}{c\lambda\mu}, \\ u &= \frac{\lambda \bar{u}}{ac}, & w &= \frac{\bar{w}}{c}, & W &= \frac{\bar{W}}{c}, & \delta &= \frac{a}{\lambda}, & \tau_{ij} &= \frac{a \bar{\tau}_{ij}}{c\mu}, \\ \dot{y}_{ij} &= \frac{a}{c} \bar{y}_{ij}, & \text{Wi} &= \frac{c\Gamma}{a}, & \text{Re} &= \frac{\rho c a}{\mu}, \end{aligned} \quad (2.7)$$

where Wi is the Weissenberg number, δ is the wave number, Re is the Reynolds number, and $h = \bar{h}/a = 1 + (b/a) \sin 2\pi z = 1 + \varphi \sin 2\pi z$, $\varphi = b/a < 1$, is the amplitude ratio, equations (2.3), (2.4), after using (2.5), become

$$\frac{1}{r} \frac{\partial}{\partial r} (ru) + \frac{\partial w}{\partial z} = 0, \quad (2.8)$$

$$\text{Re} \delta^3 \left(u \frac{\partial u}{\partial r} + w \frac{\partial u}{\partial z} \right) = - \frac{\partial p}{\partial r} - \delta \left(\frac{1}{r} \frac{\partial}{\partial r} (r \tau_{11}) - \frac{\tau_{22}}{r} + \delta \frac{\partial \tau_{13}}{\partial z} \right), \quad (2.9)$$

$$\text{Re} \delta \left(u \frac{\partial w}{\partial r} + w \frac{\partial w}{\partial z} \right) = - \frac{\partial p}{\partial z} - \left(\frac{1}{r} \frac{\partial}{\partial r} (r \tau_{13}) + \delta \frac{\partial \tau_{33}}{\partial z} \right), \quad (2.10)$$

$$\tau_{11} + \text{Wi} \delta \left[u \frac{\partial \tau_{11}}{\partial r} + w \frac{\partial \tau_{11}}{\partial z} - 2\tau_{11} \frac{\partial u}{\partial r} - 2\delta \tau_{13} \frac{\partial u}{\partial z} \right] = -2\delta \left(\frac{\partial u}{\partial r} \right), \quad (2.11)$$

$$\tau_{13} + \text{Wi} \delta \left[\delta \left(u \frac{\partial \tau_{13}}{\partial r} + w \frac{\partial \tau_{13}}{\partial z} - \delta \tau_{33} \frac{\partial u}{\partial z} + \frac{u}{r} \tau_{13} \right) - \tau_{11} \frac{\partial w}{\partial r} \right] = - \left(\delta^2 \frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} \right), \quad (2.12)$$

$$\tau_{22} + \text{Wi} \delta \left[u \frac{\partial \tau_{22}}{\partial r} + w \frac{\partial \tau_{22}}{\partial z} - \frac{2u}{r} \tau_{22} \right] = -2\delta \frac{u}{r}, \quad (2.13)$$

$$\tau_{33} + \text{Wi} \left[\delta \left(u \frac{\partial \tau_{33}}{\partial r} + w \frac{\partial \tau_{33}}{\partial z} - 2\tau_{33} \frac{\partial w}{\partial z} \right) - 2\tau_{13} \frac{\partial w}{\partial r} \right] = -2\delta \left(\frac{\partial w}{\partial z} \right), \quad (2.14)$$

The nondimensional boundary conditions are

$$\frac{\partial w}{\partial r} = 0, \quad u = 0 \quad \text{for } r = 0, \quad w = -1, \quad u = - \frac{dh}{dz} \quad \text{for } r = h. \quad (2.15)$$

Eliminating the pressure from (2.9) and (2.10), we obtain

$$\begin{aligned} \text{Re} \delta \left[\delta^2 \frac{\partial}{\partial z} \left(u \frac{\partial u}{\partial r} + w \frac{\partial u}{\partial z} \right) - \frac{\partial}{\partial r} \left(u \frac{\partial w}{\partial r} + w \frac{\partial w}{\partial z} \right) \right] \\ = \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (r \tau_{13}) + \delta \frac{\partial \tau_{33}}{\partial z} \right) - \delta \frac{\partial}{\partial z} \left(\frac{1}{r} \frac{\partial}{\partial r} (r \tau_{11}) - \frac{\tau_{22}}{r} + \delta \frac{\partial \tau_{13}}{\partial z} \right). \end{aligned} \quad (2.16)$$

3. Rate of volume flow. The instantaneous volume flow rate in the fixed frame is given by

$$Q = 2\pi \int_0^{\bar{h}} \bar{W} \bar{R} d\bar{R}, \quad (3.1)$$

where \bar{h} is a function of \bar{Z} and \bar{t} .

The rate of volume flow in the moving frame (wave frame) is given by

$$\bar{q} = 2\pi \int_0^{\bar{h}} \bar{w} \bar{r} d\bar{r}, \quad (3.2)$$

where \bar{h} is a function of \bar{z} .

Using (3.2), one finds that the two rates of volume flow are related by

$$Q = \bar{q} + \pi c \bar{h}^2. \quad (3.3)$$

The time-mean flow over a period $T = \lambda/c$ at a fixed position \bar{Z} is defined as

$$\bar{Q} = \frac{1}{T} \int_0^T Q d\bar{t}, \quad (3.4)$$

which can be written, using (2.1) and (3.3), as

$$\bar{Q} = \bar{q} + \pi c a^2 \left(1 + \frac{\varphi^2}{2} \right). \quad (3.5)$$

Defining the dimensionless time-mean flows θ and F in the fixed and wave frame, respectively, as

$$\theta = \frac{\bar{Q}}{\pi c a^2}, \quad F = \frac{\bar{q}}{\pi c a^2}, \quad (3.6)$$

then making use of (3.6), equation (3.5) can be rewritten as

$$\theta = F + 1 + \frac{\varphi^2}{2}, \quad (3.7)$$

where

$$F = 2 \int_0^{h(z)} r w dr. \quad (3.8)$$

4. Perturbation solution. Beginning by expanding the following quantities in a power series of the small parameter δ as follows:

$$\begin{aligned} u &= u_0 + \delta u_1 + \delta^2 u_2 + O(\delta^3), & w &= w_0 + \delta w_1 + \delta^2 w_2 + O(\delta^3), \\ \frac{\partial p}{\partial z} &= \frac{\partial p_0}{\partial z} + \delta \frac{\partial p_1}{\partial z} + \delta^2 \frac{\partial p_2}{\partial z} + O(\delta^3), & \tau_{11} &= \tau_{11}^{(0)} + \delta \tau_{11}^{(1)} + \delta^2 \tau_{11}^{(2)} + O(\delta^3), \\ \tau_{13} &= \tau_{13}^{(0)} + \delta \tau_{13}^{(1)} + \delta^2 \tau_{13}^{(2)} + O(\delta^3), & \tau_{22} &= \tau_{22}^{(0)} + \delta \tau_{22}^{(1)} + \delta^2 \tau_{22}^{(2)} + O(\delta^3), \\ \tau_{33} &= \tau_{33}^{(0)} + \delta \tau_{33}^{(1)} + \delta^2 \tau_{33}^{(2)} + O(\delta^3), & F &= F_0 + \delta F_1 + \delta^2 F_2 + O(\delta^3), \end{aligned} \quad (4.1)$$

then using the perturbation expansions (4.1) in equations (2.8), (2.10), (2.11), (2.12), (2.13), (2.14), (2.15), (2.16), and (3.8) and collecting terms of like powers of δ , we obtain three sets of coupled linear differential equations with their corresponding boundary conditions in u_0, w_0, u_1, w_1 , and u_2, w_2 for the first three powers of δ . The first set of differential equations in u_0, w_0 , subject to the corresponding boundary conditions, yields the following classical Poiseuille flow:

$$w_0 = c_1 + c_2 r^2, \quad (4.2a)$$

$$u_0 = -\frac{c'_1}{2} r - \frac{c'_2}{4} r^3, \quad (4.2b)$$

where

$$c_1 = 1 + \frac{2F_0}{h^2}, \quad c_2 = -2 \left(\frac{F_0 + h^2}{h^4} \right). \quad (4.3)$$

On substituting the zeroth-order solution (4.2) in the second set of differential equations and using its corresponding boundary conditions, the first-order solution can be obtained in the form

$$w_1 = c_3 + c_4 r^2 + c_5 r^4 + c_6 r^6, \quad (4.4a)$$

$$u_1 = -\frac{c'_3}{2} r - \frac{c'_4}{4} r^3 - \frac{c'_5}{6} r^5 - \frac{c'_6}{8} r^7, \quad (4.4b)$$

where

$$\begin{aligned} c_3 &= \frac{2F_1}{h^2} + \text{Re} \left(\frac{c_1 c'_2 h^4}{48} + \frac{c_2 c'_1 h^6}{144} \right), & c_4 &= -\frac{2F_1}{h^4} - \text{Re} \left(\frac{c_1 c'_2 h^2}{12} + \frac{c_2 c'_1 h^4}{48} \right), \\ c_5 &= \text{Re} \left(\frac{c_1 c'_2}{16} \right), & c_6 &= \text{Re} \left(\frac{c_2 c'_1}{72} \right). \end{aligned} \quad (4.5)$$

We now solve the second-order system. Using the zeroth-order and the first-order solutions in the third set of differential equations and using the boundary conditions, we obtain

$$w_2 = b_1 + b_2 r^2 + b_3 r^4 + b_4 r^6 + b_5 r^8 + b_6 r^{10}, \quad (4.6)$$

where

$$\begin{aligned} b_1 &= \frac{2F_2}{h^2} - \frac{c''_2 h^4}{24} + \text{Re} \left(\frac{h^4 a_1}{48} + \frac{h^6 a_2}{72} + \frac{3h^8 a_3}{320} + \frac{h^{10} a_4}{150} \right) \\ &\quad + \text{Wi} \left(\frac{h^4 a_5}{12} + \frac{h^6 a_6}{12} + \frac{3h^8 a_7}{40} \right) - \text{Wi}^2 \left(\frac{h^4 a_8}{12} + \frac{h^6 a_9}{12} \right), \end{aligned}$$

$$\begin{aligned}
b_2 &= -\frac{2F_2}{h^4} + \frac{c_2''h^2}{6} - \operatorname{Re} \left(\frac{h^2a_1}{12} + \frac{h^4a_2}{24} + \frac{h^6a_3}{40} + \frac{h^8a_4}{60} \right) \\
&\quad - W \left(\frac{h^2a_5}{3} + \frac{h^4a_6}{4} + \frac{h^6a_7}{5} \right) + \operatorname{Wi}^2 \left(\frac{h^2a_8}{3} + \frac{h^4a_9}{4} \right), \\
b_3 &= -\frac{c_2''}{8} + \frac{1}{16} (\operatorname{Re} a_1 + 4\operatorname{Wi} a_5 - 4\operatorname{Wi}^2 a_8), \\
b_4 &= \frac{1}{36} (\operatorname{Re} a_2 + 6\operatorname{Wi} a_6 - 6\operatorname{Wi}^2 a_9), \\
b_5 &= \frac{1}{64} (\operatorname{Re} a_3 + 8\operatorname{Wi} a_7), \quad b_6 = \frac{\operatorname{Re} a_4}{100}, \\
a_1 &= (c_3c_2' + c_1c_4'), \quad a_2 = \left(c_1c_5' - c_5c_1' + \frac{c_4c_2'}{2} + \frac{c_2c_4'}{4} \right), \\
a_3 &= \left(c_1c_6' - 2c_6c_1' + \frac{2c_2c_5'}{3} \right), \quad a_4 = \left(\frac{3c_2c_6'}{4} - \frac{c_6c_2'}{2} \right), \quad a_5 = 4(c_1c_5' - c_5c_1'), \\
a_6 &= \left(6c_1c_6' - 12c_6c_1' + \frac{4c_2c_5'}{3} - \frac{4c_5c_2'}{3} \right), \quad a_7 = (3c_2c_6' - 4c_6c_2'), \\
a_8 &= (3c_2c_1'c_2' - 3c_1c_2'^2 + 3c_1c_2c_2''), \quad a_9 = (c_2^2c_2'' - c_2c_2'^2).
\end{aligned} \tag{4.7}$$

At this order, the perturbation solution for the axial velocity can be, using (4.2a), (4.4a), and (4.6), written as

$$\begin{aligned}
w &= c_1 + c_2r^2 + \delta(c_3 + c_4r^2 + c_5r^4 + c_6r^6) \\
&\quad + \delta^2(b_1 + b_2r^2 + b_3r^4 + b_4r^6 + b_5r^8 + b_6r^{10}).
\end{aligned} \tag{4.8}$$

A close look at (4.8) reveals that the axial velocity is affected by the wave number, the Reynolds number and the viscoelastic parameter (Weissenberg number).

5. Pressure gradient. An expression for the pressure gradient, $\partial p/\partial z$, can be obtained by substituting (4.1) into the dimensionless equation of motion (2.10) and equating the coefficients of like powers of δ , we obtain three sets of partial differential equations for $\partial p_0/\partial z$, $\partial p_1/\partial z$, and $\partial p_2/\partial z$. Using this form of $\partial p/\partial z$, the pressure rise and the friction force per wavelength can be obtained.

The nondimensional pressure rise and the nondimensional friction force per wavelength are defined, respectively, as

$$\Delta p_\lambda = \int_0^1 \frac{dp}{dz} dz, \quad F_\lambda = \int_0^1 h^2 \left(-\frac{dp}{dz} \right) dz. \tag{5.1}$$

Since $\partial p/\partial z$ is periodic in z , the pressure rise and the friction force per wavelength in the longitudinal direction are independent of r , [5]. Accordingly, the integrals in (5.1) can be evaluated on the axis at $r = 0$. Further, the pressure rise and friction force can be expanded as a power series in δ as

$$\begin{aligned}
\Delta p_\lambda &= \Delta p_{\lambda 0} + \delta \Delta p_{\lambda 1} + \delta^2 \Delta p_{\lambda 2} + \dots, \\
F_\lambda &= F_{\lambda 0} + \delta F_{\lambda 1} + \delta^2 F_{\lambda 2} + \dots,
\end{aligned} \tag{5.2}$$

where

$$\begin{aligned}\Delta p_{\lambda 0} &= \int_0^1 \frac{dp_0}{dz} dz, \quad \Delta p_{\lambda 1} = \int_0^1 \frac{dp_1}{dz} dz, \quad \Delta p_{\lambda 2} = \int_0^1 \frac{dp_2}{dz} dz, \\ F_{\lambda 0} &= \int_0^1 h^2 \left(-\frac{dp_0}{dz} \right) dz, \quad F_{\lambda 1} = \int_0^1 h^2 \left(-\frac{dp_1}{dz} \right) dz, \quad F_{\lambda 2} = \int_0^1 h^2 \left(-\frac{dp_2}{dz} \right) dz.\end{aligned}\quad (5.3)$$

We now use the zeroth-, first-, and second-order terms for the pressure gradient in (5.3), integrating from 0 to 1, then substituting in (5.2) we obtain

$$\begin{aligned}\Delta p_{\lambda}^{(2)} &= -8F^{(2)}I_4 - 8I_2 \\ &+ \delta^2 \left[-\frac{32\pi^2}{3} (3(\varphi^2 - 1)I_2 + 5I_1 - 2) \right. \\ &+ F^{(2)} \left\{ -\frac{16\pi^2}{3} (11(\varphi^2 - 1)I_4 + 21I_3 - 10I_2) \right\} \\ &+ \text{Re}^2 \left\{ (F^{(2)})^3 \left[\frac{22\pi^2}{135} (11(\varphi^2 - 1)I_6 + 19I_5 - 8I_4) \right] \right. \\ &+ (F^{(2)})^2 \left[\frac{\pi^2}{135} (115(\varphi^2 - 1)I_4 + 137I_3 - 22I_2) \right] \\ &- \frac{\pi^2 F^{(2)}}{135} (41(\varphi^2 - 1)I_2 + 121I_1 - 80) - \frac{\pi^2 \varphi^2}{27} \left. \right\} \\ &- \text{Re} \text{Wi} \left\{ (F^{(2)})^3 \left[\frac{32\pi^2}{5} (7(\varphi^2 - 1)I_8 + 13I_7 - 6I_6) \right] \right. \\ &+ (F^{(2)})^2 \left[\frac{32\pi^2}{15} (19(\varphi^2 - 1)I_6 + 33I_5 - 14I_4) \right] \\ &+ F^{(2)} \left[\frac{8\pi^2}{15} (11(\varphi^2 - 1)I_4 + 13I_3 - 2I_2) \right] \\ &+ \frac{8\pi^2}{15} ((\varphi^2 - 1)I_2 + 3I_1 - 2) \left. \right\} \\ &- \text{Wi}^2 \left\{ (F^{(2)})^3 [128\pi^2 (19(\varphi^2 - 1)I_{10} + 35I_9 - 16I_8)] \right. \\ &+ (F^{(2)})^2 [64\pi^2 (37(\varphi^2 - 1)I_8 + 67I_7 - 30I_6)] \\ &+ F^{(2)} [128\pi^2 (6(\varphi^2 - 1)I_6 + 11I_5 - 5I_4)] \\ &+ 128\pi^2 ((\varphi^2 - 1)I_4 + 2I_3 - I_2) \left. \right\},\end{aligned}\quad (5.4)$$

$$\begin{aligned}
F_\lambda^{(2)} &= 8F^{(2)}I_2 \\
&+ 8 + \delta^2 \left[\frac{64\pi^2\varphi^2}{3} + F^{(2)} \left\{ \frac{16\pi^2}{3} (11(\varphi^2-1)I_2 + 21I_1 - 10) \right\} \right. \\
&- \text{Re}^2 \left\{ (F^{(2)})^3 \left[\frac{22\pi^2}{135} (11(\varphi^2-1)I_4 + 19I_3 - 8I_2) \right] \right. \\
&+ \frac{\pi^2(F^{(2)})^2}{135} (115(\varphi^2-1)I_2 + 137I_1 - 22) \\
&- \frac{\pi^2\varphi^2F^{(2)}}{135} - \frac{\pi^2\varphi^2(\varphi^2+4)}{1080} \left. \right\} \\
&+ \text{Re} \text{Wi} \left\{ (F^{(2)})^3 \left[\frac{32\pi^2}{5} (7(\varphi^2-1)I_6 + 13I_5 - 6I_4) \right] \right. \\
&+ (F^{(2)})^2 \left[\frac{32\pi^2}{15} (19(\varphi^2-1)I_4 + 33I_3 - 14I_2) \right] \\
&+ (F^{(2)})^2 \left[\frac{8\pi^2}{15} (11(\varphi^2-1)I_2 + 13I_1 - 2) \right] \left. \right\} \\
&+ \text{Wi}^2 \left\{ (F^{(2)})^3 [128\pi^2 (19(\varphi^2-1)I_8 + 35I_7 - 16I_6)] \right. \\
&+ (F^{(2)})^2 [64\pi^2 (37(\varphi^2-1)I_6 + 67I_5 - 30I_4)] \\
&+ F^{(2)} [128\pi^2 (6(\varphi^2-1)I_4 + 11I_3 - 5I_2)] \\
&+ 128\pi^2 ((\varphi^2-1)I_2 + 2I_1 - 1) \left. \right\}, \\
\end{aligned} \tag{5.5}$$

where

$$I_n = \int_0^1 \frac{1}{h^n} dz, \quad n = 1, 2, \dots, 10. \tag{5.6}$$

Here, we used the relation

$$F_0 = F^{(2)} - \delta F_1 - \delta^2 F_2, \tag{5.7}$$

and $\Delta p_\lambda^{(2)}$, $F_\lambda^{(2)}$, and $F^{(2)}$ are, respectively, the pressure rise, the friction force and the flow rate in the wave frame to the second order in δ , and where

$$\begin{aligned} I_1 &= \frac{1}{(1-\varphi^2)^{1/2}}, & I_2 &= \frac{1}{(1-\varphi^2)^{3/2}}, & I_3 &= \frac{(1+\varphi^2/2)}{(1-\varphi^2)^{5/2}}, & I_4 &= \frac{(1+3\varphi^2/2)}{(1-\varphi^2)^{7/2}}, \\ I_n &= \frac{1}{(1-\varphi^2)} \left[\left(\frac{2n-3}{n-1} \right) I_{n-1} - \left(\frac{n-2}{n-1} \right) I_{n-2} \right], & n > 4. \end{aligned} \quad (5.8)$$

The substitution of (5.8) into (5.4) and (5.5) yields

$$\begin{aligned} \Delta p_\lambda^{(2)} &= -\frac{8(1+3\varphi^2/2)}{(1-\varphi^2)^{7/2}} \left(\theta^{(2)} - 1 - \frac{\varphi^2}{2} \right) - \frac{8}{(1-\varphi^2)^{3/2}} \\ &\quad + \delta^2 \left[-\frac{64\pi^2\varphi^2}{3(1-\varphi^2)^{5/2}} \left(\theta^{(2)} - 1 - \frac{\varphi^2}{2} \right) - \frac{64\pi^2}{3} \left\{ \frac{1}{(1-\varphi^2)^{1/2}} - 1 \right\} \right. \\ &\quad + \text{Re Wi} \left\{ \frac{8\pi^2\varphi^2(4-\varphi^2-3\varphi^4)(\theta^{(2)}-1-\varphi^2/2)^2}{5(1-\varphi^2)^{11/2}} \right. \\ &\quad \left. + \frac{64\pi^2\varphi^2(\theta^{(2)}-1-\varphi^2/2)}{15(1-\varphi^2)^{5/2}} - \frac{16\pi^2}{15} \left(1 - \frac{1}{(1-\varphi^2)^{1/2}} \right) \right\} \\ &\quad + \text{Re}^2 \left\{ \frac{11\pi^2\varphi^2(3\varphi^4+\varphi^2-4)(\theta^{(2)}-1-\varphi^2/2)^3}{135(1-\varphi^2)^{11/2}} \right. \\ &\quad \left. - \frac{82\pi^2\varphi^2(\theta^{(2)}-1-\varphi^2/2)^2}{135(1-\varphi^2)^{5/2}} \right. \\ &\quad \left. + \frac{16\pi^2}{27} \left(1 - \frac{1}{(1-\varphi^2)^{1/2}} \right) \left(\theta^{(2)} - 1 - \frac{\varphi^2}{2} \right) - \frac{\pi^2\varphi^2}{27} \right\} \\ &\quad + \text{Wi}^2 \left\{ \frac{8\pi^2\varphi^2(35\varphi^6+280\varphi^4+336\varphi^2+64)}{(1-\varphi^2)^{17/2}} \left(\theta^{(2)} - 1 - \frac{\varphi^2}{2} \right) \right. \\ &\quad \left. + \frac{48\pi^2\varphi^2(5\varphi^4+20\varphi^2+8)}{(1-\varphi^2)^{13/2}} \left(\theta^{(2)} - 1 - \frac{\varphi^2}{2} \right)^2 \right. \\ &\quad \left. + \frac{16\pi^2\varphi^2(3\varphi^4+\varphi^2-4)}{(1-\varphi^2)^{11/2}} \left(\theta^{(2)} - 1 - \frac{\varphi^2}{2} \right) - \frac{64\pi^2\varphi^2}{(1-\varphi^2)^{5/2}} \right\} \Bigg], \end{aligned} \quad (5.9)$$

and

$$\begin{aligned}
F_{\lambda}^{(2)} = & \frac{8(\theta^{(2)} - 1 - \varphi^2/2)}{(1 - \varphi^2)^{3/2}} \\
& + 8 + \delta^2 \left[\frac{160\pi^2}{3} \left(\frac{1}{(1 - \varphi^2)^{1/2}} - 1 \right) \left(\theta^{(2)} - 1 - \frac{\varphi^2}{2} \right) + \frac{64\pi^2\varphi^2}{3} \right. \\
& + \text{Re Wi} \left\{ \frac{8\pi^2\varphi^2(4 - \varphi^2 - 3\varphi^4)(\theta^{(2)} - 1 - \varphi^2/2)^3}{5(1 - \varphi^2)^{11/2}} \right. \\
& \left. + \frac{64\pi^2\varphi^2(\theta^{(2)} - 1 - \varphi^2/2)^2}{15(1 - \varphi^2)^{5/2}} \right. \\
& \left. - \frac{16\pi^2}{15} \left(1 - \frac{1}{(1 - \varphi^2)^{1/2}} \right) \left(\theta^{(2)} - 1 - \frac{\varphi^2}{2} \right) \right\} \\
& + \text{Re}^2 \left\{ - \frac{22\pi^2\varphi^2(\theta^{(2)} - 1 - \varphi^2/2)^2}{135(1 - \varphi^2)^{5/2}} \right. \\
& \left. + \frac{22\pi^2}{15} \left(1 - \frac{1}{(1 - \varphi^2)^{1/2}} \right) \left(\theta^{(2)} - 1 - \frac{\varphi^2}{2} \right) \right. \\
& \left. + \frac{\pi^2\varphi^2}{135} \left(\theta^{(2)} - 1 - \frac{\varphi^2}{2} \right) + \frac{\pi^2\varphi^2(\varphi^2 + 4)}{1080} \right\} \\
& - \text{Wi}^2 \left\{ \frac{16\pi^2\varphi^2(5\varphi^4 + 20\varphi^2 + 8)}{(1 - \varphi^2)^{13/2}} \left(\frac{\theta^{(2)} - 1 - \varphi^2}{2} \right)^3 \right. \\
& \left. + \frac{16\pi^2\varphi^2(3\varphi^4 + \varphi^2 - 4)}{(1 - \varphi^2)^{11/2}} \left(\theta^{(2)} - 1 - \frac{\varphi^2}{2} \right)^2 \right. \\
& \left. - \frac{192\pi^2\varphi^2}{(1 - \varphi^2)^{5/2}} \left(\theta^{(2)} - 1 - \frac{\varphi^2}{2} \right) + 128\pi^2 \left(1 - \frac{1}{(1 - \varphi^2)^{1/2}} \right) \right\}, \tag{5.10}
\end{aligned}$$

where

$$\theta^{(2)} = F^{(2)} + 1 + \frac{\varphi^2}{2}. \tag{5.11}$$

6. Results and conclusion. It is clear that our results calculate the velocity, the pressure rise and the friction force without restrictions on the amplitude ratio, the Reynolds number and the Weissenberg number but we used a small wave number. Further, the results extend the work of Shapiro et al. [8] as well as it include the effect of Weissenberg number Wi .

In Figure 6.1, the dimensionless pressure rise $(\Delta p_{\lambda})^{(2)}$ is graphed versus the dimensionless flow rate $\theta^{(2)}$ for different values of Weissenberg number ($\text{Wi} = 0, 0.04, 0.08$) at wave number $\delta = 0.156$ and Reynolds number $\text{Re} = 0.1$, for both cases ($\varphi = 0.35$ and $\varphi = 0.6$). As shown, for $\varphi = 0.35$, the effect of Weissenberg number is very small and the three curves coincide. But for $\varphi = 0.6$, the effect of Weissenberg number is

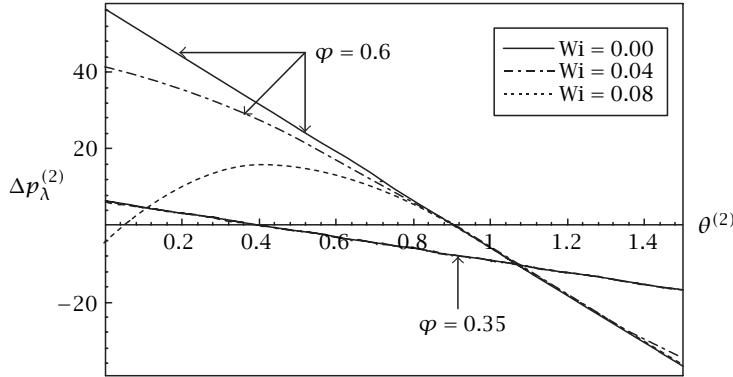


FIGURE 6.1. The pressure rise versus flow rate at $Re = 0.1$, $\delta = 0.156$, and $\varphi = 0.35, 0.6$.

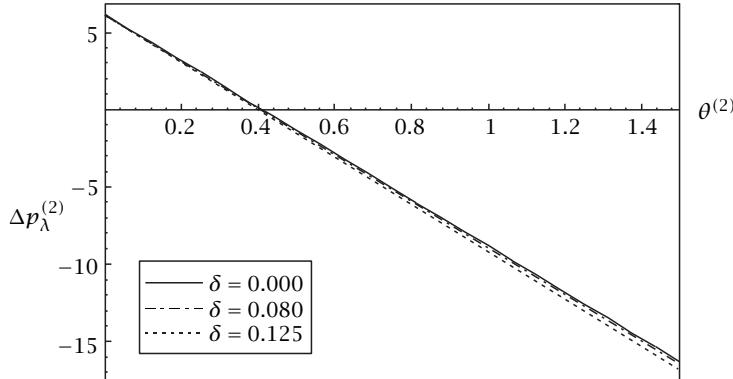


FIGURE 6.2. The pressure rise versus flow rate at $Re = 0.1$, $Wi = 0.08$, and $\varphi = 0.35$.

very clear and show that the pumping rate of Oldroyd fluid is less than that for a Newtonian having a shear viscosity the same as Oldroyd fluid and the pressure rise decreases with increasing Weissenberg number. Further, it is clear that the pressure rise is independent on Weissenberg number at a certain value of flow rate and the peristaltic pumping, where $(\Delta p_\lambda)^{(2)} > 0$ and $\theta^{(2)} > 0$, occur at $0 \leq \theta^{(2)} \leq 0.9$ and the augmented pumping, where $(\Delta p_\lambda)^{(2)} < 0$ and $\theta^{(2)} > 0$, occur at $0.9 \leq \theta^{(2)} \leq 1.5$, for $\varphi = 0.6$. The linear relation for a Newtonian fluid is obvious in (5.9), with $Wi = 0$ and $\delta = 0$. Figures 6.2 and 6.3 show the effect of the wave number δ on the pressure rise at $Re = 0.1$, $Wi = 0.08$, and $\varphi = 0.35, 0.6$, respectively. Figure 6.2 reveals that, for $\varphi = 0.35$, an increase in the wave number yields a slight increase in the magnitude of the pressure rise but for $\varphi = 0.6$, the effect of the wave number δ is very clear and the pressure rise decreases as wave number increases as shown in Figure 6.3.

Shown in Figure 6.4 the dimensionless pressure rise versus flow rate at $Wi = 0$, $\delta = 0.02$, $\varphi = 0.6$, and $Re = 0, 50, 100$. The results reveal that the magnitude of the pressure rise increases with increasing Reynolds number.

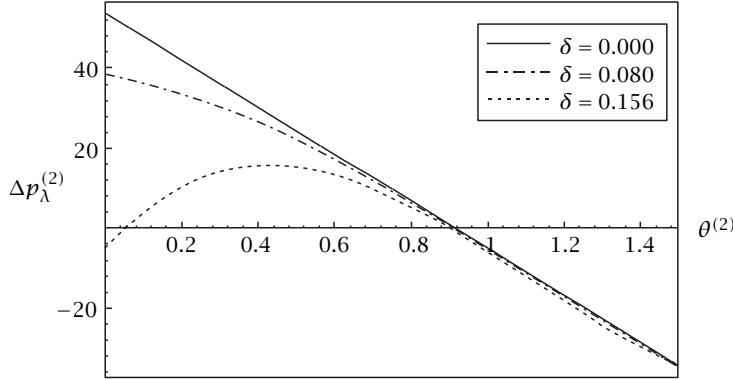


FIGURE 6.3. The pressure rise versus flow rate at $Re = 0.1$, $Wi = 0.08$, and $\varphi = 0.6$.

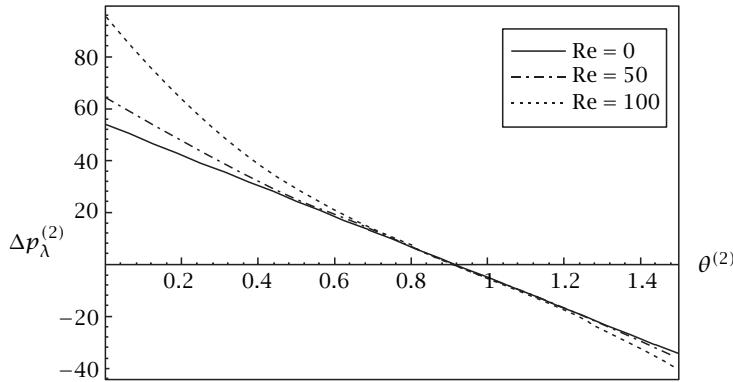


FIGURE 6.4. The pressure rise versus flow rate at $Wi = 0$, $\delta = 0.02$, and $\varphi = 0.6$.

The dimensionless friction force is plotted versus flow rate in Figures 6.5, 6.6, 6.7, and 6.8. Figure 6.5 shows the friction force versus flow rate at $\delta = 0.156$, $Re = 0.1$, and $Wi = 0, 0.04, 0.08$ in both cases $\varphi = 0.35$ and $\varphi = 0.6$. It is shown that the friction force is independent on Weissenberg number at $\varphi = 0.35$ but its magnitude decreases with increasing Weissenberg number at $\varphi = 0.6$ and it does not depend on Weissenberg number at a certain value of flow rate in this case. Shown in Figures 6.6 and 6.7 the effect of wave number δ on the friction force at $\varphi = 0.35$ and $\varphi = 0.6$, respectively. We notice from Figure 6.6 that the magnitude of the friction force increases with increasing the wave number and it is independent on wave number at a certain value of flow rate. This result is different at $\varphi = 0.6$ as shown in Figure 6.7. Finally, the friction force is displayed versus flow rate in Figure 6.8 at $Wi = 0$, $\delta = 0.02$, and $\varphi = 0.6$, for various values of Reynolds number ($Re = 0, 50, 100$). It is clear that the magnitude of friction force decreases with increasing Reynolds number and it does not depend on Reynolds number at a certain value of flow rate.

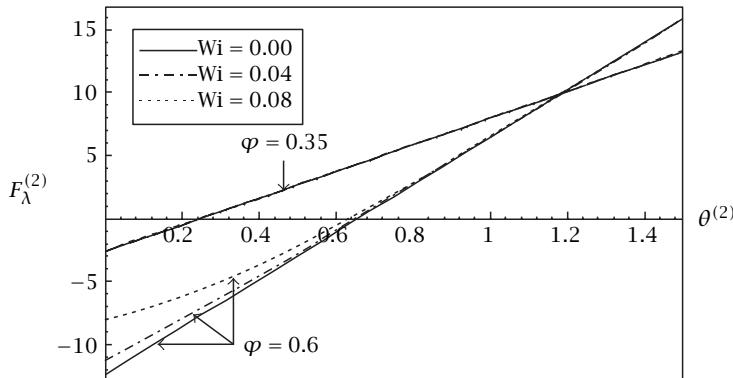


FIGURE 6.5. The friction force versus flow rate at $Re = 0.1$, $\delta = 0.156$, and $\varphi = 0.35, 0.6$.

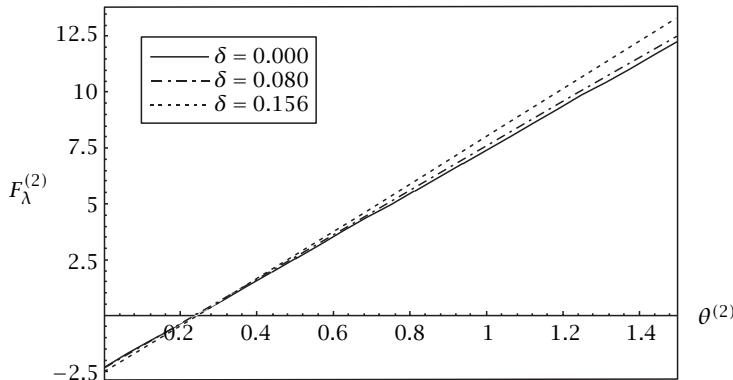


FIGURE 6.6. The friction force versus flow rate at $Re = 0.1$, $Wi = 0.08$, and $\varphi = 0.35$.

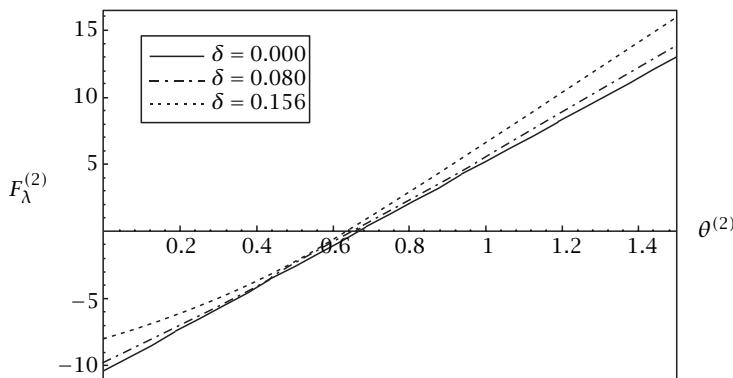


FIGURE 6.7. The friction force versus flow rate at $Re = 0.1$, $Wi = 0.08$, and $\varphi = 0.6$.

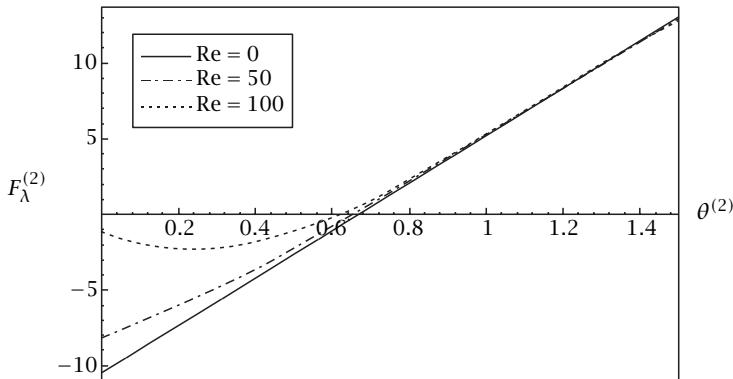


FIGURE 6.8. The friction force versus flow rate at $Wi = 0$, $\delta = 0.02$, and $\varphi = 0.6$.

REFERENCES

- [1] G. Bohme and R. Friedrich, *Peristaltic flow of viscoelastic liquids*, J. Fluid Mech. **128** (1983), 109–122. [Zbl 515.76131](#).
- [2] A. M. El Misery, E. F. Elshehawey, and A. A. Hakeem, *Peristaltic motion of an incompressible generalized fluid in a planar channel*, J. Phys. Soc. Japan **65** (1996), 501–506.
- [3] E. F. Elshehawey, A. M. El Misery, and A. A. Hakeem, *Peristaltic motion of a generalized Newtonian fluid in a non-uniform channel*, J. Phys. Soc. Japan **67** (1998), 434–440.
- [4] E. F. Elshehawey and K. S. Mekheimer, *Couple-stresses in peristaltic transport of fluids*, J. Phys. D: Appl. Phys. **27** (1994), 1163–1170.
- [5] M. Y. Jaffrin and A. H. Shapiro, *Peristaltic pumping*, Annual Review of Fluid Mechanics, vol. 3, Annual Reviews, 1971, pp. 13–36.
- [6] T. W. Latham, *Fluid motion in a peristaltic pumping*, Master's thesis, Massachusetts, MIT Cambridge, 1966.
- [7] R. K. Rathy, *An Introduction to Fluid Dynamics*, Oxford and IBH Publishing Co., New Delhi, 1976. [MR 56#17393](#).
- [8] A. H. Shapiro, M. Y. Jaffrin, and S. L. Weinberg, *Peristaltic pumping with long wavelength at low Reynolds number*, J. Fluid Mech. **37** (1969), 799–825.
- [9] A. M. Siddiqui and W. H. Schwarz, *Peristaltic motion of a third-order fluid in a planner channel*, Rheol. Acta **32** (1993), 47–56.
- [10] L. M. Srivastava, *Peristaltic transport of a couple-stress fluid*, Rheol. Acta **25** (1986), 638–641.
- [11] L. M. Srivastava and V. P. Srivastava, *Peristaltic transport of blood. Casson model II*, J. Biomech. **17** (1984), 821–829.
- [12] ———, *Peristaltic transport of a non-Newtonian fluid: applications to vas deferens and small intestine*, Ann. Biomech. Engin. **13** (1985), 137–153.
- [13] ———, *Peristaltic transport of a power-law fluid: application to the reproductive tract*, Rheol. Acta **27** (1988), 428–433.

ELSAYED F. ELSHEHAWEY: DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, AIN SHAMS UNIVERSITY, HELIOPOLIS, CAIRO, EGYPT

AYMAN M. F. SOBH: DEPARTMENT OF MATHEMATICS, COLLEGE OF EDUCATION, GAZA, P.O. BOX 4051, GAZA STRIP, PALESTINIAN NATIONAL AUTHORITY

E-mail address: a_sobh@hotmail.com

Special Issue on Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/jamds/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	June 1, 2009
First Round of Reviews	September 1, 2009
Publication Date	December 1, 2009

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be