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ABSTRACT. We consider a Bolza problem governed by a linear time-varying Darboux-
Goursat system and a nonlinear cost functional, without the assumption of the convexity
of an integrand with respect to the state variable. We prove a theorem on the existence
of an optimal process in the classes of absolutely continuous trajectories of two variables
and measurable controls with values in a fixed compact and convex set.
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1. Introduction. Letus consider a control system described by a system of ordinary
differential equations of the form

x = f(t,x,u), x(0) = xo, x(1) = x1, (1.1)

with a cost functional
1
I(x,u) :J fO(t,x,u)dt, ueM, (1.2)
0

where f:[0,1]xR*"xM — R", f0:[0,1]x R*xM — R, M is some subset of the
space R”.

One of the fundamental problems of optimization theory is the question of the ex-
istence of optimal processes for the system of (1.1) and (1.2). This problem was the
topic of investigations in many papers and monographs (cf. [1, 5] and the references
therein). The natural spaces in which one studies the existence of solutions for the sys-
tem (1.1) and (1.2) are the space of absolutely continuous trajectories AC([0,1],R")
and the space of essentially bounded controls with values in the set M. Under some
assumptions about the functions f, f°, and the set M (the growth conditions of the
function f9, the convexity of f° with respect to u as well as the convexity and the
compactness of M), it is possible to prove that the system (1.1) and (1.2) possesses a
solution in the space AC([0,1],R"™) xL*([0,1],R") (cf. [1, 5]).

In the present paper, we consider the problem of the existence of solutions for a
system with distributed parameters of the form
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%z
0x 0y

0z 0z
= Ao(x,y)z+A1(x,y)a +A2(x,y)@ +B(x,y)u ae.onk, (1.3)
z(-,0)=0 on|0,1], z(0,-)=0 on]0,1] (1.4)
with a cost functional

I(z,u) = JJKfO(x,y,z(x,y),u(x,y))dxdy, ueM, (1.5)

where z = (z!,...,z"), u = (ul,...,u"), (x,y) € K = [0,1]1 x[0,1], fO: K x R" x
R" — R, M C R" is a convex and compact set. Control system (1.3) and (1.4) is con-
sidered in the space of trajectories which are absolutely continuous on K(z € AC)
(cf.[11]) and in the space AUy, of controls u essentially bounded and such that u(x,y) €
M for (x,y) €K a.e.

The basic result of our paper is a theorem on the existence of solutions, stating that
if the function f° is convex with respect to u, continuous with respect to (z,u), mea-
surable with respect to (x,y), and satisfies some growth condition, then the system
(1.3), (1.4), and (1.5) possesses an optimal solution. This theorem has a form quite
analogous to existence theorems for ordinary systems.

Systems of the form (1.3) were the objects of investigations in many papers. Es-
sential results concerning the existence of smooth solutions can be found in [2]. The
problem of the existence of solutions in Sobolev spaces is considered in [9]. In [3, 8],
the existence and uniqueness of a solution in the class of continuous functions is
assumed. Under the above assumptions, the maximum principle for piecewise contin-
uous controls is proved. In [13], the system (1.3) and (1.4), with a cost functional of
the form

1 1 az
I(z,u) = L JO (cO(x,y)Z(x,y) +cl(x,y)$(x,y)

+ cz(x,y)aa—;(x,y) +d(x,y)u(x,y))dxdy
1 32 (1.6)
+ J;) (el(x)z(x, 1) +e2(x)a(x, 1))dx

1 0z
+JO <e3(y)2(1,y) +e4(x)@(l,y)>dy,

is considered in the spaces of absolutely continuous trajectories and measurable
controls with values in a fixed compact and convex subset of R". Using Dubovitskii-
Milyutin method, the author gives necessary conditions for optimality that are analo-
gous to the Pontryagin maximum principle for ordinary systems.

In our paper, we introduce the notion of equiabsolute continuity of a family of ab-
solutely continuous functions of two variables and give necessary and sufficient con-
ditions for such a family to be equiabsolutely continuous (the analogue of [1, 10.23)]).
Next, we prove the Ascoli-Arzela theorem for absolutely continuous functions of two
variables. Making use of this theorem, we prove an analogue of [1, 10.8(iv)] for sys-
tem (1.3). Finally, on the basis of the lower semicontinuity theorem (cf. [1, 10.8@)]),
we obtain a theorem on the existence of an optimal solution of problem (1.3), (1.4),
and (1.5).
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Systems of the form (1.3), (1.4), and (1.5) have a natural physical interpretation which
is given at the end of this paper.

2. Preliminaries. First, we recall the definition of an absolutely continuous function
on K, introduced in [11].

DEFINITION 2.1. A function z : K — R is called an absolutely continuous func-
tion on K (shortly, an AC function) if the associated function F, of an interval is an
absolutely continuous function of an interval and the functions z(-,0), z(0,-) are
absolutely continuous functions of one variable on [0,1].

The associated function F, of an interval is defined by the formula

Fo([x1,x21 % [>1,52]) = z(x2,¥2) — z(x1,)2) —2(x2, 1) + 2(x1, Y1) (2.1)

for all intervals [x1,x2]1 X [y1,y2] CK.

Let us recall that a function F of an interval Q C K is called absolutely continuous
if, for any ¢ > 0, there exists 6 > 0 such that 211'\]:1 [F(Q;)| < ¢ for all finite systems
of nonoverlapping closed intervals Q; C K, i = 1,2,...,N, such that 2]1'\]:1 u2(Q;) <6,
where > denotes Lebesgue measure in K (cf. [6]).

In [11], it was shown that z : K — R is absolutely continuous if and only if there
exist integrable functions 2 € L'(K,R), I', 12 € L'([0,1],R), and a constant ¢ € R
such that

X ry x y
z(x,y)=J J l1'2+J 11+J I+c¢ (2.2)
0 Jo 0 0

for all (x,y) €K.
Making use of the above integral representation, we can demonstrate that the abso-
Iutely continuous function z possesses (in the classical sense) the partial derivatives

y X 2
g—i - JO 241, g—; = JO 12412, —aiazy — 12 2.3)

defined for (x,y) € K a.e. These derivatives are, of course, integrable on K.

A vector function z = (z!,...,z") : K — R is called absolutely continuous function
on K if each of its coordinates functions z!, i = 1,...,n, is absolutely continuous on
K in the sense of Definition 2.1.

The space of all absolutely continuous vector functions z = (z1,...,z") : K — R" is
denoted by AC. The norm in this space is defined by the formula

”ZHAC = Hll'Z ”Ll(K,[Rn) + ”ll HLI([O,I],[R") + HlZHLl([O,l],IRn) + |C| (24)

It is easy to see that the space AC with this norm is a Banach space.

3. Families of equiabsolutely continuous functions of two variables; the Ascoli-
Arzela theorem. First, we recall some definitions.

A family {@;(-), s € S} of functions defined on [0,1](K) is called equibounded on
[0,1](K) if there exists some constant R > 0 such that
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|ps(t)| <R 3.1)

forallt €[0,1](t €eK) and s € S.
A family {@;(-), s € S} of absolutely continuous functions on [0, 1] is called equiab-
solutely continuous on [0, 1] if, for any & > 0, there exists 6 = 6 (&) > 0 such that

N
D @s(Bi) —@s(exi) | <€ (3.2)
i=1

for all finite systems of nonoverlapping intervals [«;,Bi], i = 1,...,N, in [0,1] with

Zﬁil(ﬁi—zxi) <dand forall seS.

A family {@;(-), s € S} of integrable functions on [0,1](K) is called equiabsolutely
integrable on [0,1](K) if, for any € > 0, there exists 6 = 6 (&) > 0 such that

L lps| <& (3.3)

for all measurable subsets E of [0,1](K) with p(E) < 6(u2(E) <6) and forall s € S,
where p; denotes Lebesgue measure in [0,1].
We have the following.

LEMMA 3.1. If {Qps, s € S} is a family of absolutely continuous functions on [0,1],
then this family is equiabsolutely continuous if and only if the family of derivatives
{@;, s €S} is equiabsolutely integrable.

The above definitions and the proof of Lemma 3.1 can be found in [1, 10.2].

Now, let us introduce the notion of equiabsolute continuity of a family of absolutely
continuous functions of an interval that are defined on the collection of all closed
intervals contained in K.

So, a family {F;:s € S} of functions of an interval, which are absolutely continuous
on K, is called equiabsolutely continuous if, for any € > 0, there exists 6 = 6(¢) > 0
such that

N
D IF(P)| <¢ (3.4)
i=1
for all finite systems of nonoverlapping closed intervals P;, i = 1,...,N, in K with
Z}i\f:luz(Pi) <dandforall s €S.
Before we prove an analogue of Lemma 3.1 for functions of an interval, we recall
(cf. [6]) that an absolutely continuous function F on K of an interval possesses a
derivative DF(x) for x € K a.e. This derivatives is integrable on K and

J DF(x) = F(P) (3.5)
P

for any interval P C K.

LEMMA 3.2. If{F;:s € S} isa family of functions of an interval, which are absolutely
continuous on K, then this family is equiabsolutely continuous if and only if the family
of derivatives {DF;: s € S} is equiabsolutely integrable on K.
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PROOF

SUFFICIENCY. Let us fix € > 0 and let 6 > 0 be the number in the definition of
equiabsolute integrability of the family of derivatives {DF;, s € S}.If {P;, i=1,...,N}
is a system of nonoverlapping closed intervals contained in K with Zﬁl Uz (P;) <6,
then

N N N
SUEE) = <> [ IpEI= | IDEI<e (3.6
i=1 i=1 i=17Pi

i=1"

J DF;
Pi

for all s € S because p, (UY, P;) < 6.

NECESSITY. Let us fix € > 0 and let 6 > 0 be the number in the definition of equi-
absolute continuity on K of the family {F;, s € S} for £/6. Now, let us fix s € § and
the set E C K with p(E) < 6/2. Of course,

N

H2(E™) sg, H2(E7) < (3.7)

where
E* ={(x,y) € E: DFs(x,y) = 0},

_ (3.8)
E~ ={(x,y) € E:DFs(x,y) < 0}.

From the integrability of DF; it follows that there exists o > 0 (depending on ¢ and s)
such that

&
L | DFs | = & (3.9)

for any measurable set F C K with u(F) < o. Without loss of generality, we may assume
that o < 6/2.
Let G be an open set such that

E*CG, w(G)<u(E*)+o. (3.10)

From [6, Lemma V.4.1], it follows that there exists at most countable family {P;, i =
1,2,...} of disjoint right-hand open intervals P; = [xi,x}[ x [y, ¥i[,i=1,2,..., such
that

Upri=6. (3.11)
i=1
Consequently,
> . 6 o
2 H2(P) = p2(G) < po () +0 < 5+ 5 = 8. (3.12)
i=1
If we denote
N
Gy=Pi (3.13)

i=1
for N € N, then we get

u2(Gn) <6, (3.14)
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p2(GN\E") < u2(G\E™) < 12(G) — 2 (GNE™)
<u(E*)+0—pu(GNET)

3.15
=u(E*)+o0—-u(E*) =0, ( )
u2(G\Gn) < 0,
for sufficiently large N. Thus,
I |DFS|=J DFS=J DFS+J DF;
E+ E*nG E*nGy E*N(G\GN)
= (J DFS+J DFS) —J DF3+J DF
ETnGN GN\E* GN\E* E*n(G\GN)
(3.16)
< DF5+J | DF, | +J | DF, |
GN GN\E* G\GN
N £ € £ €
<> F(P)+—-+=-<3-—=—.
Zl P+t =3c=5
In an analogous way, we can show that
3
j |DF,| < . (3.17)
E- 2
So,
j |DF, | <e (3.18)
E
for any measurable set E C K with > (E) < 6/2 and for any s € S. O

Now, let us introduce the notion of equiabsolute continuity of a family of absolutely
continuous functions of two variables.

We say that a family {z;, s € S} of functions of two variables, which are abso-
lutely continuous on K, is equiabsolutely continuous if the families {F; , s € S},
{z5(-,0), s € §}, and {z:(0,-), s € S} are equiabsolutely continuous on K, [0,1], and
[0,1], respectively.

Using equalities (2.1) and (2.2), we easily notice that, for an absolutely continuous
function z,

02z

DFz = ox 0y

(3.19)

in K a.e. From Lemmas 3.1 and 3.2, we immediately obtain

THEOREM 3.3. If {z;, s € S} is a family of functions of two variables, which are
absolutely continuous on K, then this family is equiabsolutely continuous if and only if
the families {0%°z;/0x 0y, s € S}, {0zs/0x(-,0), s €S}, and {0z5/0y(0,-), s € S} are
equiabsolutely integrable on K, [0,1], and [0, 1], respectively.

We end the considerations of this section with Ascoli-Arzela theorem for absolutely
continuous functions of two variables.

THEOREM 3.4. Let (z,)nen be a sequence of absolutely continuous functions on
K. If it is equibounded and equiabsolutely continuous on K, then we can choose a
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subsequence (zn, )ken that is uniformly convergent on K to some function zo, which
is absolutely continuous on K.

PROOF. It is easy to see that the equiabsolute continuity of the sequence (z;)nen
carries its equicontinuity. Indeed, let € > 0 and 6 = min{d, 62,3}, where 61, 62, d3 are
the numbers in the definition of equiabsolute continuity of the sequences (z; (-,0)) nen,
(zn(0,*))nen, (Fz,)nen, respectively, for £/4. Then, for any points (k,7), (X,¥) € K,
with |X — x|+ |y —y| < 8, we have

-z (%, 9) | + | zn (%, ) —zn(x, ) |
~2zn(%,5) =20 (0,5) +2n(0,¥) |

for any n € N. Applying Ascoli-Arzela theorem for continuous functions (cf. [4, 1.5.4]),
we assert that we can choose a subsequence (zy, )ken that converges uniformly on K
to some function zy continuous on K.

Now, we show that the function z, is absolutely continuous on K. Indeed, from the
equiabsolute continuity of the sequences (ank ) ken» We have for any € > 0, there exists
6 > 0 such that

N
D |z (P)| <€ (3.21)
i=1

for all finite systems of nonoverlapping closed intervals P; ¢ K, i = 1,...,N, with
SN u2(P) < & and for all k € N. If we denote P; = [x1,x3]x [vi,¥i],i=1,...,N,
then inequality (3.21) can be written in the form

N
z |an(x§’y5) —Zny (x1,23) _an(xé;yf) +Zny (x1,1) | <& (3.22)
i=1

Using the pointwise convergence of the sequence (zy, )ken 10 Zg, We obtain from (3.22)

N

> | zo(xh, v8) — zo(xi, ) — zo (x5, 1) + 2o (xf, 1) | <, (3.23)
i=1
i.e.,
N
> |F (P <& (3.24)

i=1
This means that the function F;, of an interval is absolutely continuous on K.

In an analogous way, we can show that the equiabsolute continuity of the sequence
(zn, (+,0))ken implies the absolute continuity of the function z,(-,0), and the equi-
absolute continuity of the sequence (zy, (0, -))ken implies the absolute continuity of
the function zy (0, -).

So, the function z( is absolutely continuous on K and the proof is completed. O
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4. On the existence of an optimal solution. Let us consider system (1.3) and (1.4).
In the sequel, we assume that the functions

Ag:K —R™",  Aj:K —R"",

4.1
Ay :K —= R™", B:K — R™" @1

are measurable and essentially bounded.
The class of admissible controls is defined as follows:

Ay := {u: K — R";u is measurable on K and u(x,y) € M for (x,y) €K a.e.},
(4.2)

where M C R" is a fixed compact and convex set.
In [11], the author proved the following.

THEOREM 4.1. For any control u € AUy, there exists a unique solution z € AC of
system (1.3) and (1.4) that satisfies (1.3) a.e. on K and the boundary conditions (1.4)
everywhere on [0,1].

Since, in the sequel, we use some facts from the proof of Theorem 4.1, we reproduce
the proof here.

PROOF OF THEOREM 4.1. Let us define the following operator:
F:LY(K,R") — LY (K,R"™),
x ry
FW(x,7) = Aox, ) | | 1 ntds “3)

Y X
+A1(x,y) Jo l(x,t)dt +Ax(x,y) L I(s,y)ds.

It is easy to see that this operator is continuous. Consider a sequence (lx)ken defined
by the recurrence relation

lo=0, lkZBLI+@(lk_1), k=1,2,.... 4.4)

Of course, I can be represented in the form

k-1
L= > F°(Bu), (4.5)
s=0
where
%°(Bu) =Bu,  F°(Bu)=F(F '(Bu)), s=1,2,.... (4.6)
By definition,
X ry v X
F(Bu)(x,y) =Ao(x,y)j J Bu+A1(x,y)J Bu+A2(x,y)J Bu. 4.7)
0 Jo 0 0
So,

| %(Bu) (x,y)| < 3CN, (4.8)
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where

C = max ess sup |A;(x,y) ],
i=0,1,2 (x,y)eK

4.9)
N =ess sup |B(x,y)| max |u|
(x,y)€K ueM
and, consequently,
||%(Bu)||L1(K'|Rn) < 3CN (410)

It can be easily noticed that %?(Bu) is the sum of 3% components, and that each
component may be estimated by C2N. Thus,

|%2(Bu)(x,y)| < (3C)?N for (x,y) €K a.e. 4.11)
and, consequently,
1% (Bu) |1 (k. gny < (BC)2N. (4.12)

On the basis of the induction principle, it can be shown that %° (Bu) is the sum of 3°
components. Each component of that sum is the product of s coefficients A;,i=0,1,2,
and a k-fold, k > s, multiple integral. In this integral, there are at least [(s +1)/2]
integrations with respect to x or y. This implies that each component of the sum
may be estimated by

1

S
7[(5+1)/2]!' (4.13)
Consequently,
1
apRs S
| F* (Bu) (x,y)| < (3C) Ni[(5+1)/2]! for (x,y) €K a.e. (4.14)
So,
1
for ) s
Since the series of numbers
> 1
3C)N———— 4.16
go( ) [(s+1)/2]! (4.16)
is convergent, there exists a limit (in L' (K,R"))
I{im Iy = 1y. (4.17)
From the continuity of ¥ and from (4.4), we obtain
l, =%(,) +Bu. (4.18)
Adopting
X (¥
zu(x,y) = I J L,(s,t)dsdt, (4.19)
0 Jo

we obtain a solution of system (1.3) in the space AC, satisfying the boundary condi-
tions (1.4). O
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The fundamental role in this section is played by the following theorem.

THEOREM 4.2. Let (Uy)nen be any sequence of elements of the setUy and (zy) nen—
the sequence of the corresponding solutions of system (1.3) and (1.4) belonging to AC.
There exist a control 1y € WUy, a function zg € AC, and a subsequence (ny)ren Of the
sequence of positive integers, such that the pair (zo,up) satisfies system (1.3), (1.4), and

1) zp, k?% zo uniformly on K;

(i) 9%zp, /0x 0y P 0%2z0/0x 0y weakly in L' (K,R");

(iil) 0zp, /0x P 0z0/0x weakly in L' (K,R");

(iv) 0zn, /0y P 0z0/0y weakly in L' (K,R™);

(V) Un, o weakly in L' (K,R").
Before proving the above theorem, we give some lemmas. The first of them is a

well-known result, so we give it without a proof.

LEMMA 4.3. From any sequence (Uy)nen Of elements of Uy, one can choose a subse-
quence (Uy, ) ken sSuch that (uy,,) P uo weakly in L' (K, R"), where u is some element
— 00

ofGlLM.

LEMMA 4.4. The family {0°z,/0x 0y, u € WUy}, where z,, is the solution of the sys-
tem (1.3) and (1.4) corresponding to a control u € Uy, is equibounded on K.

PROOF. Let us use the notation and some facts from the proof of Theorem 4.1.
There, it was proved that, for any control u € Uy,

zu(x,y) = f: E} L,(s,t)dtds. (4.20)

Since, in view of (4.5) and (4.17),

0%z, B s

3xdy (x,) = Ly(x,y) = Zoav (Bu)(x,¥), (4.21)
we have

0%z, 1

400, (4.22)

axdy [s+D/2] °

(x| < S EON
s=0
The above sum does not depend on u € AUy,. Therefore, the proof is completed. O
LEMMA 4.5. The family {z,, u € Uy} is equibounded on K.

PROOF. The assertion follows directly from the equality

C(* (Y 9%zu
Zu(x,y) _Jo Jo axdy (s,t)dtds 4.23)

and Lemma 4.4. O

From Lemma 4.4, we immediately get the following.
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LEMMA 4.6. The family {0°z,/0x 0y, u €Uy} is equiabsolutely integrable on K.
Now, we give the proof of Theorem 4.2.

PROOF. Let (uy)nen be a sequence of controls from AUy, and let us choose from
it, on the basis of Lemma 4.3, a subsequence (uy, )ken such that uy,, o Uo weakly
in L1 (K,R"), where u, is some function belonging to aU,;. From Lemmas 4.5 and 4.6,
it follows that the sequence (zy, )ken Of the corresponding solutions of system (1.3)
and (1.4) satisfies the assumptions of Theorem 3.4. So, we may choose a subsequence,
say still (ny), such that z,, ﬁ zo uniformly on K, where z, is some function from
AC. From Lemma 4.6, it follows that the sequence (a2znk /0x 0y cn) 1S equiabsolutely
integrable on K. Thus, making use of Dunford-Pettis theorem (cf. [1, 10.3(i)]), we
may choose a subsequence, say still (ng)ren, such that 8zznk/ax oy oo weakly
in L (K,R™), where o is some function from L!(K,R"). In view of the above, let us
observe that, for any (x,y) € K,

Y 92z
e = [0 f S5

0%z,
—L Jo X10,x1x[0,y] X0V rom J J X10,x1x[0,y]0 = J J

X4 denotes the characteristic function of the set A.
On the other hand, since the sequence (zy, )xen converges uniformly on K to zg, we
have

(4.24)

Zn, (X,5) P Zo(x,y) (4.25)

for any (x,y) € K. Consequently,

X (¥
Z2o(x,y) = J J o (4.26)
0 Jo
for any (x,y) € K, and
8220
axdy (x,y)=0(x,y) (4.27)

for (x,y) € K a.e. Thus,

azznk o 9%z
0x 0y k- 0x0Y

(4.28)

weakly in L (K, R"™).
Now, let us observe that

"k( )—J ~ a x,t)dt (4.29)

for (x,y) € K a.e., and that

az”" )—J — (5 ¥)ds (4.30)
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for (x,y) € K a.e. So, from the linearity and the continuity of the operator

$:LY(K,R") — LY (K,R"),
y (4.31)
£(g9)(x,y) = JO g(x,t)dt,

and from the fact that the sequence (aZan /0x 0y )ken converges weakly in L (K, R™)
to 0%2z¢/0x 0y, we obtain (cf. [7, 1I1.24.3])

0zy, 0z

4.32
0x k-0 0X (4.32)
weakly in L (K,R"). In an analogous way, we assert that
0z
m_ 920 (4.33)

0y k- 0y

weakly in L (K, R™).

To complete the proof, it is sufficient to show that the pair (zg,u() satisfies system
(1.3) and (1.4).

Indeed, the fact that zo satisfies the boundary conditions (1.4) follows immediately
from the uniform convergence of the sequence (z, )ken to Zo.

The fact that (zg,uo) satisfies (1.3) follows from the convergences

azznk 0%z

0X 0y k- 0Xx0Yy (4.39)
weakly in L' (K, R"),
Ao(+, )z, P Ao(+,)zo (4.35)
weakly in L (K, R"™),
aznk 0zo
AL ) SR s A ) S (4.36)
weakly in L (K, R"),
aznk aZO
Az(+,) 3y iow Az(',')ay (4.37)
weakly in L' (K, R"),
BCyJun, = B, )uo (4.38)

weakly in L' (K,R™) and from the fact that each pair (ZnyUny), k € N, satisfies (1.3).
O

Now, let us consider Bolza problem (1.3), (1.4), and (1.5) in the spaces AC of trajec-
tories and Uy, of controls. Consider the function

fOrKxXR"XR" — R. (4.39)

We assume that
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(1) for any z € R, u € R, the function f°(-,-,z,u) is measurable on K,

(2) for any (x,y) € K, the function f°(x,y,-,-) is continuous on R"™ x R",

(3) for any (x,y) € K, z € R", the function f°(x,y,z,-) is convex on R,

(4) there exist a function ¢ : K = R} belonging to L' (K,R) and a constant ¢ > 0
such that

fox,v,z,u) = —wix,y)—clul (4.40)

for (x,y)eKae.and z€ R", u e R".
We denote

m =inf{I(z,,u), ueUy}. (4.41)

From (4), it follows that —o < m < + 0.

When m = + o0, the existence of an optimal solution is obvious.

So, let us assume that —co < m < +o0. Let (2, U, ) neny be a minimizing sequence for
the functional I, i.e.,

m= }Li;n I(zp, un), (4.42)

where z, = z,,.

Making use of Theorem 4.2, we assert that there exist a pair (zg,uo) € AC XUy and
a subsequence (1ny)xen of the sequence of positive integers, such that the pair (zg, 1¢)
satisfies system (1.3), (1.4), and

Zn, k:>> 20 (4.43)
uniformly on K,
Upy 7= Uo (4.44)

weakly in L' (K, R"). Thus, from [1, 10.8(i)], we obtain
m < 1(zg,ug) < h?}glfl(znk’u"k) = 11151; I(zn,, un,) = m. (4.45)
Hence,
I(zg,uo) =inf {I(zy,,u), u € Up}. (4.46)
So, we have proved the following theorem.

THEOREM 4.7. If conditions (4.1), (1), (2), (3), and (4) are satisfied, and the set M C R"
is compact and convex, then there exists an optimal solution (zy,uq) of Bolza problem
(1.3), (1.4), and (1.5) in the spaces AC of trajectories and Uy of controls.

5. On some physical interpretation. Let us consider a gas filter made in the form
of a pipe filled up with a substance S which absorbs a poison gas. Through the filter,
a mixture of air and gas is pressed at a speed v = v (x,t) > a > 0 with the aid of an
aggregation A. We denote by y = y(x,t) the quantity of the poison gas being present
in the capacity unit of the substance S at a distance x from the inlet of the filter
and at a moment t. Assume that the speed v = v(x,t) is so great that the diffusion



310 D. IDCZAK AND S. WALCZAK

process plays no essential role in the motion of the gas. In this case, the process of the
absorption of the poison gas by the filter, filled up with the substance S, is described
by a differential equation of the form

o’y B oy oy _
W(X’t) + D) ﬁ(x,tHﬁya(x,t) =0 (5.1)
under the boundary conditions
¥ (x,0) =yoexp(—v%X), ¥(0,t) = yo, (5.2)

where 7y is the gas concentration at the inlet to the filter (yo-const.), v (x,t) denotes
the speed of the flow of the mixture of air and gas through the filter at the moment
t and the distance x from the inlet of the filter, vo = v(0,0),  and y are physical
quantities characterizing the given gas (for details, see [10, Chapter II]).

Without loss of generality, we may assume that x € [0,1] and t € [0,1]. Put

y(x,t) :z(x,t)+y0exp<—v£0x>. (5.3)

It is easy to demonstrate that the system (5.1) and (5.2) is equivalent to a system of
the form

0%z

ox ot

oz B oz _YB*yo B\ _
Get) 4 By 5 (D) + o s o () = Y0 20 exp( on)_o,

z(x,0) =0, z(0,t) =0.

(5.4)

Let us suppose that we have some influence on the process of the filtering of the
gas, and that our control has a linear character. In this situation, we can assume that
the system describing this process is of the form

02z 0z B oz _YB*yo B
3x L (x,t) +Byax (x,t) + vx.D) 3t (x,t) = . exp (— vox)u(x,t), (5.5)
z(x,0) =0, z(0,t) =0. (5.6)

The function u : K — [c,d], where —c < ¢ < d < o are fixed numbers, is treated as
a control. Suppose that the cost functional has the form

11
I(z,u) = L JO SOx,t,z(x, 1), u(x,t))dxdt. (5.7)

Assume that f9 satisfies conditions (1), (2), (3), and (4). By Theorem 4.7, control
system (5.5), (5.6), and (5.7) possesses an optimal process (zg,Ug) in the space of
absolutely continuous trajectories z € AC and in the set of admissible controls
uelL*([0,1],[c,d]).
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