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Abstract. Let B be a ring with 1, C the center of B, G an automorphism group of B of
order n for some integer n, CG the set of elements in C fixed under G, ∆ = ∆(B,G,f ) a
crossed product over B where f is a factor set from G×G to U(CG). It is shown that ∆ is
an H-separable extension of B and V∆(B) is a commutative subring of ∆ if and only if C is
a Galois algebra over CG with Galois group G|C �G.
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1. Introduction. Let B be a ring with 1, ρ an automorphism of B of order n, B[x;ρ]
a skew polynomial ring with a basis{1,x,x2, . . . ,xn−1} and xn = v ∈ U(Bρ) for some
integer n, where Bρ is the set of elements in B fixed under ρ and U(Bρ) is the set of
units of Bρ .
In [4] it was shown that any skew polynomial ring B[x;ρ] of prime degree n is an

H-separable extension of B if and only if C is a Galois algebra over Cρ with Galois
group 〈ρ|C〉 generated by ρ|C of order n. This theorem was extended to any degree
n [5, Theorem 1]. Recently, the theorem was completely generalized by the present
authors in [8], that is, let B[x;ρ] be a skew polynomial ring of degree n for some
integer n. Then, B[x;ρ] is an H-separable extension of B if and only if C is a Galois
algebra over Cρ with Galois group 〈ρ|C〉 � 〈ρ〉. The purpose of the present paper is to
generalize the above Ikehata theorem to an automorphism group of B (not necessarily
cyclic) and f is an factor set from G×G to U(CG). We show that ∆ is an H-separable
extension of B and V∆(B) is a commutative subring of ∆ if and only if C is a Galois
algebra over CG with Galois group G|C �G.

2. Preliminaries and basic definitions. Throughout this paper, B represents a ring
with 1, C the center of B, G an automorphism group of B of order n for some integer
n, BG the set of elements in B fixed under G, ∆ = ∆(B,G,f ) a crossed product with
a free basis {Ug | g ∈ G and U1 = 1} over B and the multiplications are given by
Ugb = g(b)Ug and UgUh = f(g,h)Ugh for b ∈ B and g,h ∈ G where f is a map from
G×G to U(CG) such that f(g,h)f(gh,k)= f(h,k)f(g,hk), Z the center of ∆, Ḡ the
inner automorphism group of ∆ induced by G, that is, ḡ(x)=UgxU−1

g for each x ∈∆
and g ∈ G. We note that f(g,1) = f(1,g) = f(1,1) = 1 for all g ∈ G and Ḡ restricted
to B is G.
Let A be a subring of a ring S with the same identity 1. We denote Vs(A) the
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commutator subring ofA in S. A ring S is called aG-Galois extension of SG if there exist
elements {ai,bi ∈ S, i= 1,2, . . . ,m} for some integerm such that

∑m
i=1aig(bi)= δ1,g .

The set {ai,bi} is called a G-Galois system for S. S is called an H-separable extension
of A if there exists an H-separable system {xi ∈ VS(A), yi ∈ VS⊗AS(S) | i= 1,2, . . . ,m}
for S over A for some integer m such that

∑m
i=1xiyi = 1⊗A1.

3. The Ikehata theorem. In this section, we show that ∆ is an H-separable exten-
sion of B and V∆(B) is a commutative subring of ∆ if and only if C is a Galois algebra
over CG with Galois group G|C �G. We begin with a lemma.

Lemma 3.1. (a) V∆(B)=∑g∈G JgUg where Jg={b ∈ B | ab = bg(a) for all a∈ B}.
(b) V∆⊗B∆(∆) = {∑

g∈G
∑

h∈G b(g,h)Ug ⊗B Uh | b(g,h) ∈ Jgh and k
(
b(k−1g,h)

)
f(k,

k−1g)= b(g,hk−1)f (hk−1,k) for all g,k∈G
}
.

(c) If
∑

g∈G
∑

h∈G b(g,h)Ug⊗Uh ∈ V∆⊗B∆(∆), then b(g,h)Ugh ∈ V∆(B).
(d) If

∑
g∈G

∑
h∈G b(g,h)Ug ⊗Uh ∈ V∆⊗B∆(∆), then b(g,g−1) = g(b1,1)(f (g−1,g))−1 for

all g ∈G.

Proof. (a) Let b ∈ Jg . Then a(bUg) = (ab)Ug = bg(a)Ug = (bUg)a for all a ∈
B. Hence JgUg ⊂ V∆(B). Therefore,

∑
g∈G JgUg ⊂ V∆(B). Conversely, let

∑
g∈G bgUg ∈

V∆(B). Then a
∑

g∈G bgUg =
∑

g∈G bgUga=∑g∈G bgg(a)Ug for all a∈ B, and so abg =
bgg(a) for all a∈ B and g ∈G, that is, bg ∈ Jg for all g ∈G. Thus V∆(B)⊂∑g∈G JgUg .
(b) x =∑g∈G

∑
h∈G b(g,h)Ug⊗B Uh ∈ V∆⊗B∆(∆) if and only if bx = xb and Ukx = xUk

for all a∈ B and k∈G. But

bx =
∑

g∈G

∑

h∈G
bb(g,h)Ug⊗B Uh,

xb =
∑

g∈G

∑

h∈G
b(g,h)Ug⊗B Uhb =

∑

g∈G

∑

h∈G
b(g,h)Ug⊗B h(b)Uh

=
∑

g∈G

∑

h∈G
b(g,h)Ugh(b)⊗B Uh =

∑

g∈G

∑

h∈G
b(g,h)(gh)(b)Ug⊗B Uh,

(3.1)

so bx = xb if and only if bb(g,h) = b(g,h)((gh)(b)) for all b ∈ B and g,h ∈ G, that is,
b(g,h) ∈ Jgh by noting that {Ug⊗B Uh | g, h∈G} is a basis for ∆ over B. Moreover,

Ukx =Uk
∑

g∈G

∑

h∈G
b(g,h)Ug⊗B Uh =

∑

g∈G

∑

h∈G
k
(
b(g,h)

)
UkUg⊗B Uh

=
∑

g∈G

∑

h∈G
k
(
b(g,h)

)
f(k,g)Ukg⊗B Uh

=
∑

g∈G

∑

h∈G
k
(
b(k−1(kg),h)

)
f
(
k,k−1(kg)

)
U(kg)⊗B Uh

=
∑

l∈G

∑

h∈G
k
(
b(k−1l,h)

)
f
(
k,k−1l

)
Ul⊗B Uh

=
∑

g∈G

∑

h∈G
k
(
b(k−1g,h)f

(
k,k−1g

))
Ug⊗B Uh,

(3.2)
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and

xUk =
∑

g∈G

∑

h∈G
b(g,h)Ug⊗B UhUk =

∑

g∈G

∑

h∈G
b(g,h)Ug⊗B f (h,k)Uhk

=
∑

g∈G

∑

h∈G
b(g,h)Ugf(h,k)⊗B Uhk =

∑

g∈G

∑

h∈G
b(g,h)f (h,k)Ug⊗B Uhk

=
∑

g∈G

∑

h∈G
b(g,(hk)k−1)f

(
(hk)k−1,k

)
Ug⊗B Uhk

=
∑

g∈G

∑

h∈G
b(g,lk−1)f

(
lk−1,k

)
Ug⊗B Ul =

∑

g∈G

∑

h∈G
b(g,hk−1)f

(
hk−1,k

)
Ug⊗B Uh.

(3.3)

Hence, Ukx = xUk if and only if k(b(k−1g,h))f (k,k−1g) = b(g,hk−1)f (hk−1,k) for all
g,h,k∈G.
(c) If

∑
g∈G

∑
h∈G bg,hUg⊗Uh ∈ V∆⊗B∆(∆), then b(g,h) ∈ Jgh by (b); and so b(g,h)Ugh ∈

V∆(B) by (a).
(d) If

∑
g∈G

∑
h∈G b(g,h)Ug ⊗Uh ∈ V∆⊗B∆(∆), then k(b(k−1g,h))f (k,k−1g) = b(g,hk−1)f

(hk−1,k) for all g,h,k ∈ G by (b). Let k = g and h = 1. Then b(g,g−1)f (g−1,g) =
g(b1,1)f (g,1)= g(b1,1) for all g ∈G. This implies that b(g,g−1) = g(b1,1)(f (g−1,g))−1

for all g ∈G.

Theorem 3.2. ∆ is an H-separable extension of B and V∆(B) is a commutative sub-
ring of ∆ if and only if C is a Galois algebra over CG with Galois group G|c �G.

Proof. ( �⇒) Since ∆ is an H-separable extension of B and B is a direct summand
of ∆ as a left B-module, V∆(V∆(B))= B [7, Proposition 1.2]. But V∆(B) is commutative,
so V∆(B)⊂ V∆(V∆(B))= B. Thus V∆(B)= C .
Since ∆ is an H-separable extension of B again, there exists an H-separable system

{xi ∈ V∆(B), yi ∈ V∆⊗B∆(∆) | i= 1,2, . . . ,m} for some integerm such that
∑m

i=1xiyi =
1⊗B 1. Let yi =

∑
g∈G

∑
h∈G b(i)

(g,h)Ug ⊗B Uh. We claim that {ai = xi, bi = b(i)
(1,1) | i =

1,2, . . . ,m} is aG-Galois system for C . In fact, ai=xi∈V∆(B)= C and by Lemma 3.1(b),
bi = b(i)

(1,1) ∈ J1 = C . Moreover, since yi =
∑

g∈G
∑

h∈G b(i)
(g,h)Ug⊗B Uh ∈ V∆⊗B∆(∆), b(i)

(g,h)

Ugh ∈ V∆(B) by Lemma 3.1(c). But V∆(B) = C , so b(i)
(g,h) = 0 when gh ≠ 1. Thus, yi =

∑
g∈G b(i)

(g,g−1)Ug⊗B Ug−1 . By Lemma 3.1(d), b
(i)
(g,g−1) = g

(
b(i)

(1,1)
)
(f (g−1,g))−1 = g(bi)(f

(g−1,g))−1, so yi =
∑

g∈G g(bi)(f (g−1,g))−1Ug⊗B Ug−1 . Therefore,

1⊗B 1=
m∑

i=1
xiyi =

m∑

i=1
ai
∑

g∈G
g
(
bi
)(

f
(
g−1,g

))−1Ug⊗B Ug−1

=
∑

g∈G

m∑

i=1
aig

(
bi
)(

f
(
g−1,g

))−1Ug⊗B Ug−1 .

(3.4)

This implies that
∑m

i=1aig(bi)(f (g−1,g))−1 = δ1,g , so
∑m

i=1aig(bi) = δ1,g , that is
{ai,bi | i = 1,2, . . . ,m} is a G-Galois system for C . Therefore, C is a Galois algebra
over CG with Galois group G |C�G.
(⇐� ) Since C is a Galois algebra over CG with Galois group with G|C � G, there

exists a G-Galois system {ai,bi ∈ C | i = 1,2, . . . ,m} for some integer m such that∑m
i=1aig(bi) = δ1,g . Let xi = ai and yi =

∑
g∈G g(bi)Ug ⊗B U−1

g . We claim that {xi ∈
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V∆(B), yi ∈ V∆⊗B∆(∆) | i= 1,2, . . . ,m} is an H-separable system for ∆ over B. In fact,
xi = ai ∈ C ⊂ V∆(B). Noting that U−1

g = f(g,g−1)−1Ug−1 , we have U−1
g b = f(g,g−1)−1

Ug−1b = f(g,g−1)−1g−1(b)Ug−1 = g−1(b)f(g,g−1)−1Ug−1 = g−1(b)U−1
g for any b ∈ B.

Hence

byi = b
∑

g∈G
g
(
bi
)
Ug⊗B U−1

g =
∑

g∈G
g
(
bi
)
bUg⊗B U−1

g

=
∑

g∈G
g
(
bi
)
Ugg−1(b)⊗B U−1

g =
∑

g∈G
g
(
bi
)
Ug⊗B g−1(b)U−1

g

=
∑

g∈G
g
(
bi
)
Ug⊗B U−1

g b =yib.

(3.5)

for any h∈G,

Uhyi =Uh
∑

g∈G
g
(
bi
)
Ug⊗B U−1

g =
∑

g∈G
(hg)

(
bi
)
UhUg⊗B U−1

g

=
∑

g∈G
(hg)

(
bi
)
f(h,g)Uhg⊗B U−1

g =
∑

g∈G
(hg)

(
bi
)
Uhg⊗B f (h,g)U−1

g

=
∑

g∈G
(hg)

(
bi
)
Uhg⊗B U−1

hgUhgf(h,g)U−1
g

=
∑

g∈G
(hg)

(
bi
)
Uhg⊗B U−1

hgUhUgU−1
g =

∑

g∈G
(hg)

(
bi
)
Uhg⊗B U−1

hgUh

=
∑

k∈G
k
(
bi
)
Uk⊗B U−1

k Uh =yiUh.

(3.6)

Thusyi ∈ V∆⊗B∆(∆). Moreover,
∑m

i=1xiyi=
∑m

i=1ai
∑

g∈G g(bi)Ug⊗BU−1
g =∑g∈G

∑m
i=1ai

g(bi)Ug ⊗B U−1
g = ∑g∈G δ1,gUg ⊗B U−1

g = 1⊗ 1. This implies that {xi ∈ V∆(B), yi ∈
V∆⊗B∆(∆) | i = 1,2, . . . ,m} is an H-separable system for ∆ over B. Thus, ∆ is an H-
separable extension of B. Moreover, B is a direct summand of ∆ as a left B-module, so
V∆(V∆(B)) = B [7, Proposition 1.2]. But then, the center of ∆, Z ⊂ B; and so Z = CG.
Clearly, V∆(B)Ḡ = Z = CG and C ⊂ V∆(B), so V∆(B) is a G-Galois algebra over CG with
the same Galois system as C . Therefore, V∆(B)= C which is commutative. The proof
is completed.

The Ikehata theorem is an immediate consequence of Theorem 3.2 by the fact that
any Galois algebra with a cyclic Galois group is a commutative ring [1, Theorem 11].

Corollary 3.3 (the Ikehata theorem). Let ρ be an automorphism of B of order n
and B[x;ρ] a skew polynomial ring of degree n with xn = v ∈U(Bρ) for some integer
n. Then, B[x;ρ] is an H-separable extension of B if and only if C is a Galois algebra
over Cρ with Galois group 〈ρ | c〉 � 〈ρ〉.

Proof. It is easy to check that if ρ has order n, then xn = v ∈ U(Cρ). Let B[x;ρ]
be an H-separable extension of B. Then VB[x;ρ](B) is a Galois algebra over Cρ with
cyclic Galois algebra group 〈ρ̄〉 generated by ρ̄ [6, Theorem 3.2]; and so VB[x;ρ](B) is a
commutative ring by [1, Theorem 11]. On the other hand, B[x;ρ] is a crossed product
∆(B,〈ρ〉,f ) where f : 〈ρ〉×〈ρ〉 → U(Cρ) by f(ρi,ρj) = 1 if i+j < n, f(ρi,ρj) = v if
i+j ≥ n, and Uρi = xi for i = 0,1,2, . . . ,n−1. Thus the corollary is immediate from
Theorem 3.2.
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Next we prove more characterizations of the ring B as given in Theorem 3.2.

Theorem 3.4. Assume ∆ is anH-separable extension of B. Then the following state-
ments are equivalent:
(1) V∆(B) is a commutative subring of ∆.
(2) V∆(B)= C .
(3) V∆(C)= B.
(4) Jg = {0} for each g ≠ 1 where Jg = {b ∈ B | ab = bg(a) for all a∈ B}.
(5) Ig = {0} for each g ≠ 1 where Ig = {b ∈ B | cb = bg(c) for all c ∈ C}.
Proof. We prove (1) �⇒(2) �⇒(3) �⇒(4) �⇒(5) �⇒(1).
(1) �⇒(2). This was given in the proof of the necessity of Theorem 3.2.
(2) �⇒(3). Clearly, B ⊆ V∆(C). Conversely, for each

∑
g∈G bgUg in V∆(C), we have

c
(∑

g∈G bgUg
)= (∑g∈G bgUg

)
c for each c in C , so cbg = bgg(c), that is bg(c−g(c))=

0 for each g ∈ G and c ∈ C . But C is a commutative G-Galois extension of CG, so the
ideal of C generated by {c −g(c) | c ∈ C} is C when g ≠ 1 [2, Proposition 1.2(5)].
Hence bg = 0 for each g ≠ 1. But then

∑
g∈G bgUg = b1 ∈ B. Thus V∆(C) ⊆ B, and so

V∆(C)= B.
(3) �⇒(4). By hypothesis, V∆(C) = B so V∆(B) ⊂ V∆(C) = B. But V∆(B) = ∑g∈G JgUg

by Lemma 3.1(a), so
∑

g∈G JgUg = V∆(B)⊂ B. Thus Jg = {0} for each g ≠ 1.
(4) �⇒(5). By Lemma 3.1(a) again, V∆(B) = ∑g∈G JgUg , and by hypothesis, Jg = {0}

for each g ≠ 1, so V∆(B)= J1 = C . Hence part (2) holds; and so V∆(C)= B by (2) �⇒(3).
Clearly, V∆(C)=∑g∈G IgUg , so

∑
g∈G IgUg = B. Thus Ig = {0} for each g ≠ 1.

(5) �⇒(1). Since C ⊂ B, Jg ⊂ Ig for all g ∈G. Hence Ig = {0} implies Jg = {0}. But then
V∆(B)=∑g∈G JgUg = J1 = C which is commutative.

Corollary 3.5. C is a Galois algebra over CG with Galois group G|c � G if and
only if ∆ is an H-separable extension of B and anyone of the equivalent conditions in
Theorem 3.4 holds.

We conclude the present paper with two examples of crossed products ∆ to demon-
strate our results:
(1) ∆ is an H-separable extension of B, but V∆(B) is not commutative,
(2) V∆(B) is commutative, but ∆ is not an H-separable extension of B.

HenceC is not a Galois algebra overCG withG |C�G in either example by Theorem 3.2.

Example 3.6. Let B =Q[i,j,k]=Q+Qi+Qj+Qk be the quaternion algebra over
the rational field Q, G = {g1 = 1, gi, gj, gk | gi(x) = ixi−1, gj(x) = jxj−1, gk(x) =
kxk−1 for all x ∈ B}, and ∆=∆(B,G,1). Then
(1) The center of ∆, Z =Q= C , the center of B.
(2) ∆ is a separable extension of B and B is an Azumaya Q-algebra, so ∆ is an

Azumaya Q-algebra. Since ∆ is a free left B-module, ∆ is an H-separable extension of
B [3, Theorem 1].
(3) V∆(B) = Q+QiUgi +QjUgj +QkUgk which is not commutative, so C is not a

Galois algebra over CG with Galois group G |C�G by Theorem 3.2.

Example 3.7. Let B =Q[i,j,k]=Q+Qi+Qj+Qk be the quaternion algebra over
the rational field Q, G = {g1 = 1, gi | gi(x)= ixi−1 for all x ∈ B}, and ∆=∆(B,G,1).
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Then
(1) The center of B, C =Q= CG.
(2) V∆(B)=Q+QiUgi which is commutative.
(3) The center of ∆, Z = Q+QiUgi ≠ CG. On the other hand, assume that ∆ is an

H-separable extension of B. Since B is a direct summand of ∆ as a left B-module,
V∆(V∆(B)) = B [7, Proposition 1.2]. This implies that the center of ∆, Z = CG, a con-
tradiction. Thus ∆ is not an H-separable extension of B. Therefore, C is not a G-Galois
algebra over CG with G|c �G by Theorem 3.2.

Acknowledgement. This paper was written under the support of a Caterpillar
Fellowship at Bradley University. We would like to thank Caterpillar Inc. for the sup-
port.
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