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ABSTRACT. Peristaltic motion of viscoelastic incompressible fluid in an axisymmetric tube
with a sinusoidal wave is studied theoretically in the case that the radius of the tube
is small relative to the wavelength. Oldroyd flow has been considered in this study and
the problem is formulated and analyzed using a perturbation expansion in terms of the
variation of the wave number. This analysis can model the chyme movement in the small
intestine by considering the chyme as an Oldroyd fluid. We found out that the pumping
rate of Oldroyd fluid is less than that for a Newtonian fluid. Further, the effects of Reynolds
number, Weissenberg number, amplitude ratio and wave number on the pressure rise and
friction force have been discussed. It is found that the pressure rise does not depend on
Weissenberg number at a certain value of flow rate. The results are studied for various
values of the physical parameters of interest.

2000 Mathematics Subject Classification. 76Z05.

1. Introduction. A peristaltic pump is a device for pumping fluids, generally from
a region of lower to higher pressure, by means of a contraction wave traveling along
a tube-like structure. This traveling-wave phenomenon is referred to as (peristaltic).
This phenomenon is now well known to physiologists to be one of the major mech-
anisms for fluid transport in many biological systems. The study of the mechanism
of peristalsis, in both mechanical and physiological situations, has recently become
the object of scientific research. Since the first investigation of Latham [6], several
theoretical and experimental attempts have been made to understand peristaltic ac-
tion in different situations. A review of much of the early literature is presented in an
article by Jaffrin and Shapiro [5]. A summary of most of the experimental and theo-
retical investigations reported, with details of the geometry, fluid, Reynolds number,
wavelength parameter, wave amplitude parameter, and wave shape has been given by
Srivastava and Srivastava [11].

Most theoretical investigations have been carried out for Newtonian fluids, although
it is known that most physiological fluids behave as non-Newtonian fluids. However,
limited studies for non-Newtonian fluids have been made by Srivastava and Srivastava
[12, 13], Srivastava [10], and Elshehawey and Mekheimer [4]. Bohme and Friedrich [1]
have investigated peristaltic flow of second-order viscoelastic liquid assuming that
the relevant Reynolds number is small enough to neglect inertial forces, and that the
ratio of the wavelength and the channel height is large so that the pressure is constant
over the cross-section. Peristaltic motion of a third-order fluid in a planar channel has
been studied by Siddiqui and Schwarz [9], under the long-wavelength approximation
assumption. El Misery et al. [2] studied the peristaltic motion of Carreau fluid in a chan-
nel. They developed the solution in a perturbation series in powers of Weissenberg
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number using long-wavelength approximation and also the same problem was studied
by Elshehawey et al. [3] in the case of nonuniform channel.

The purpose of this paper is to study the peristaltic motion of Oldroyd fluid in a
tube. This problem can model the movement of the chyme, which may be considered
as Oldroyd fluid, through small intestine. In our analysis, we assumed that the velocity
components, the pressure, the shearing stress, and the flow rate may be expanded in a
regular perturbation series in the wave number. Expressions for pressure rise, velocity
components and friction force were obtained in terms of the flow rate, the occlusion,
the Reynolds number, the Weissenberg number, and the wave number.

2. Formulation and analysis. Consider the flow of an incompressible Oldroyd fluid
in a circular tube of radius a. We assume an infinite wave train traveling with velocity
¢ along the wall. Taking R and Z as cylindrical coordinates, the geometry of the wall
surface is

P_L(Z_,f):a+bsin27n(2_—cf), (2.1)
where b is the wave amplitude, A is the wave length, and Z is the same direction of
the wave propagation.

Choosing moving coordinates (7,z) (wave frame) which travel in the Z-direction
with the same speed as the wave, the unsteady flow in the laboratory frame (R, Z) can
be treated as steady [8]. The coordinates frame are related through

z=7-ci, 7 =R, w=W-c, u="0U, (2.2)
where U, W and @, w are, respectively, the radial and the axial velocity components in
the corresponding coordinate systems.

Equations of motion in the moving coordinates are
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The constitutive equations of Oldroyd fluid are, [7],
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where p is the pressure, 7, 1, j = 1,2, 3, are the components of the extra stress tensor,
I' is the relaxation time, p is the viscosity, and y; i» 1, = 1,2,3, are the components of
strain-rate tensor and given by

- ot u - ow - o ow
9 =2~ =2-=, Vo = 2 —— Viz=|=—+—=—]. 2.5
Yy Fr Y22 = 7 Y33 FER Y13 (az' 37 ) (2.5)
The boundary conditions are
87112 =0, #=0 for7=0, w , W= dh for 7 = h. (2.6)
or az
Introducing the nondimensional variables and parameters
z 4 7 R ct a’p
=z, z=Z -—, R=-= == Sl <4
=y T e . Ta PTaw
_An L 2.7)
ac c c A cu
. a - . cr pca
Yij=z)/ij, Wl=;, RG=T,

where Wi is the Weissenberg number, 6 is the wave number, Re is the Reynolds num-
ber,and h = h/a = 1+ (b/a)sin2mz = 1+ @sin2mz, ¢ = b/a < 1, is the amplitude
ratio, equations (2.3), (2.4), after using (2.5), become

10 ow

;ﬁ( HEZO’ (2.8)
Re53<ug—”+ ?31;) :Z—f—a(iaa (rra 1)—%“58;213), 2.9)
Reé(uaa—er aalz‘f) - 2—27(%%(7T13)+6%), (2.10)
T11+Wi5[ua;—;1 +waaT;‘ ot Hg 2(5T13a1;] 45(2—2‘), @.11)
T13+Wi[6<u%+w%—6 3321; %TB) Tllaal:]=—<62%+aa—l:>, (2.12)
T22+W15[ua;%+w%—27“m] 26, (2.13)
T33+ Wi [6(14% +w%72'r33%—1;) 72713%—1’:] = 726(%), (2.14)
The nondimensional boundary conditions are
ow dh

— =0, u=0 forr=0, w=-1, u=-— forr=h. (2.15)
or dz
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Eliminating the pressure from (2.9) and (2.10), we obtain

0 ou ou 0 ow ow
20 ( ou ou) 0 ( Jw  ow
Re‘s[é az(”ar“"az) ar<”ar tw 62)]
(2.16)
0 (10 0T33 0 /(10 T22

_90 (1o 0T33) 0 (10 T2 @)
T oor (1’ or (ri3) +9 oz ) 562(7 or (rm) ¥ o oz )’
3. Rate of volume flow. The instantaneous volume flow rate in the fixed frame is
given by
l:l - - -
Q=27TJ WRAR, (3.1)
0

where h is a function of Z and £.
The rate of volume flow in the moving frame (wave frame) is given by

h
q= ZTTJO wrdr, (3.2)

where & is a function of 2.
Using (3.2), one finds that the two rates of volume flow are related by

Q =q+mch?. (3.3)

The time-mean flow over a period T = A/c at a fixed position Z is defined as

-1 (T _
Q= fj Qadt, (3.4)
T Jo
which can be written, using (2.1) and (3.3), as

- (pz
Q=q+rrca2<1+7>. (3.5)
Defining the dimensionless time-mean flows € and F in the fixed and wave frame,

respectively, as

_Q  p__4 (3.6)
mca? Tca?

then making use of (3.6), equation (3.5) can be rewritten as

2
9:F+1+%, 3.7)

where

h(z)
F= ZJ rwdr. 3.8)
0
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4. Perturbation solution. Beginning by expanding the following quantities in a
power series of the small parameter 6 as follows:

U=Ug+0U+8°U+0(8%), w=wo+d0w; +8°w2+0(5%),

P _ 9o, 5001, 52002 3 _ 0 1), s2.(2) 3
0z 0z o 0z o oz +0(5%), T =Ty +0T)) +6°T7 +0(6°),

(4.1)
T3 =119 +0T8 + 82713 +0(6%), 1o =TV +61% +82T5 +0(8°),

T35 =Ty +0T5y +0°T45 +0(8%),  F=Fo+0F +8°F+0(5°),

then using the perturbation expansions (4.1) in equations (2.8), (2.10), (2.11), (2.12),
(2.13), (2.14), (2.15), (2.16), and (3.8) and collecting terms of like powers of §, we obtain
three sets of coupled linear differential equations with their corresponding boundary
conditions in ug,wo,u1, w1, and Uz, w; for the first three powers of 6. The first set
of differential equations in 1y, wy, subject to the corresponding boundary conditions,
yields the following classical Poiseuille flow:

wo = €1 +Cot?, (4.2a)
_ G, o3
Uy = > r n e, (4.2b)
where B2
2F Fo+
a=1+57, c2=—2( o ) 4.3)

On substituting the zeroth-order solution (4.2) in the second set of differential equa-
tions and using its corresponding boundary conditions, the first-order solution can
be obtained in the form

wy =c3+Car?+csrt+ e, (4.4a)
__ G Ci3 C55 Cooz
U = 2r 4r 6T SY’ (4.4b)
where
2F, (clcéh‘1 C2Céh6> 2F, (clcéhz czcéh‘*)
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e( 16 “\72

We now solve the second-order system. Using the zeroth-order and the first-order
solutions in the third set of differential equations and using the boundary conditions,
we obtain
_ 2 4 6 8 10
Wy =b1+bov +b3v*+byv° +bsv® +bgr 7, (4.6)

where

2F cy h? (h4ll1 hba, 3h8as h10a4>
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+Wi(
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3 4 2 :
4 : 4 4
<6c1c6 12c6c) + CzCS—%), ar = (3cacg —4cech),
as = (3cacic5 —3c1c2 +3c16265 ), ag = (c3cy —czcéz).

(4.7)

At this order, the perturbation solution for the axial velocity can be, using (4.2a), (4.4a),
and (4.6), written as

w=ci+cr?+6(c3+car?+csrt +c67F)

: : ‘ 4.8
+6% (b1 +Dbor? + b3r? + byr® + bsr® + ber1?). (4.8)

A close look at (4.8) reveals that the axial velocity is affected by the wave number, the
Reynolds number and the viscoelastic parameter (Weissenberg number).

5. Pressure gradient. An expression for the pressure gradient, 0p/0z, can be ob-
tained by substituting (4.1) into the dimensionless equation of motion (2.10) and
equating the coefficients of like powers of §, we obtain three sets of partial differen-
tial equations for dpy/0z,0p1/0z, and 0p,/0z. Using this form of 0p/0z, the pressure
rise and the friction force per wavelength can be obtained.

The nondimensional pressure rise and the nondimensional friction force per wave-
length are defined, respectively, as

ldp 1 ) dp
Apy = JO Lz, R= L n (75) dz. (5.1)

Since dp/0z is periodic in z, the pressure rise and the friction force per wavelength in
the longitudinal direction are independent of v, [5]. Accordingly, the integrals in (5.1)
can be evaluated on the axis at ¥ = 0. Further, the pressure rise and friction force can
be expanded as a power series in  as

Ap;\ = Ap)\o +5Ap;\1 +52Ap;\2 oy

(5.2)
F) =F,\0+(5F)\1+52F;\2+- ey
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where
_(dro _ J tdpy _('dp2
Apro = o dz dz, Apar = o dz dz, Apre = o dz dz,
(5.3)
1 1 1
F;\0=J h2( dpo)dz FM=J h2(—@)dz, F;\2=J h2<—@)dz.
0 d 0 az 0 dz

We now use the zeroth-, first-, and second-order terms for the pressure gradient in
(5.3), integrating from O to 1, then substituting in (5.2) we obtain

Ap¥ = —8F?1, -8l

2
+52 [ 323" (3(@? 1)1 +5I - 2)

+F(2){ 16; (11((;)21)14+211310[2)}

+Rez{(F( ) [22" (11(? 1)16+19157814)]
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.n.ZF(Z) 5 1T2(p2
-3 (41(@?-1)I, + 1211, —80) — 5

2
—ReWi{(FQ)f[BZSTr
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(5.4)
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—Wi2 { (F®)’[128m2(19(p? — 1) 119 + 351y — 161) ]
+ (F?)?[6412 (37(@? ~ 1)Is + 6717 — 30I5) ]
FP[12872(6(? —1)Is + 1115 - 514)]

+128m% (@ —1)14+2I3 —Iz)}:|;



28 E. F. ELSHEHAWEY AND A. M. F. SOBH

FY =8F?1,
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where

In—J —dz, n=12,..,10. (5.6)

Here, we used the relation

Fy=F® —§F, — 6°F>, (5.7)



PERISTALTIC VISCOELASTIC FLUID MOTION IN A TUBE 29

and Apﬁ\Z),F }(\2), and F® are, respectively, the pressure rise, the friction force and the

flow rate in the wave frame to the second order in 8, and where

n-—->y . p-—1 (+@?/2)  (1+39%/2)
Ve T - T e T (et
(5.8)
1 2n—3 n-2
S [ = T
The substitution of (5.8) into (5.4) and (5.5) yields
@ _ 8(1+3¢9?/2) 2 8
Apy == (0¥ 1= ) - g
(1-92) 2/ (1-9?)
252 2 2
L s? ,L%(Qm,lfg)ﬁzm 1 -
3(1-@2) 2 3 (1-92?)
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+ReW1{ 1T
5(1-?)
642 @2 (0@ —1-@?/2) 1612 1
+ 5/2 - 1- 1/2
15(1 —?) 15 (1-@2?)
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+Re 172
135(1 - @2)
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82m2g2(0? —1-@?/2)°
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272 6 4 2 2
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(-9

482 % (5@* +20@? +8) 0 _q @2\?
+ 13/2 -1-
(1-@2) 2

162 @ (3t + @2 —4) (2 @2 64122
+ 1172 0% -1-=-)- 572 ( |
(1-9?) 2/ (1-92?)
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and

@ _ 8(0¥ -1-@?/2)
F\~ =

(192"
+8+0° 1607® ! -1 (9(2)—1—£2>+64"7%72
5" 2 )"
R [ BT -0 304 (00 -1 gt /2)°
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Jmt( 1 (Qm_l_qﬁ)
15 (1-g2)" 2
"2992< 2) QDZ) T @? (p? +4)
P s 0T ) T oso
_Wi2 16n2<p2(5q94+20cp2+8)(9(2)_1_(p2)3
(1-2)"" 2
L 16m° 939t + @2 —4) (9<2) _ 1—22)2
(12" 2
_M<9(2)_1_£2)+128ﬂ.2 _;
(1_(p2)5/2 2 (1_(p2)1/2 y
where

2
02 —F® 14 %_ (5.11)

6. Results and conclusion. It is clear that our results calculate the velocity, the
pressure rise and the friction force without restrictions on the amplitude ratio, the
Reynolds number and the Weissenberg number but we used a small wave number.
Further, the results extend the work of Shapiro et al. [8] as well as it include the effect
of Weissenberg number Wi.

In Figure 6.1, the dimensionless pressure rise (Apy)® is graphed versus the dimen-
sionless flow rate 0@ for different values of Weissenberg number (Wi = 0,0.04,0.08)
at wave number 6 = 0.156 and Reynolds number Re = 0.1, for both cases (¢ = 0.35
and @ = 0.6). As shown, for = 0.35, the effect of Weissenberg number is very small
and the three curves coincide. But for @ = 0.6, the effect of Weissenberg number is
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A 2

-20

FIGURE 6.1. The pressure rise versus flow rate at Re = 0.1, 6 = 0.156, and

@ =0.35,0.6.
5 -
02
2 -
Ap,(\)
-10f
—-15T

FIGURE 6.2. The pressure rise versus flow rate at Re = 0.1, Wi = 0.08, and
@ =0.35.

very clear and show that the pumping rate of Oldroyd fluid is less than that for a
Newtonian having a shear viscosity the same as Oldroyd fluid and the pressure rise
decreases with increasing Weissenberg number. Further, it is clear that the pressure
rise is independent on Weissenberg number at a certain value of flow rate and the
peristaltic pumping, where (Apx)@ > 0 and 0® > 0, occur at 0 < 0 < 0.9 and the
augmented pumping, where (Ap,)©@ < 0 and 6@ > 0, occur at 0.9 < 8@ < 1.5, for
@ = 0.6. The linear relation for a Newtonian fluid is obvious in (5.9), with Wi = 0 and
0 = 0. Figures 6.2 and 6.3 show the effect of the wave number 6 on the pressure
rise at Re = 0.1, Wi = 0.08, and @ = 0.35,0.6, respectively. Figure 6.2 reveals that, for
@ = 0.35, an increase in the wave number yields a slight increase in the magnitude of
the pressure rise but for ¢ = 0.6, the effect of the wave number § is very clear and
the pressure rise decreases as wave number increases as shown in Figure 6.3.

Shown in Figure 6.4 the dimensionless pressure rise versus flow rate at Wi=0, 6 =
0.02, @ = 0.6, and Re = 0,50,100. The results reveal that the magnitude of the pres-
sure rise increases with increasing Reynolds number.



32 E. F. ELSHEHAWEY AND A. M. F. SOBH

A 2
9(2)

-20

FIGURE 6.3. The pressure rise versus flow rate at Re = 0.1, Wi = 0.08, and
@ =0.6.

(
A
PA 02

FIGURE 6.4. The pressure rise versus flow rate at Wi =0, 6 = 0.02, and @ = 0.6.

The dimensionless friction force is plotted versus flow rate in Figures 6.5, 6.6, 6.7,
and 6.8. Figure 6.5 shows the friction force versus flow rate at § = 0.156, Re = 0.1, and
Wi =0,0.04,0.08 in both cases ¢ = 0.35 and @ = 0.6. It is shown that the friction force
is independent on Weissenberg number at ¢ = 0.35 but its magnitude decreases with
increasing Weissenberg number at ¢ = 0.6 and it does not depend on Weissenberg
number at a certain value of flow rate in this case. Shown in Figures 6.6 and 6.7 the
effect of wave number 6 on the friction force at ¢ = 0.35 and @ = 0.6, respectively.
We notice from Figure 6.6 that the magnitude of the friction force increases with
increasing the wave number and it is independent on wave number at a certain value of
flow rate. This result is different at @ = 0.6 as shown in Figure 6.7. Finally, the friction
force is displayed versus flow rate in Figure 6.8 at Wi = 0, 6 = 0.02, and @ = 0.6, for
various values of Reynolds number (Re = 0,50, 100). It is clear that the magnitude of
friction force decreases with increasing Reynolds number and it does not depend on
Reynolds number at a certain value of flow rate.
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0

FIGURE 6.5. The friction force versus flow rate at Re = 0.1, § = 0.156, and
@ =0.35,0.6.

12.5

10

7.5
)
Fy

2.5

0

_2.5F

FIGURE 6.6. The friction force versus flow rate at Re = 0.1, Wi = 0.08, and
@ =0.35.

15} .
— 5=0.000 >
—.—-=8=0.080 R

LU S P 5=0.156 L

. . . . 02

FIGURE 6.7. The friction force versus flow rate at Re = 0.1, Wi = 0.08, and
@ =0.6.
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FIGURE 6.8. The friction force versus flow rate at Wi = 0, 6 = 0.02, and @ = 0.6.
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