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RC-CONTINUOUS FUNCTIONS AND FUNCTIONS
WITH RC-STRONGLY CLOSED GRAPH
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The family of regular closed subsets of a topological space is used to introduce
two concepts concerning a function f from a space X to a space Y. The first of
them is the notion of f being rc-continuous. One of the established results states
that a space Y is extremally disconnected if and only if each continuous function
from a space X to Y is rc-continuous. The second concept studied is the notion
of a function f having an rc-strongly closed graph. Also one of the established
results characterizes rc-compact spaces (= S-closed spaces) in terms of functions
that possess rc-strongly closed graph.

2000 Mathematics Subject Classification: 54C08, 54A05, 54GO05.

1. Introduction. A subset A of a topological space (X, T) is called regular
closed if A = Cl(Int(A)), that is, if A is equal to the closure of its interior. It is
called semiopen if there exists U € T such that U € A = CI(U). A space (X,T) is
called S-closed (see [10]) if every cover U of (X,T) by semiopen sets contains
a finite subfamily {Uj,...,Uy,} such that X = Ui, Cl(U;). In [1], it is proved
that a space (X, T) is S-closed if and only if every cover of X by regular closed
subsets contains a finite subcover for X. This result motivated the study of
other covering properties by regular closed subsets; for example, rc-Lindel6f
spaces (see [2]), almost rc-Lindel6f spaces (see [3]), rc-paracompact spaces (see
[2]), and others. In fact, the name rc-compact space is recently used for S-
closed spaces (see [6]) in order to have a unified terminology when dealing
with covering properties by regular closed sets.

On the other hand, in [5], the rc-convergence of a filterbase or a net in a
space (X, T) is formulated using the regular closed sets that contain the limit
point. The concept of rc-convergence is proved to be useful in characterizing
S-closed (rc-compact) spaces and also extremally disconnected spaces.

In Section 3, we use the family of regular closed subsets to define rc-con-
tinuous functions. In our study of this new class of functions, we state a couple
of characterizations. Then we show that rc-continuous functions can be used
to characterize extremally disconnected spaces.

In Section 4, we introduce, again by using the family of regular closed sub-
sets, the notion of a function f that has an rc-strongly closed graph G(f).
Characterizations of a function to have an rc-strongly closed graph are given
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and then some results connecting them to rc-compact spaces are stated. In par-
ticular, for a Hausdorff space (Y,M), it is shown that (Y, M) is an rc-compact
space if and only if certain functions to (Y, M), that have an rc-strongly closed
graph, must be rc-continuous.

2. Definitions and preliminaries. In what follows, a space always means a
topological space with no separation axiom unless it is explicitly stated. For a
subset A of a space (X, T), we let Cl;(A) (or simply Cl1(A)) denote the closure
of A while Int7(A) (or simply Int(A)) will denote the interior of A, both in the
space (X, T). A subset A of (X, T) is called semiopen if there exists U € T such
that U € A < CI(U). The family of all semiopen subsets of (X, T) is denoted
by SO(X,T). A subset A of (X,T) is called regular closed if A = Cl(Int(A)).
We let RC(X,T) denote the family of all regular closed subsets of (X,T). It
is easy to see that for any space (X,T), it is true that RC(X,T) < SO(X,T).
The complement of a regular closed subset of (X,T) is called regular open.
Equivalently, a subset U is a regular open subset of (X,T) if U = Int(Cl(U)).
We let RO(X,T) denote the family of all regular open subsets of (X,T). As
a convention, a cover of a space by regular closed subsets will be called an
rc-cover.

All definitions and results included in this section are previously known and
we quote the reference when possible, while others are easy to establish and
we include them for later use.

DEFINITION 2.1 (see [10]). A space (X, T) is called rc-compact (= S-closed) if
every cover AU of X by semiopen subsets contains a finite subfamily {Uy,...,U,}
such that X = U, CL(U;).

PROPOSITION 2.2 (see [1]). A space (X,T) is rc-compact if and only if every
rc-cover of X contains a finite subcover for X.

DEFINITION 2.3. A subset A of a space (X, T) is called an rc-compact subset
of X (= S-closed of X in [10]) or an rc-compact subset relative to X (= S-closed
subset relative to X in [9, 10]) if every rc-family # of regular closed subsets of
X, with A € |J 4, contains a finite subfamily whose union also contains A.

DEFINITION 2.4. A space (X,T) is called extremally disconnected if C1(U)
is open for each U € T.In an extremally disconnected space (X,T),RC(X,T) =
RO(X,T).

DEFINITION 2.5 (see [5, Definition 3.1]). (a) Anet (x,)aca inaspace (X,T) is
said to rc-converge to a point xo € X if each F € RC(X, T), with xo € F, contains
a tail T, of (x,), that is, the net (x,) is eventually in each F € RC(X,T) with
xo € F. Equivalently, for each U € T such that xo € CI(U), CI(U) contains a tail
of (x,). This fact is expressed by writing x, — (rc)xo.

(b) A net (x,)aca in a space (X, T) is said to rc-accumulate at a point xo € X
if for each F € RC(X,T) and for each A € A, FNT, = &, where T, is the tail of
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the net (x,) determined by A, that is, (x,) is frequently in each F € RC(X,T)
that contains xj.

PROPOSITION 2.6 (see [5]). A space (X,T) is rc-compact if and only if every
net in (X, T) rc-accumulates to some point of X.

PROPOSITION 2.7 (see [5]). A space (X,T) is extremally disconnected if and
only if each net (x,) in X, that is convergent in the usual sense, is also rc-
convergent.

3. rc-continuous functions. For a space (X,T) and a point x € X, we let
ON(x) ={UeT:x U}, ON(x) = {Cl(U) : x € U}, and RC(X,T,x) = {F €
RC(X,T):x € F}. It is clear that ON(x) € RC(X, T, x).

We recall that a function f: (X,T) — (Y, M) is called weakly continuous (see
[3, Definition 6]) (or w 0-continuous in [8]) if f is weakly continuous at each
x € X in the sense that for each W € ON(f(x)), there exists U € ON(x) such
that f(U) = W.

In this section, we introduce rc-continuous functions that form a proper
subclass of the class of weakly continuous functions. In studying this new
class, we state several characterizations of rc-continuous functions and then
we show that a space is extremally disconnected if and only if each continuous
function onto that space is rc-continuous.

DEFINITION 3.1. A function f : (X,T) — (Y,M) is called rc-continuous at
a point x € X if for each W € RC(Y,M, f(x)), there exists U € ON(x) such
that f(U) < W. The function f is called an rc-continuous function if it is rc-
continuous at each point of its domain.

The next result is a direct consequence of the definitions.
PROPOSITION 3.2. Every rc-continuous function is weakly continuous.

However, the converse of this result is not true. To see that, we recall that
every continuous function is weakly continuous. On the other hand, it is easy
to provide an example of a continuous function that is not rc-continuous. For
instance, consider the function f from the set of real numbers R with the usual
topology onto itself given by f(x) = x + 1. Though this function is continuous,
it is not rc-continuous.

The first characterization of rc-continuous functions is obtained through in-
troducing a new topology on the codomain. For a space (X, T), we introduce the
regular closed subsets generated topology, abbreviated TRC, to be the topol-
ogy on X generated by the subbase RC(X,T). This topology is interesting in
its own and will be studied separately elsewhere.

PROPOSITION 3.3. A function f: (X, T) — (Y, M) is rc-continuous if and only
if the function f: (X, T) — (Y,MRC) is continuous.
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PROOF

NECESSITY. It is enough to consider the subbase RC(Y,M) of the topology
MRC on Y and to show that f~1(W) is T-open for each W € RC(Y,M). So
let x € f~1(W). Then f(x) € W with W € RC(Y,M, f(x)). By definition of rc-
continuity, there exists U € ON(x) such that f(U) c W. It follows that x € U <
F~Y(W). Thus, f~1(W) is T-open and f: (X,T) — (Y,MRC) is continuous.

SUFFICIENCY. Assume that f: (X,T) — (Y,MRC) is continuous. So if W €
MRC, then f~1 (W) is T-open. In particular, for any x € X and any W € RC(Y, M,
f(x)),we see that f~1(W) is T-open. Thus, f: (X,T) — (Y, M) is rc-continuous
at any point x € X. O

Let (X,T) be a given space and let A < X. We say that a point x is in the
rc-closure of A (rc-Cl(A)) if ANF = @ for each F € RC(X,T,x). We say that
A is rc-closed if A =rc-Cl(A). We state the following characterizations of rc-
continuous functions.

PROPOSITION 3.4. The following conditions are equivalent for a function
(X, T) - (Y,M):

(@) f is rc-continuous,

(b) for each rc-closed subset D of Y, f1(D) is closed,

(¢) for each G € RO(Y,M), f~1(G) is closed,

(d) for each F € RC(Y,M), f~1(F) is open.

PROOF. (a)=(b). To prove that f1(D) is closed, let x € X — f~1(D). Then
f(x) ¢ D and we can find H € RC(Y,M) such that f(x) € H and H(\D = &.
By rc-continuity of f, we find U € ON(x) such that f(U) < H. It follows that
FU)ND =@ and so x € U < X — f~1(D). This shows that f~1(D) is closed.

(b)=(c) follows easily by the fact that if G is regular open then G is rc-closed.

(c)=(d) is clear.

(d)=(a) follows by direct application of the definition. 0

Next, we show that rc-continuity is characterized by rc-convergence of nets.

PROPOSITION 3.5. A function f:(X,T) — (Y,M) is rc-continuous at a point
xo € X if and only if for each net (x,)aca, if x, = xo in X, then f(x,) —
(rc) f(xp) inY.

PROOF

NECESSITY. Assume that f: (X,T) — (Y, M) is rc-continuous at a point x( €
X. Let (x,)aea be a net in X such that x, — xo. Let W € RC(Y,M, f(x)). By
rc-continuity of f at xg, there exists U € ON(x) such that f(U) < W. But
x, — Xo, so there exists Ag € A such that x, € U for each A > Ao. It follows
that f(x,) € W for each A > Ao, that is, W contains a tail of f(x,). Thus,
Sf(x,) = (rc) f(x0).
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SUFFICIENCY. Suppose that f is not rc-continuous at x(. Then there exists
W e RC(Y,M, f(xp)) such that f(U) (Y -W) *+ @ foreach U € T with xy € U.
LetD={(U,t):xo €U, teU, f(t) eY—-W}.Ford,,d, € D, say dy = (Uy, 1)
and d» = (U, t2), we let d» < d; be equivalent to U, < U;. Then (D, <) is a
directed set and we define anet @ : D — X as follows: for d € D, say d = (U, t),
we let @ (d) = x4 = t. By its construction, we have that x; — xo in X. However,
the net (f(x4)) does not rc-converge to f(xo), a contradiction. O

We have noted earlier that a continuous function need not be, in general, rc-
continuous. However, it is true if the codomain of the function is assumed to
be extremally disconnected. In fact, it characterizes extremally disconnected
spaces as it is established in our last result of this section.

THEOREM 3.6. A space (Y,M) is extremally disconnected if and only if each
continuous function from a space (X, T) into (Y,M) is rc-continuous.

PROOF

NECESSITY. Let f:(X,T) — (Y,M) be a continuous function. Let x € X and
V € M with f(x) € Cly (V). Since (Y,M) is extremally disconnected, Cly (V)
is open. By the continuity of f and since f(x) € Cly(V), there exists U € T
such that x € U and f(U) < Cly (V). This proves that f is rc-continuous at the
arbitrary point x € X.

SUFFICIENCY. Suppose that (Y,M) is not extremally disconnected. Then
there exists V € M such that Cly (V) is not open. Choose x¢ € Cly (V) —
Inty (Clp (V). Consider the identity function iy : (Y,M) — (Y,M). Although
iy is continuous, it is not rc-continuous at x, which contradicts the hypothe-
sis. This completes the proof. O

4. Functions with rc-strongly closed graph. The graph of a function f :
X — Y is the set G(f) = {(x,y) e XxXY:y = f(x)}. A function f: (X,T) —
(Y,M) has a closed graph if G(f) is a closed subset of the product space X xY.
On the other hand, f is said to have a strongly closed graph (see [4]) if whenever
(x,v) € XxYand (x,y) ¢ G(f), thereexist U € T and V € M such that x € U,
yeV,and (UxCly(V)NG(f) = D.

In [4], functions that possess strongly closed graph are related to H-spaces.
In this section, we define the concept of a function f to have an rc-strongly
closed graph, study its properties, and relate them to rc-compact spaces.

DEFINITION 4.1. A function f: (X,T) — (Y,M) has an rc-strongly closed
graph G(f) if whenever (x,y) € X xY and (x,y) ¢ G(f), there exist U € T
and V € M such that x € U, y € Cly(V), and (UXCly (V) NG(f) = @.

By the definitions, it directly follows that if a function f possesses a strongly
closed graph, then it possesses an rc-strongly closed graph.

Our first characterization of functions that have rc-strongly closed graph is
in terms of rc-convergence.
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PROPOSITION 4.2. A function f : (X,T) — (Y,M) has an rc-strongly closed
graph if and only if for any net (x,)aea in X such that x, — xo while f(x,) —
(rc)yo €Y, f(x0) = ¥o.

PROOF

NECESSITY. Assume that f has an rc-strongly closed graph. Let (x,)aea be
anet in X which converges to a point xo € X and assume that the net (f(x,))
rc-converges to a point yy € Y. We show that f(x¢) = »o. Suppose, to the
contrary, that (xg, o) € G(f). Since G(f) is rc-strongly closed, then there exist
U € ON(x¢) and V € M with y, € Cly (V) such that (U xCly (V)N G(f) = @.
But x, — x¢ and f(x,) — (rc)yo, so there exist A1,A» € A such that x, € U
for each A > Ay and f(x,) € Cly (V) for each A > A,. Choose A3 € A such that
A3 = A4, i=1,2. Then (x,, f(x,)) € (UxCly(V))NG(f), a contradiction.

SUFFICIENCY. Suppose that G(f) is not rc-strongly closed. Then there exists
a point (xo, o) € X XY, where (x9,y0) ¢ G(f), such that whenever U € T and
V € M with xo € U and yy € Cly(V), then (U X Cly (V) NG(f) # @. We put
D={UV,x):xoeU€eT,VeM, y, e Cly(V), (x,f(x)) € (UxClpy(V))}.
We make D into a directed set in the obvious way and define a net as follows:
@:D - X.Ifd e D, sayd = (U,V,x), then we let p(d) = x; = x. By its
construction, it is clear that the net (x4) converges in X to xo while the net
f((x4)) rc-converges in Y to yq. However, f(xo) # yo, which contradicts our
hypothesis. O

PROPOSITION 4.3. The following conditions are equivalent for a given func-
tion f: (X, T) - (Y,M):
(1) f has an rc-strongly closed graph,
(2) given any net (iy,) in'Y that rc-converges to a point yy € Y, limsup f =1
(vy) e f o),
(3) given any net (y,) in'Y that rc-converges to a point yy €Y, liminf f~1
(7)) s (o).

PROOF. (1)=(2). Let x € limsup f~!(y,). Suppose that x ¢ f~1(»o). Then
f(x) # yo and we have (x,y9) ¢ G(f). Since G(f) is rc-strongly closed, there
exist U € ON(x) and V € M such that y, € Clp (V) and (U xCly (V)N G(f) =
@. Moreover, since the net (y, ) rc-converges to yg € Y, there exists A; € A such
that y, € Cly (V) foreach A = A;. Also,as x € limsup f! (¥,), there exists A =
A; such that Uﬂf‘l(yAZ) + @, say X1 € Uﬂf‘l(yAZ ). It follows that f(x;) =
Yy, € Cly (V) and so (x, f(x1)) € (UxCly (V)N G(f), a contradiction.

(2)=(3) follows directly by the fact that liminf f~!(y,) < limsup f~!(»,).

(3)=(1) suppose, to the contrary, that G(f) is not rc-strongly closed. Then,
by Proposition 4.2, there exists a net (x,) in X such that x, — xo € X, the net
(»,) = f(x,) rc-converges to a point yy € Y, and f(xo) # »o. It is clear that
X0 € liminfffl(yA), which implies, by our assumption, that xo € f~' (),
that is, f(x¢) = ¥, a contradiction. O
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The graph of a continuous function need not be rc-strongly closed as it is
shown in the next example.

EXAMPLE 4.4. We take X = R with the usual topology T and Y = R with the
left-ray topology M. It is clear that the identity function iy : (X,T) — (X,M) is
continuous. However, the graph G(ix) is not rc-strongly closed. For instance,
(0,1) ¢ G(ix) butforanyU € TandV € M suchthatO e Uand 1 € Cly (V) =R,
we have (U xCly (V) NG(iy) = @.

Shortly, we provide a sufficient condition on the codomain of a continuous
function to insure that it has an rc-strongly closed graph. But first we need to
introduce the following class of spaces.

DEFINITION 4.5. A space (X, T) is called an rc-T;-space if for every pair of
points x,y € X, with x # 7y, there exists a regular closed subset F of X such
that x € Fbut y ¢ F.

We remark here that the class of rc-T;-spaces coincides with the class of
weakly Hausdorff spaces. Recall that a space (X, T) is called weakly Hausdorff
(see [9]) if each singleton {x} is the intersection of regular closed subsets.
However, our terminology agrees with the recent trend of naming concepts
formulated using regular closed subsets, as it is noted in the introduction.

The following are two easily established facts.

PROPOSITION 4.6. Every Hausdorf{f space is an rc-Ty-space. Also, every rc-
T, -space is a T, -space.

PROPOSITION 4.7. Every extremally disconnected rc-T, -space is Hausdorf{f.

We are now ready to give a sufficient condition for a continuous function f
to have an rc-strongly closed graph.

THEOREM 4.8. Let f be a continuous function from a space (X,T) to an
rc-Ty-space (Y,M). Then f has an rc-strongly closed graph.

PROOF. Let (x,y) € X xY with (x,¥) ¢ G(f). This means that f(x) = vy,
and since Y is an rc-T;-space, there exists V € M such that v € Cly (V) and
f(x) ¢ Cly (V), thatis, f(x) € Y —Cly (V). By continuity of f at x, there exists
U € ON(x) such that f(U) € Y —Cly (V). This implies that f(U) (N Cly (V) =&
and it follows that (x,y) € U x Cly (V) with (U xCly (V)N G(f) = @. Thus,
G(f) is rc-strongly closed. |

The remaining results of this section relate functions with rc-strongly closed
graph to rc-compact spaces.

THEOREM 4.9. Let (Y,M) be an rc-compact space. If a function f : (X, T) —
(Y,M) has an rc-strongly closed graph, then f is rc-continuous.
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PROOF. Let x € X and let V = M such that f(x) € Cly (V). For each y €
Y —Cly (V), we have (x,y) ¢ G(f). Since G(f) is rc-strongly closed, there ex-
ist Uy € T and V,, € M such that x € Uy, ¥ € Cly(V,), and (Uy x Cly(Vy,)) N
G(f) = @. Note that f(U,)NCly(V,) = @. Now, the family {Cly(V)}U
{Cly(Vy) : v € Y = Cly(V)} forms an rec-cover for the rc-compact space Y.
So it contains a finite subcover {Cly (V),Clp(Vy,),...,Cly(V,,,)} for Y. Put
Uy = Ui 1Uy,. Then Uy € T, x € Uy, and f(Uy) N(Ui, Clu(Vy,)) = @, that
is, f(Uy) €Y —(UL, Cly (Vy,)) € Cly (V). Thus, f is rc-continuous at the arbi-
trary point x € X and so f is rc-continuous. O

PROPOSITION 4.10. Let f:(X,T) — (Y,M) have an rc-strongly closed graph.
If B is an rc-compact subset relative to Y, then f~1(B) is a closed subset of X.

PROOF. Let x € X — f~1(B). Then f(x) ¢ B and for each y € B, we have
(x,y) ¢ G(f). Since G(f) is rc-strongly closed, there exist U, € T and V,, € M
such that x € Uy, ¥ € Cly(V,), and (U, x Cly(V,))NG(f) = @. Note that
F(U,)NCly(V,) = @. Now, {Cly(V,) : ¥ € B} is a family of regular closed
subsets of Y whose union contains B. Since B is rc-compact relative to Y, we
obtain a finite subfamily {Cly (Vy,),...,Clp(V,,, )} such that B < UL, Cly (Vy,).
Put Uy = UL, U,y,. Then Uy € T, x € Uy, and f(Ux) N(UiL, Cly (Vy,)) = @. This
means that f(Ux)(\B = @ and so x € U, € X — f~1(B), which proves that
F1(B) is closed. O

To state our last result, we point out a class S of spaces introduced in [7],
which contains all completely normal, fully normal, and Hausdorff spaces.

THEOREM 4.11. Let (Y,M) be a Hausdorff space. Then (Y,M) is an rc-
compact space if and only if for any (X,T) € S, each function f : (X,T) —
(Y,M), that has an rc-strongly closed graph, is rc-continuous.

PROOF

NECESSITY. Already proved in Theorem 4.9.

SUFFICIENCY. Suppose, to the contrary, that (Y,M) is not rc-compact.
Then by Proposition 2.6, there exists a net @ : A — Y that does not rc-
accumulate to any point y € Y. Let t ¢ A and put X = AJ{t}. We provide
X with a topology T that makes each x an isolated point while a basic open
neighborhood of t is of the form {t} JT,, where T, is a tail of A determined by
A € A. It is well known [7] that the space (X, T) is Hausdorff, fully normal, and
completely normal, and so (X, T) € S. Fix a point Y, € Y and define a function
f:(X,T) - (Y,M) by the formula

if A
f(x)—{(p(x)’ Txe ' (4.1)
Y0, if x =t.

We first show that f has an rc-strongly closed graph. So let (x,y) € X XY
and (x,y) ¢ G(f). Consider the case when x =+ t. Since f(x) + ¥ and Y is a



RC-CONTINUOUS FUNCTIONS ... 4555

Hausdorff space, there exists V € M such that y € V and f(x) ¢ Cly (V). Then
{x}xCly (V)ING(f) = D.

Next, we consider the case when x = t. This means that f(x) = yy # y.
Again, since (Y,M) is a Hausdorff space, there exists V € M such that y € V
and yy ¢ Cly (V). Moreover, the net @ : A — Y does not rc-accumulate to . So,
there exists W € M and A € A such that yy € Cly (W) and f(T,) NCly (W) = &
for a tail T, of A. Take F = Cly(V(Cly(W)). Then y € F, yo ¢ F, and F is
regular closed as it is easy to see that F = Cly (VN Cly(W)) = Cly(VOW).
Moreover, f(T,)F = @. Thus, (T, U{t} xF)G(f) = &. This completes the
proof that G(f) is rc-strongly closed. |

Finally, by appealing to Proposition 3.5, we show that f is not rc-continuous.
We point here to the fact that the net (A), converges in (X,T) to the point
t. However, the net (A),_, = (f(A)),ea does not rc-accumulate to ¥y, which
means that it is not rc-convergent to yy = f(t). Thus, f is not rc-continuous.
The established situation contradicts our hypothesis. Thus, (Y,M) is rc-
compact.
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