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ABSTRACT. Let B be a ring with 1, C the center of B, G an automorphism group of B of
order n for some integer n, CG the set of elements in C fixed under G, A = A(B,G, f) a
crossed product over B where f is a factor set from G x G to U(CC). It is shown that A is
an H-separable extension of B and VA (B) is a commutative subring of A if and only if C is
a Galois algebra over C% with Galois group G|c = G.
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1. Introduction. Let B be aring with 1, p an automorphism of B of order n, B[x;p]
a skew polynomial ring with a basis{1,x,x2,...,x" !} and x" = v € U(B®) for some
integer n, where B is the set of elements in B fixed under p and U (B?) is the set of
units of B”.

In [4] it was shown that any skew polynomial ring B[x;p] of prime degree n is an
H-separable extension of B if and only if C is a Galois algebra over C? with Galois
group (p|c) generated by p|c of order n. This theorem was extended to any degree
n [5, Theorem 1]. Recently, the theorem was completely generalized by the present
authors in [8], that is, let B[x;p] be a skew polynomial ring of degree n for some
integer n. Then, B[x;p] is an H-separable extension of B if and only if C is a Galois
algebra over C? with Galois group (p|c) = (p). The purpose of the present paper is to
generalize the above Ikehata theorem to an automorphism group of B (not necessarily
cyclic) and f is an factor set from G x G to U(C®). We show that A is an H-separable
extension of B and VA (B) is a commutative subring of A if and only if C is a Galois
algebra over C¢ with Galois group G|c = G.

2. Preliminaries and basic definitions. Throughout this paper, B represents a ring
with 1, C the center of B, G an automorphism group of B of order n for some integer
n, B¢ the set of elements in B fixed under G, A = A(B,G, f) a crossed product with
a free basis {Uy | g € G and U; = 1} over B and the multiplications are given by
Ugb = g(b)Uy and UyUy = f(g,h)Ugp for b € B and g,h € G where f is a map from
G xG to U(CC®) such that f(g,h)f(gh,k) = f(h,k) f(g,hk), Z the center of A, G the
inner automorphism group of A induced by G, thatis, g(x) = UgxUy I foreachx € A
and g € G. We note that f(g,1) = f(1,9) = f(1,1) =1 for all g € G and G restricted
to Bis G.

Let A be a subring of a ring S with the same identity 1. We denote V (A) the


http://ijmms.hindawi.com
http://www.hindawi.com

658 G. SZETO AND L. XUE

commutator subring of A in S. Aring S is called a G-Galois extension of S if there exist
elements {a;,b; € S, i=1,2,...,m} for some integer m such that >/, a;g(b;) = O1,g-
The set {a;, b;} is called a G-Galois system for S. S is called an H-separable extension
of A if there exists an H-separable system {x; € Vs(A), i € Vsg,s(S) |i=1,2,...,m}
for S over A for some integer m such that > /%, x; v = 1®4 1.

3. The Ikehata theorem. In this section, we show that A is an H-separable exten-
sion of B and V(B) is a commutative subring of A if and only if C is a Galois algebra
over C¢ with Galois group G|c = G. We begin with a lemma.

LEMMA 3.1. (a) Va(B) =deGJgUg where J;={b € B|ab=Dbg(a) foralla € B}.

(b) Vaeza(A) = {Xse62necbignUy ®8 Un | b(g,h) € Jgn and k(by-14p))f (K,
k=1g) = by pi-1)f (hk™1,k) forall g,k € G}.

@ If 3 ge6 2hec big Uy ® Un € Vagya(A), then by nyUgn € Va(B).

(d) If T gec ZhecbigmUg ® Up € Vagza(A), then by 4-1y = g(b11)(f(g~1,9))7" for
allg € G.

PROOF. (a) Let b € J4. Then a(bUy) = (ab)Uy = bg(a)U,; = (bUy)a for all a
B. Hence J4Uy C Va(B). Therefore, > c¢ JoUy C Va(B). Conversely, let 3 e byU, €
Va(B).Thena jecbgUy = 3 gecbgUga = > gec bgg(a)Ug forall a € B, and so ab, =
byg(a) foralla € Band g € G, thatis, by € J, forall g € G. Thus VA(B) C dengUg.

(b) x = > ge6 2hec bignUg ®pUn € Vagya(A) if and only if bx = xb and Urx = xUy
for all a € B and k € G. But

bx = z z bb(g’h)Ug ®p Uy,

geG heG
xb=> > bgnUs®sUpb=> > bgnUs®sh(b)Up 3.1
9€G heG geG heG
= Z Z b(g,mUgh(b) @ Up = Z Z bignm (gh)(D)Ug &5 Up,
9eG heG geG heG

so bx = xb if and only if bbyn) = byn ((gh)(b)) for all b € B and g,h € G, that is,
b(g,n) € Jgn by noting that {Uy; ®3Un | g, h € G} is a basis for A over B. Moreover,

Ux =Uk 2. > bigmUg®Un= > > k(bgn)UkUy®sUn

geG heG geG heG
= Z Z k(bgm)f(k,g)Urg ®pUp
geiG heG
= Z Z k(b(k’l(kg),h))f(k;kil(kg))U(kg) ®pUp (3.2)
geiG heG
= > > k(bgn)f(kk DU ©sUp
leGheG

= > > k(bgrgnf(kk™'g))Uy®pUp,

geiG heG
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and

xXUk= > > bgmUy®UnUx= > > bgnUy®sf(hk)Unk

geiG heG geG heG
= Z z b(g,h)Ugf(h,k) ®p Uhk = Z Z b(g,h)f(h,k)Ug ®p Uhk

geG heG geG heG

o (3.3)

=2 2 big ok f (WK™ k) Ug ©5 Unk

geG heG
= > > bgunfUkT k) UgepUi= > > by f(hk™',k)Uy ®p Up.

geiG heG geG heG

Hence, Urx = xUy if and only if k(by-14p))f(k,k™1g) = b(gpr-1).f (hk™1,k) for all
g,hk eaG.

(QIf Xy XnecbgnUg® Up € Vagya(A), then bigny € Jgn by (b); and 80 by nUgn €
Va(B) by (a).

(@D I S geg SheebiomUs @ Un € Vaspa(A), then k(b-1g ) fkk1g) = b1, f
(hk=1,k) for all g,h,k € G by (b). Let k = g and h = 1. Then b(g’g—l)f(gil,g) =
g(b11)f(g,1) = g(b1,) forall g € G. This implies that b, ,-1, = g(b1,1)(f(g~1,9)) !
for all g € G. O

THEOREM 3.2. A is an H-separable extension of B and VA (B) is a commutative sub-
ring of A if and only if C is a Galois algebra over C¢ with Galois group G|. = G

PROOF. (=) Since A is an H-separable extension of B and B is a direct summand
of A as a left B-module, VA (Va(B)) = B [7, Proposition 1.2]. But VA (B) is commutative,
S0 Va(B) C VA(VA(B)) = B. Thus VA (B) = C.

Since A is an H-separable extension of B again, there exists an H-separable system
{xi € Va(B), i € Vagpa(A) | i=1,2,...,m} for some integer m such that > 1% x;y; =
1®pl. Let ;i = Y gec 2hee bé;)‘h)Ug ®p Up. We claim that {a; = x;, b; = bfifl) |i=
1,2,...,m} is a G-Galois system for C.Infact, a; =x; € Va(B) = C and by Lemma 3.1(b),
b; = bg)’l) € J1 = C. Moreover, since y; = > ;e 2hec bé;)’h)Ug ®p U € Vagpa(4), bf;;’h)
Ugh € Va(B) by Lemma 3.1(c). But Va(B) = C, so bg‘h) = 0 when gh = 1. Thus, y; =

Sgecbiy g1,Ug ®5Ug-1. By Lemma 3.1(d), byl 1) = g(b(}1))(f(g71,9)) 7" = g(b)(f

(@71,9) 7 s0yi=343e69b)(f(g71,9)) Uy ®pUy-1. Therefore,

legl=> xiyi=> a; y, g(bi)(f(g_lag))_lUg ®pUy-1

i=1 i=1 geG
m (3.4)
= > Y aigb)(f(g79) UgesUy.
gei i=1

This implies that >, a;g(bi)(f(g~',9))~' = 814, S0 2% aig(b;) = 514, that is
{ai,b; | i=1,2,...,m} is a G-Galois system for C. Therefore, C is a Galois algebra
over C¢ with Galois group G |¢= G.

(<) Since C is a Galois algebra over C¢ with Galois group with G|c = G, there
exists a G-Galois system {a;,b; € C | i = 1,2,...,m} for some integer m such that
ST aig(b;) = O1,4-Let x; = a; and y; = X jec g(bi)Uy ®p Ugjl. We claim that {x; €
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Va(B), i € Vagga(A) | i=1,2,...,m} is an H-separable system for A over B. In fact,
xi = a; € C C Vo(B). Noting that U;! = f(g,97')'Uy-1, we have U;'b = f(g,97 )"
Ug1b=f(g,9 ) gt (b)Us1 =91 (b)f(g,g7") 'Uy1 =g 1 (b)U," for any b € B.
Hence

byi=b > g(bi)UsepU;' = > g(b;)bUy U,

geG geG
= > 9(b)Uyg ' (D) epU,' = 3 g(b))Uyesg ' (DU, (3.5)
g<G gei '
= > g(b))UgpU,'b = y;b.
gei
for any h € G,
Unyi=Un 2. g(bi)Ug@U," = > (hg)(bi)UnUg @3 Uy"
geG 9gei
= > (hg) (b)) f(h,g)Ung®pUy"' = > (hg)(bi)Ung @5 f(h,g)U,*
geG gei
= > (hg) (bi)Ung ®5 Uy g Ung f (h,g) Uy, (3.6)
gei
= > (hg)(bi)Ung ®5 Uy UnUy Uyt = > (hg) (bi)Ung ®5 Uy Un
geG geG
= > k(bi)Ux® U ' Up = yiUp.
keG

Thus y; € Vagga(A). Moreover, X1 x;vi=>1" ai X gec 9 (b)) Ug®pUg =3 g 2121 ai
gb)Uy Ut = 3 5ec 014Uy ®3 Uy = 1@ 1. This implies that {x; € VA(B), y; €
Vagpa(A) | i =1,2,...,m} is an H-separable system for A over B. Thus, A is an H-
separable extension of B. Moreover, B is a direct summand of A as a left B-module, so
Va(Va(B)) = B [7, Proposition 1.2]. But then, the center of A, Z C B; and so Z = C€.
Clearly, VA(B)¢ = Z = C¢ and C C Va(B), so Va(B) is a G-Galois algebra over C¢ with
the same Galois system as C. Therefore, VA (B) = C which is commutative. The proof
is completed. O

The Ikehata theorem is an immediate consequence of Theorem 3.2 by the fact that
any Galois algebra with a cyclic Galois group is a commutative ring [1, Theorem 11].

COROLLARY 3.3 (the Ikehata theorem). Let p be an automorphism of B of order n
and B[ x;p] a skew polynomial ring of degree n with x™ =v € U(B*) for some integer
n. Then, B[x;p] is an H-separable extension of B if and only if C is a Galois algebra
over CP with Galois group (p | ¢) = (p).

PROOF. It is easy to check that if p has order n, then x™ = v € U(C”). Let B[ x;p]
be an H-separable extension of B. Then Vp|y,,(B) is a Galois algebra over C* with
cyclic Galois algebra group (p) generated by p [6, Theorem 3.2]; and so Vp[x;p)(B) is a
commutative ring by [1, Theorem 11]. On the other hand, B[x;p] is a crossed product
A(B,{(p),f) where f:{p)x(p) = U(CP) by f(p',p/) =1if i+j <n, f(p',p/) =v if
i+j=>n,and Uy = xtfori=0,1,2,...,n—1. Thus the corollary is immediate from
Theorem 3.2. O
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Next we prove more characterizations of the ring B as given in Theorem 3.2.

THEOREM 3.4. Assume A is an H-separable extension of B. Then the following state-
ments are equivalent:

(1) Va(B) is a commutative subring of A.

(2) Va(B) =C.

(3) Va(C) = B.

4) Jg =10} for each g + 1 where J; = {b € B|ab =bg(a) for all a € B}.

(5) I; = {0} foreach g + 1 wherel;, ={beB|cb=Dbg(c) forallc € C}.

PROOF. We prove (1)=(2)=(3)=(4)=(5)=(1).

(1)=(2). This was given in the proof of the necessity of Theorem 3.2.

(2)=(3). Clearly, B < VA(C). Conversely, for each dec bysU, in VA(C), we have
c(ZgecbgUy) = (ZyecbgUy)c foreachcin C,s0 cby = byg(c), thatis by(c—g(c)) =
0 for each g € G and ¢ € C. But C is a commutative G-Galois extension of C¢, so the
ideal of C generated by {c —g(c) | ¢ € C} is C when g # 1 [2, Proposition 1.2(5)].
Hence by = 0 for each g # 1. But then de(; byUy = by € B. Thus VaA(C) < B, and so
Va(C) = B.

(3)=>(4). By hypothesis, VA(C) = B so Va(B) C VAo(C) = B. But Vo(B) = deGJgUg
by Lemma 3.1(a), so degngg =Va(B) c B. Thus J; = {0} for each g # 1.

(4)=(5). By Lemma 3.1(a) again, Va(B) = degngg, and by hypothesis, J; = {0}
for each g #+ 1, so Va(B) = J; = C. Hence part (2) holds; and so VA(C) = B by (2)=(3).
Clearly, VA(C) = > jec 14Uy, 50 X gecIgUg = B. Thus I, = {0} for each g # 1.

(5)=(1). Since C C B, J4 C I4 for all g € G. Hence I, = {0} implies J; = {0}. But then
Va(B) =2 yecJgUg = J1 = C which is commutative. O

COROLLARY 3.5. C is a Galois algebra over C¢ with Galois group G|, = G if and
only if A is an H-separable extension of B and anyone of the equivalent conditions in
Theorem 3.4 holds.

We conclude the present paper with two examples of crossed products A to demon-
strate our results:
(1) Ais an H-separable extension of B, but VA (B) is not commutative,
(2) Va(B) is commutative, but A is not an H-separable extension of B.
Hence C is not a Galois algebra over C® with G |¢= G in either example by Theorem 3.2.

EXAMPLE 3.6. Let B=Q[i,j,k] = Q+ Qi+ Qj+Qk be the quaternion algebra over
the rational field Q, G = {g1 =1, gi, gj, gk | gi(x) =ixi7!, g;(x) = jxj=!, gr(x) =
kxk~! for all x € B}, and A = A(B,G,1). Then

(1) The center of A, Z =Q = C, the center of B.

(2) A is a separable extension of B and B is an Azumaya Q-algebra, so A is an
Azumaya Q-algebra. Since A is a free left B-module, A is an H-separable extension of
B [3, Theorem 1].

(3) Va(B) = Q +QiUy, + QjUgj + QkUy, which is not commutative, so C is not a
Galois algebra over C¢ with Galois group G |¢= G by Theorem 3.2.

EXAMPLE 3.7. Let B=Q][i,j,k] = Q+ Qi+ Qj+ Qk be the quaternion algebra over
the rational field Q, G = {g1 =1, gi | gi(x) = ixi~! for all x € B}, and A = A(B,G,1).
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Then

(1) The center of B, C = Q = CC.

(2) Va(B) = Q +QiUy, which is commutative.

(3) The center of A, Z = Q +QilUy, # CC. On the other hand, assume that A is an
H-separable extension of B. Since B is a direct summand of A as a left B-module,
Va(Va(B)) = B [7, Proposition 1.2]. This implies that the center of A, Z = C, a con-
tradiction. Thus A is not an H-separable extension of B. Therefore, C is not a G-Galois
algebra over C¢ with G|, = G by Theorem 3.2.
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