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QUARTIC EXERCISES
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A correspondence between quartic étale algebras over a field and quadratic étale
extensions of cubic étale algebras is set up and investigated. The basic construc-
tions are laid out in general for sets with a profinite group action and for torsors,
and translated in terms of étale algebras and Galois algebras. A parametrization
of cyclic quartic algebras is given.
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1. Introduction. It is known since the sixteenth century that the solution
of quartic equations can be obtained by means of auxiliary equations of de-
gree 3, called cubic resolvents. The situation is easily understood in terms of
Galois theory. For any integer n > 1, let 5,, denote the symmetric group on
{1,...,m}. The symmetric group 55 contains a normal subgroup of order 4,
Klein’s Vierergruppe

0=1{1,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}, (1.1)

which is the kernel of the action of $4 on its three Sylow 2-subgroups. Num-
bering from 1 to 3 these Sylow subgroups, we get an exact sequence of groups:

1—0—5,2 585, —1. (1.2)

Let F be an arbitrary field and P € F[X] a separable polynomial of degree 4.
Let also Fs be a separable closure of F and Q C Fs the subfield generated by
the roots of P. The Galois group Gal(Q/F) can be viewed as a subgroup of 5,
through its action on the roots of P. The subfield L of Q fixed under Gal(Q /F)n
0 is generated by the roots of a cubic resolvent, as was shown by Lagrange. For
a given quartic polynomial P, there are actually many polynomials of degree 3
which qualify as cubic resolvents; only the extension L/F is an invariant of P
(or of Q).

Galois cohomology provides another viewpoint on this construction. Since
5, is the automorphism group of the étale F-algebra F" = F X - - - X F, it is well
known that the Galois cohomology set H!(F,5,) is in canonical one-to-one
correspondence with the isomorphism classes of étale F-algebras of degree n,
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see [3, (29.9)]. The map p in (1.2) induces a map
p':HY(F,54) — H'(F,53) (1.3)

which associates to every quartic étale F-algebra Q a cubic étale F-algebra®(Q)
uniquely determined up to isomorphism. If P € F[ X] is a separable polynomial
of degree 4 with cubic resolvent R, and if Q is the factor algebra Q = F[X]/P,
then R (Q) ~ F[X]/R, see Section 5.3.

Our first aim is to make the construction of %(Q) from Q explicit. But this
construction can be further extended. Each of the three Sylow 2-subgroups of
5,4 contains two transpositions, and each transposition is in one and only one
Sylow subgroup. Hence the set of transpositions can be viewed as a double
covering of the set of Sylow 2-subgroups. Therefore, the conjugation action of
$,4 on its six transpositions defines a map

A5y — 52153, (1.4)

where the wreath product 5, ! $3 is viewed as the group of automorphisms of a
double covering of a set of three elements (see Section 4.1). The map A extends
to an isomorphism of groups

5\:§2X§4;§2l§3, (1.5)

see Section 5.2. The set H! (F,$, 153) classifies the quadratic étale extensions
of cubic étale F-algebras (see Section 4.2), and the induced bijection

Al:HY(F,5,) xH'(F,5,) — H'(F,5,153) (1.6)

associates to every pair consisting of a quartic étale F-algebra Q and a qua-
dratic étale F-algebra a quadratic étale extension of the cubic resolvent % (Q).
In Section 5.3, we give an explicit construction of this quadratic extension, and
we describe in Section 5.4 the inverse of Al, attaching a quartic étale F-algebra
and a quadratic étale F-algebra to any quadratic étale extension of a cubic étale
F-algebra.

In the final sections, we classify quartic étale algebras and their associated
quadratic extensions of cubic algebras according to their decomposition into
direct products of fields (see Section 6.3) and we parametrize cyclic quartic
extensions.

We conclude by quoting Weil [13]:

La recherche des extensions d'un corps k dont le groupe de Ga-
lois sur k est 54 ou A4 n’est pas autre chose, du point de vue des
algébristes du XIX¢ siecle, que la théorie de I'équation du 4¢ de-
gré. C’est un probléme pour lequel ces algébristes n’avaient que du
mépris.
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2. I'-sets and coverings

2.1. Basic constructions on I'-sets. Let I' be a profinite group, which will
be fixed throughout this section. Finite sets with a continuous action of I' are
called I'-sets. We let | X| denote the number of elements in a I'-set X. If X is a
I'-set with n elements, and k is a positive integer, k < n, we let £, (X) denote
the set of k-tuples of pairwise distinct elements of X and Ag(X) the set of
k-element subsets of X. Thus

S(X) = {(&1,...,&) € XX | & # §; for i = j},

2.1
Ak(X)Z{{El,...,Ek}CX|§1‘¢§,'fOl"i¢j}. ( )

The action of T on X induces actions on X (X) and Ay (X). Hence X, (X) and
Ak (X) are I'-sets, and we have

n n
|5 (X) | =k!<k), |A(X)] = (k) (2.2)

The symmetric group 5 acts on X (X) by permutation of the entries, and we
may consider Ay (X) as the set of orbits of X, (X) under this action, that is, as
the quotient I'-set

Ak (X) = Zp(X) /5k. (2.3)

For k = n, we may also consider the action of the alternating group %,, on
3,1 (X). The quotient is called the discriminant of X and is denoted by A(X),

AX) = Zn(X) /2, (2.4)

see [3, page 291]. This is a I'-set with [A(X)| =2 if n > 2.
If n is even, n = 2m, let

Yx A (X) — Ap (X) (2.5)

be the map which associates to every m-element subset of X its complemen-
tary subset. Since yf( = Id, this map defines an action of $, on A, (X). The map
yx is I'-equivariant (i.e., compatible with the action of I'), hence the quotient

R(X) = A (X) /52 (2.6)
is a I'-set. It is the set of partitions of X into m-element subsets.
EXAMPLE 2.1. If X = {1,2,3,4}, then

A2(X) =1{{1,2},{3,4},{1,3},{2,4},{1,4},{2,3}},

2.7
R0 = ([(L2h 3,41, [L3L 24 (14, 23] &7
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If | X| =2, the map
Yx: X=ANX) — A (X)=X (2.8)

interchanges the two elements of X. For X and X’ being two I'-sets with | X| =
|X'| =2, the map

YxXyx XXX — XxX' (2.9)
defines an action of 5, compatible with the I'-action. Let
X*X = (XxX')/52, (2.10)
aT-set with [ X % X'| = 2. Thus, if X = {x1,x2} and X’ = {x],x5}, then
XX = {{(x1,x1), (x2,x2) }, { (x1,%2), (x2,x7) }}. 2.11)

The following observations are clear.

PROPOSITION 2.2. Let X and X' be T'-sets of two elements.

(a) TheT-action on X x X is trivial.

(b) If the T-action on X' is trivial, then X x X' ~ X. (Note that the isomorphism
is not canonical.)

(c) The operation * defines a group structure on the set of isomorphism classes
of I'-sets of two elements.

See Section 4.2 for a cohomological interpretation of the group structure
induced by .

2.2. Coverings. A morphism Y <= Z of I-sets (i.e., a [-equivariant map) is
called a covering if the number of elements in each fiber w1 () C Z does not
depend on n € Y. This number is called the degree of the covering. Coverings
of degree 2 are called double coverings. A morphism of coverings

(Y1 = 2;) — (Y2 == Z5) (2.12)

isapair (0:Y; — Y2, T:Z; — Z») of morphisms such that o o1, = T2 0 T. Given
two coverings Y I Zyand Y 2 Z, of the same I'-set Y, an isomorphism over
Y is an isomorphism T : Z; — Z, such that 1y = 20 T.

For any covering Y Z Zof degree d with |Y| = n, let Q(Z/Y) be the set of
sections of Tt:

Q(z1Y) ={{C1,....,Cu} c Z 1 {m(T1),..., m(Cn)} = Y} CAR(2).  (2.13)
This is a I'-set with |Q(Z/Y)| = d". If d = 2, the morphism
Yz :An(Z) — An(Z) (2.14)

preserves Q(Z/Y) and induces a $»-action compatible with the action of T.
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Define
PZIY)=Q(Z]Y)]S>. (2.15)

Note that every double covering Y <~ Z has an involutive automorphism
yz;v which is the identity on Y and interchanges the two elements in each
fiber of 1r. Thus, for {Ci,...,C,} € Q(Z/Y),

yz({C1,--,Cm}) = {yziy (1) yziv (Tu) |- (2.16)

EXAMPLE 2.3. LetZ = {z1,2],22,25,23,25}, Y = {1,2,3},and Y Z Z themap
which carries z; and z; to i for i = 1,2,3. Then
QZ1Y) = {{z1,22,23},{21,25, 23}, 12, 20, 23}, {2}, 25, 23},
121,25,23},121, 22,23}, {21, 25, 23}, {21, 22, 23},
S (ZIY) ={{{z1,22,23}, {21, 25, 23} }, {21, 25, 25}, {2, 22, 23},

{{Zi,Zz,Zé},{Zl,Zé,Z3}},{{Zi,Zé,Z3},{Zl,Zz,Zé}}}.

(2.17)

Let Y <~ Z be an arbitrary double covering of aI-set Y of n elements, so that
|Z| = 2n, and let {Cy,...,Cn} € Q(Z/Y). Even though the n-tuple (Ci,...,Cyn)
is not uniquely determined by the set {C,...,Cy}, it turns out that the orbit

(Cly---an,}/Z/Y(gl):---;YZ/Y(Cn))Azn (2.18)

is well defined since every permutation of Ci,...,C, induces a corresponding
permutation of yz,y(C1),...,yz,y(Cn), and the resulting permutation of the
2n elements Cj,...,Yz/y(Cy) is necessarily even. Therefore, we may define

5({Cr,...,Cn}) = (glv---,gna}/Z/Y(gl)1---,YZ/Y(Cn))A2n € Zon(Z) [2on = A(Z),
(2.19)

and thus obtain a morphism of I'-sets
0=07:Q(Z]Y) — A(Z). (2.20)

On the other hand, since ¥(Z/Y) is a quotient of Q(Z/Y), there is a canonical
map

E:QZ)Y) —SL(Z]Y). (2.21)
PROPOSITION 2.4. For a double covering Y I Z with |Y| = n odd, the map
(6,8):Q(Z]Y) — A(Z) XS (Z]Y) (2.22)

is an isomorphism of T-sets.
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PROOF. Since the map (6,¢) is clearly I'-equivariant, and since both sets
Q(Z]Y) and A(Z) xP(Z]Y) have 2" elements, it suffices to show that (6, )
is injective. Suppose {Ci,...,Cn},{C1,...,Cp} € Q(Z]Y) are distinct elements
such that e({C1,...,Cn}) = €({Ty,...,C,}) then {T,...,Ch} = yz({T1,...,Cn})

and we may assume that the elements are numbered in such a way that 7w (C}) =
m(g;) (e, T = yz;v(Cy)) for i = 1,...,n. Since the permutation which inter-
changes C; and C; for i = 1,...,n is odd, we have

(€1 s Cns Ty §) ™27 % (L1 6y Gy, §) ™2, (2.23)
hence §({C1,...,Cun}) # 8U{T],..., T }). O

Ify L ZandY s Z' are two double coverings of the same I'-set Y with n
elements, consider the fiber product

IxyZ ={(C,C)ezxZ | =n'(C)) cZxZ. (2.24)
The group 5, acts on Z Xy Z' by mapping (Z,C’) to (yz;v(C),yz,v(T')). Let

ZxyZ =(ZxyZ')/5,. (2.25)

T’

The canonical map Y Z Xy Z' induces a map

kT’

Y

ZxyZ' (2.26)

which is a double covering. In particular, for any I'-set X of two elements and
any covering Y I Zof degree 2, we may consider

T X TT

Y —— (XXY)*y Z, (2.27)
where Y <2 X x Y is the projection map. Abusing notation, we simply write
Y - X%xZ (2.28)

for this double covering. The proof of the following easy proposition is omit-
ted.

PROPOSITION 2.5. Let X be a set of two elements with trivial T-action and let
Y = Z be a double covering.

(a) The covering Y T oz xy Z is isomorphictoY 2 xxyv.

(b) The covering Y <= X x Z is (noncanonically) isomorphic to Y <= Z.

(c) The operation xy defines a group structure on the set of isomorphism
classes over Y of double coverings of Y. The neutral element is the isomorphism
class of Y 2 xxy.

PROPOSITION 2.6. LetY <= Z andY << Z' be two double coverings. There is
a canonical isomorphism A(Z xy Z') ~ A(Z) x A(Z").
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PROOF. Recall from (2.20) the map
07:Q(Z]Y) — A(Z) (2.29)

defined for any double covering Y I 7 of aT-set Y with |Y| = n. In the se-
quel, we simply write 67(z1,...,zy,) for 67({z1,...,zn}). For w,w’ € Q(Z/Y),
we have 6z (w) = 6z (w") if and only if |[w N w’| = nmod 2. In particular, the
map 67 is onto. Let Y - Z and Y 7' be two double coverings of Y. We

simply denote by ~ the canonical automorphisms y;,y and y ,y and also the
canonical automorphisms of A(Z) and A(Z’). For {z1,...,z,} € Q(Z/Y) and
{z],--.,zn} €Q(Z']Y), we have

62(71,22,...,2;1):52(21,22,...,Zn) (230)
and, similarly,

87 (24,2hy..y2) =072 (2),25, .0, 20). (2.31)

Therefore, the element

102(21,.20),02(200-..2)), (82 (21, 20), 02 (21, z0)) |

(2.32)
eEANZ)*xNA(Z")

depends only on
w=1{{(z1,20), @20}, {(zn.z0), @z} € Q(Z v Z'1Y). (2.33)
We thus have a canonical map
WiQ(ZxyZ']Y) — AZ) % A(Z'). (2.34)

If w € Q(ZxyZ'|Y) is obtained from w by substituting {(zl,z_j), (z1,271)} for
{(z1,27), (zT,Z)}, then @ (w) = Y (w’), hence y is onto. On the other hand, if
w'’ is obtained from w by an even number of changes as above, then (w) =
Y (w"). Therefore, Yy(w) = Yy(w") if [w N w’| = nmod?2, and it follows that
factors through the map

5Z*YZ'ZQ(Z*yZ,/Y)—>A(Z>|<yZ,). (2.35)

This completes the proof. |

For later use, we record another case where the map 6 of (2.20) can be used
in the computation of a discriminant. Let X be a I'-set of two elements. For
any I'-set Y, we may consider the double covering Y 2 Xxy given by the
projection.
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PROPOSITION 2.7. If |X| =2 and |Y| is odd, the composition of the I'-equiv-
ariant map

X —QXXYY),  ux)={(xy)|yeY}

Sxxy 1 QXXY/Y) — AXXY) (230
defines an isomorphism
Sol: X —AXXY). (2.37)
PROOF. Since Y| is odd, we have
Sot(yx(x)) =yauxxy)(ot(x)) forx e X. (2.38)
Therefore, ¢ o t is surjective, hence bijective. |

PROPOSITION 2.8. Let X be aT-set of two elements and letY <~ Z be a double
covering. There is a canonical isomorphism

FSZNY)=F(X*xZ]Y). (2.39)

PROOF. For simplicity of notation, let X = {+, —} and denote by ~ the canon-
ical automorphism yz;y. We may then identify X * Z with the set of formal
polynomials € —C, for € € Z. Note however that the I'-action on these polyno-
mials is not linear since I' may act nontrivially on {+,—}. The structure map
Y — X % Z carries £ —C to (L) = 1t(C). Therefore,

QX*Z/Y)={{C1-C1,.... Cn = Cu} [ {TT(C1),..., m(C0)} = Y},
FX*Z/Y)={{{Ci-C1,....Cn —Ta}, (2.40)
{Z—Cl,---,a—é’n}} | {T"(Cl);---sn(gn)} = Y}-

On the other hand,
FZ1Y) = {{C1,- -, Ca} AT, Gl T (C), . m(8n) ) = Y] (2:41)

The map

ey G AT Gt = HG T G - G AT - T G = Tl
(2.42)

isaT-isomorphism ¥(Z/Y)— $(X * Z/Y), whatever the action of I on {+, -} is.
O
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3. Ftale algebras and extensions. In this section, F is an arbitrary field.
We denote by Fs a separable closure of F and let I' = Gal(Fs/F). A finite-
dimensional F-algebra E is called étale if E ®f F; is isomorphic to a split F;-
algebra F; X - - - X F;. For any étale F-algebra E of dimension n, the set of F-
algebra homomorphisms

X(E) = Homp g (E, Fs) (3.1)

is a I'-set of n elements since I' acts on F;.
Conversely, starting from a I'-set X with |X| = n, we may let I act by semilin-
ear automorphisms on the F;-algebra of maps Map (X, Fs). The fixed F-algebra

M(X) =Map (X,Fs)' = {f: X —F | yf(§) = f§) foryel,Ee X} (3.2)
is étale of dimension n. Moreover, there are canonical isomorphisms
M(X(E)) ~E, XM(X))=~X (3.3)

(see [3, (18.19)]), so that the functors M and X define an antiequivalence be-
tween the category Ety of étale F-algebras (with F-algebra homomorphisms)
and the category Setr of I'-sets. Under this antiequivalence, the direct product
(resp., tensor product) of F-algebras corresponds to the disjoint union (resp.,
direct product) of I'-sets; for étale F-algebras E;, and E», there are obvious iden-
tifications

X(E1 ®Ez) =X(E1) xX(E2),  X(E1xEz) =X(E1) UX(E?). (3.4)

Moreover, if G is a group acting on an étale F-algebra E by F-automorphisms,
then, for the fixed subalgebra E¢, we have

X(E®) =X(E)/G (3.5)

since E¢ is the equalizer of the automorphisms o : E — E for o € G, and
X(E) /G is the coequalizer of the corresponding automorphisms of X(E). There-
fore through the antiequivalence Ety = Setr, the constructions on I'-sets defined
in Section 2.1 have counterparts in the category of étale F-algebras. The aim
of this section is to make them explicit.

3.1. Basic constructions on étale algebras. Let E be an étale F-algebra of
dimension n. Under the canonical isomorphism E ~ M(X(E)), the idempotents
of E correspond to the characteristic functions of I'-subsets of X(E).If e € E
is the characteristic function of a subset Y C X(E), then multiplication by e
defines an isomorphism E/(1 — e)E — eE. Moreover, X(eE) = Y, and under
the antiequivalence Etr = Setr, the map E — eE corresponds to the inclusion
X(E) —Y.
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ExXAMPLE 3.1. If E is the split étale F-algebra E = F", then X(E) is in duality

with the set eq,..., e, of minimal idempotents of E, namely, X(E) = {&1,...,En},
where
0 ifi=j,
Eilej) = L (3.6)
1 ifi=j.

The idempotent corresponding to a subset Y = {&; | i € I} C X(E) is > ;s e;.

Let E be an arbitrary étale F-algebra of dimension »n. For any integer k with
1 < k < n, we let s; € E® be the idempotent corresponding to the characteris-
tic function of the subset

Sk(X(E)) = {(&1,-.-, &) | & = & for i = j} C X(E)* =X(E®K).  (3.7)
Therefore, letting S (E) = s E®¥, we have
X(Zk(E)) = Zk(X(E)). (3.8)

In particular, for k = 2, the idempotent 1 — s, is the characteristic function
of the diagonal of X(F) xX(F) = X(E®E). It is the separability idempotent of
E, see [3, page 285]. For k > 3, the idempotent s, can also be defined in terms
of the separability idempotent of E, see [8, page 42] and [3, page 320].

The symmetric group 5y acts on E®% by permutation of the factors, and the
idempotent sy is fixed under this action, so 5 also acts on X (E). We consider
the fixed subalgebra

Ak(E) = Sy (E)Sk = s (E®F) %%, (3.9)
We have
X(Ak(E)) = A (X(E)) (3.10)

since under the antiequivalence Etg = Setr the fixed algebra under 5, corre-
sponds to the factor set under the $-action.
The discriminant of E is defined by

A(E) = Zn(E)*, (3.11)
and we have
X(A(E)) = A(X(E)). (3.12)
EXAMPLE 3.2. If E = F" is split with minimal idempotents e,..., e;, then

Sk= D e, ®--®e;, (3.13)
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where (iy,...,ix) ranges over the k-tuples of pairwise distinct integers from
1 to n (e, (iy,...,ix) € Zx({1,...,n})). The algebra Xy (E) is then split, with
minimal idempotents

e ®---®e; (3.14)

for (iy,...,ix) € Zx({1,...,n}). Similarly, the algebra Ay (E) is split, with mini-
mal idempotents

Clipit) = D, Cig) ® " ®Cig (3.15)
oSy

for {iy,...,ix} asubset of k elements of {1,...,n}, thatis, {i,...,ix}€AL({1,...,

ni).

We also have A(E) =~ F X F if n > 2, with minimal idempotents

Z Cr(1)® " ®Lgn), Z r(1)® - ®Lgn)- (3.16)
oedy ¢y

For an arbitrary étale F-algebra E of dimension 7, the algebra Ay (E) can also
be viewed as an algebra of linear transformations of the exterior power AE
(where E is just regarded as a vector space), as we now show.

Multiplication on the left defines an F-algebra homomorphism (the regular
representation)

E®% — Endp (E®F). (3.17)

As pointed out by Saltman [7, Lemma 1.1], the image of (E®¥)5k in Endf (E®¥)
preserves the kernel of the canonical map E®* — /\k E. Therefore, there is an
induced F-algebra homomorphism

k
(E%)* . End; (/\5). (3.18)

LEMMA 3.3. The homomorphism (3.18) maps sy to the identity map on /\k E.

PROOF. It suffices to check the assertion over an extension of F. We may
thus assume that E is split, E = F". Let ey, ..., e, be the minimal idempotents of
E. Then sy is as in Example 3.2 and its image in El’ld}:(/\kE) maps ej; A---Aej,
to

D> epnej A Aepe =ej At Al (3.19)
(110i) O

In view of the lemma, the homomorphism (3.18) induces an F-algebra ho-
momorphism

k
@i (E9)%) (1-5) (B9 = Aw(B) — Bndr (AE). (320
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Saltman [7, Lemma 1.3] has shown that the image of this map has dimension
(1) = dimA(E), hence gy is injective.
For instance, for a, x1,...,xx € E,

Pr(sk(a®---®a)) (X1 A---AXg) =axi A--- Aax,
Pr(sk(a®l®- - ®1+1®a® @1+ ---+1®---®11a))(x] A+ AXg)
=(axi Axa A AXg)+ (X1 AaX2 A+ AXE)
+eo+ (XPAX2A - AaXy).
(3.21)

Now, consider the case where n is even, n = 2m. Since dim A" F = 1 and the
exterior product A" Ex A™E — A"E is a nonsingular bilinear pairing, there is
an adjoint involution y on Endr (A" E), defined by the equation

FxX) Ay =xAy(f)(y) forx,ye \E, f<€Endr (/\E) (3.22)

PROPOSITION 3.4. The involution y preserves the image of . Therefore,
there is an induced involutive automorphism yg on Ay, (E) defined by @y, o yr =
Yo®Pm-

PROOF. Extending scalars to a separable closure, we may assume that E
is split. It is then spanned by its minimal idempotents ey, ..., e;, and A, (E)
is spanned by the minimal idempotents ey;,, . i,,; defined in Example 3.2 for
{it,...,im} € Ap({1,...,n}).

Computation shows that for {iy,...,im}, {j1,---, Jm} € Am({1,...,m}),

ejy A Aej, i {in.im) = {1 dm),
e . i A AN€i =
P (Clirimt) (i in) {o if {i1yees im} # Li1eees )
(3.23)
It is then easily verified that
Yo @m(efiy,im}) = €iky ki (3.24)

where {ki,...,k} is the complementary subset of {ii,...,i,} in {1,...,m}.

We may now define
R(E) = A (E)®? = {x € A (E) | ye(x) = x}. (3.25)

THEOREM 3.5. For any étale algebra E, X(R(E)) = R(X(E)).

PROOF. It suffices to see that, under the antiequivalence Ety = Setr, the au-
tomorphism yr of Ay, (E) corresponds to the permutation yx) of X(Ay, (E)) =
Am (X(E)). Again, we may extend scalars to a separable closure of F and as-
sume that E is split. Using the same notation as in the preceding proof, we may
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identify X(E) with the dual basis of e,...,e,. Equation (3.24) shows that

YE(e{il ..... im}):e{kl ..... km}s (3.26)

where {ki,...,k,} is the complementary subset of {iy,...,i,}in {1,...,n}, and
the proof is complete. |

When dimE = 2, the algebra E is called a quadratic étale F-algebra. In the
notation above, we then have m = 1, so A, (E) = E, and hence E carries a
canonical involutive automorphism yg. Let E and E’ be two quadratic étale
F-algebras, with canonical involutive automorphisms yr and yg. The tensor
product yr ® yr defines a $>-action on E ®f E’, and we let

ExE = (E®pE')™. (3.27)

PROPOSITION 3.6. For quadratic étale F-algebras E, E', X(E x E") = X(E) *
X(E").

PROOF. The proof follows from
X((E®rE')™) =X(E®rE') /5> = (X(E) xX(E)) /52. (3.28)
O

Let Quad(F) be the set of isomorphism classes of quadratic étale F-algebras,
which is in bijection under the functor X with the set of isomorphism classes
of I'-sets of two elements. The following analogue of Proposition 2.2 is easily
proved, either directly or by reduction to Proposition 2.2 under the antiequiv-
alence Ety = Setr.

PROPOSITION 3.7. Let E and E’ be two quadratic étale F-algebras.
(@) The F-algebra E xE is split: ExE ~ F XF.

(b) If the algebra E' is split, then E x E’' ~ E (not canonically).

(c) The operation x defines a group structure on the set Quad (F).

3.2. Extensions of étale algebras. An étale F-algebra B containing an F-
algebra A (necessarily étale) is called an extension of degree d of A if it is a
free A-module of rank d. Equivalently, this condition means that the inclusion
ALB corresponds under the antiequivalence Ety = Setr to amap X(A) = X(B)
which is a covering of degree d. Extensions of degree 2 are called quadratic
extensions.

Suppose B/A is an extension of degree d. Let dimr A = n (hence dimgB =
nd), and let s € (A®™)5n be the idempotent defining =, (A), see Section 3.1.
Then i®"(s;}) is an idempotent of (B®")*n. Define

Q(B/A) = i®"(s2) - (B®")™". (3.29)
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PROPOSITION 3.8. There is a canonical surjective map A, (B) — Q(B/A), and
X(Q(B/A)) = Q(X(B)/X(A)). (3.30)
Therefore, dimpr Q(B/A) = d™.

PROOF. The set X(Q(B/A)) is the set of F-algebra homomorphisms (B®")%n
— Fs which map i®"(s) to 1. Since

X((B®")™") = X(B)"/Sn, (3.31)

every such homomorphism is the orbit of an n-tuple (&4,...,&,) of elements of
X(B). The condition that the homomorphism maps i®"(s:) to 1 is equivalent
to the fact that the homomorphism (A®")% — F associated to the n-tuple
(i*(&1),...,1*(&,)) maps s2 to 1. In view of the definition of s;}, this means
that i*(&;),...,i*(&,) are pairwise distinct. Hence

{i*(&1),...,1% (&)} = X(A) (3.32)

since |X(A)| = n. Of course, this condition implies that &, ..., &, are pairwise
distinct, hence {&,,...,&,} € A (X(B)). Thus,

X(QB/A) = {{&,....,Ent CX(B) [{i* (81),...,1" (&n)} = X(A)}

3.33
= Q(X(B)/X(A)). (-39

The inclusion Q(X(B)/X(A)) € A, (X(B)) yields the canonical surjective map
An(B) — Q(B/A) under the antiequivalence Ety = Set. O

Now, suppose d = 2 so that dimy B = 2n. The canonical involutive automor-
phism yx(s),x(4) on X(B) corresponds to a canonical involutive automorphism
yB,4 of B such that

A={x€B|ypalx)=x}. (3.34)
On the other hand, there is also a “complementary subset” map
Yx®) : An(X(B)) — An(X(B)). (3.35)

Since this map preserves Q(X(B)/X(A)), the corresponding map yz: Ay (B) —
Ay (B) induces an involutive automorphism on Q(B/A), which we also denote
by yg, and we may consider the subalgebra of fixed points

S(B/A) =Q(B/A)% = {x € Q(B/A) | yp(x) = x}. (3.36)
By definition, it is clear that
X(9(B/A)) =F(X(B)/X(A)), 3.37)

hence dimp ¥ (B/A) = 2"1,
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EXAMPLE 3.9. Suppose A and B are split of dimensions 3 and 6, respectively,
with minimal idempotents e, ez, e3, and f1, f1, f2, f3, f3, f3 such that

ei=fi+f fori=1,2,3. (3.38)
As observed in Example 3.2,

S?: Z eor(1)®er(2) ®ey(3), (3.39)
TgES3

and {es1)®es(2) ®ex3) | 0 €53} is the set of minimal idempotents of 33(A).
Denoting in general by > u ® v ® w the sum of the six products obtained by
permuting the factors u, v, and w (so that

DUBVOW = > Us) ®Us(2) OUs(3), (3.40)

gES3

where ©; = u, u, = v, uz = w), the minimal idempotents of Q(B/A) are

go=2 friefeefs, go=2 flef,ef;,
gi=2hoefiefi, gi=Dfiefefs
g2=> fief20f;5,  gy=> fief18f3,
gi=>.fiefrefs, gs=> fiefoef;

(3.41)

The involution yg interchanges g; and g; for i = 0,...,3, hence the minimal
idempotents of ¥(B/A) are

go+9o,  91+g1,  G2+gs  g3+g; (3.42)

Let B and B’ be quadratic extensions of an étale F-algebra A. The canonical
map B®r B’ — B®4 B’ induces an injective map

X(B)xX(B') =X(B®rB') — X(B®4B') (3.43)

which identifies X(B ®4 B") to the fiber product X(B) xx4) X(B’). The tensor
product yp;a ® yp',4 defines an action of 5, on B®4 B’ by A-automorphisms,
and we let

BxsB = (Be,B')™. (3.44)

The following result is clear.

PROPOSITION 3.10. For quadratic extensions B, B' of an étale algebra A,
X(B *AB') = X(B) *X(A)X(B').

If E is an étale F-algebra of dimension 2, then E ®f A is a quadratic extension
of A. For any quadratic extension B/A, we have E®rB = (E®r A) ® 4 B and we
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simply write
ExB for (E®pA)*aB. (3.45)

Let Quad(A) be the set of isomorphism classes over A of quadratic exten-
sions of A. The following proposition is the analogue of Proposition 2.5.

PROPOSITION 3.11. Let E be a split étale F-algebra of dimension 2 (i.e., E ~
F X F), and let B/ A be a quadratic extension of étale F-algebras.

(a) The extension (B * 4 B) /A is isomorphic to (E®r A)/A (hence also to (A x
A)/A).

(b) The extension (E * B) /A is (noncanonically) isomorphic to B/ A.

(c) The operation *x 4 defines a group structure on Quad(A). The neutral ele-
ment is the isomorphism class of (AX A)/A.

Itis clear that Propositions 2.4, 2.6, and 2.8 have analogues for étale algebras.
We record them below.

PROPOSITION 3.12. Let E be an étale F-algebra of dimension 2 and let B/ A
and B’ | A be quadratic extensions of an étale F-algebra A. There are canonical
isomorphisms

(a) AB)®Y(B/A) =Q(B/A) (if dimA is odd),
(b) A(B*4B") =A(B)*A(B"),
(¢c) S(ExB/A) ~F(B/A).

4. Cohomology of permutation groups

4.1. Permutations. For any finite set X, let $x be the symmetric group of
X, that is, the group of all permutations of X. Thus, §x = §,, for X = {1,...,n}.
Every permutation of a set X of n elements induces a permutation of the sets
Sk (X), Ak(X) (for k < n), A(X), and R(X) (if n is even). There are therefore
canonical group homomorphisms

§X—>§zk(x), §X_'§Ak(X) (forksn), (4 1)
§X 4'§A(X)| §X —’5@,()() (if nis EVEIl). ’
(If n = 2, the map Sy L Sax) = 52 is the signature map.)
If Y < 7 is a covering of degree d of a set of n elements, let
Sz;y ={(0,T) ESy x5 | MoT =0T o1} 4.2)

be the group of automorphisms of the covering. The map (o, T) — T identifies
57,y to a subgroup of §z. On the other hand, the map (o,T) — o defines a
surjective homomorphism

Bz)y:5z;y — Sy (4.3)
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whose kernel is isomorphic to 5} upon identifying each fiber of m with {1,...,
d}. Therefore, the group 57,y has order (d!)"n! and can be identified to a
wreath product

§Z/y :§dZ§n- (44)

Automorphisms of the covering Y — Z induce permutations of Q(Z/Y), and
of ¥(Z/Y) if d = 2. Hence there are canonical group homomorphisms

Wz)y:5z)y — Sawiz)y), Sz)v:i5z)v — S9(z)v) ifd=2. 4.5)

For later use, note that the kernel of s,y is the “diagonal” subgroup $, of 5z,y,
whose nontrivial element is yz,y. This diagonal subgroup is central in 5z,y.

On the other hand, every permutation of a set X with n = 2m elements
induces an automorphism of the covering ®(X) < A,,(X). Hence there is a
canonical group homomorphism

AX 15X — S (x)/2x) C SAm - (4.6)

PROPOSITION 4.1. Ifm > 2, the image of Ax is in the kernel of the signature
map

SN IS, (X) — SAa(Am (X)) (4.7)

Moreover, the composition of Ax and the canonical homomorphism s, (x)/a(x)
is an injective map

S5x = S9(Am (X)/R(X))- 4.8)

The proof is left to the reader.

4.2. Cohomology and I'-sets. As in Section 2, we denote by I' a profinite
group which will be fixed throughout this subsection. The action of T on a set
X with | X| =n can be viewed as a group homomorphism

I' —5x =5,. (4.9)

Since the isomorphism Sy ~ §,, depends on the indexing of the elements in X,
the homomorphism I' — §,, is defined by X up to conjugation by an element
in $,. Therefore, there is a canonical one-to-one correspondence between iso-
morphism classes of I'-sets of n elements and the cohomology set H'(I',$,,)
(with the trivial action of T on 5,,) by definition of this cohomology set. Under
this correspondence, the distinguished element of H' (T,5,,) is mapped to the
set with trivial I'-action.

Since the symmetric group 5, is abelian, there is an abelian group structure
on H'(T',5,). We leave it to the reader to verify that the product of the isomor-
phism classes of the I'-sets X and X’ with |X| = |X’| = 2 is the isomorphism
class of X x X',
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Similarly, every covering Y <~ Z of degree d of a I'-set Y with |Y| = n yields
a group homomorphism

I'— 57y =5415n, (4.10)

and there is a canonical one-to-one correspondence between isomorphism
classes of coverings of degree d of I'-sets of n elements and the cohomology
set H'(I,54 1 5,), which maps the distinguished element of the cohomology
set to the covering with trivial I'-action.

The basic constructions in Sections 2.1 and 2.2 yield canonical maps of coho-
mology sets through the induced homomorphisms of permutation groups (see
Section 4.1). For instance, if X is aI'-set of n elements and k < n, the canonical
homomorphism oy : 5x — 55, (x) induces a morphism of pointed sets

op :HY(T,5x) — H'(T,55,(x))- (4.11)

Since the I'-action on X (X) is induced by the I'-action on X through oy, the
morphism O'kl maps the isomorphism class of X to the isomorphism class of
> (X). A similar statement obviously holds for the morphisms

H'(I,5x) — H'(T,5x,x)),
H'(T,5x) — H'(T,5xx)), (4.12)
HY(I,5x) — HY(I,5¢(x)) if n is even.

Similarly, if Y << Z is a covering of degree d of I-sets, the canonical homo-
morphisms wz,y and sz,y of Section 4.1 induce morphisms of pointed sets

wyy :H'(T,52;y) — H' (T,5az/v)),

_ (4.13)
sy tH'(T,5z)y) — H'(T,59(z/v)) ifd=2.

Since the I'-action on Q(Z/Y) and ¥(Z/Y) (if d = 2) is induced by the I'-action
on Z/Y through wy,y and oz,y, respectively, the morphisms w}/y and s}/y
map the isomorphism class of the covering Z/Y to the isomorphism class of
the I'-sets Q(Z/Y) and ¥(Z/Y), respectively.

Recall also from Section 4.1 the canonical homomorphism Bz,y : 5z,y — Sy
which maps every permutation of a covering to the induced permutation of
the base. Let Tz,y = ker Bz,y. This is the group of automorphisms over Y of
the covering Z/Y, hence H! (I', T ,y) is in one-to-one correspondence with the
set of isomorphism classes over Y of coverings of degree d of Y, where the
I'-action on Y is trivial.

The case of nontrivial I'-action can be taken into account by twisting, see [3,
Section 28.C]. If Z/Y is a covering of degree d, we define a nontrivial action of
I' on 57,y by conjugation: the action of T on Z/Y is a group homomorphism

O(Zr—>§z/y; (414)
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and we define
yxf=a(y)ofoualy)! (4.15)

for y el and f € §;,y. Let §’Z/Y be the group 57,y with this action of T, and
define §} similarly. By [3, (28.8)], there are canonical bijections

H'(T,8,y) — H'(T,5z)v), HY(T,s}) = H'(T,sy) (4.16)

which map the distinguished element of H! (I',57,y) and H!(T,5}) to the iso-
morphism class of the covering Z/Y and to the isomorphism class of Y, re-
spectively. The map fz,y is also a I-group homomorphism Bz,y : 57,y — 5y.
Let T,y C 57,y be the kernel of 87,y. Then H!(I',T},y) is in natural one-to-one
correspondence with the set C4(Y) of isomorphism classes over Y of cover-
ings of degree d of Y. (The distinguished element of H!(T',C},y) corresponds
to the isomorphism class of Z/Y.)

The exact sequence of I'-groups

1— Ty — 5y 2255, —1 4.17)

yields an exact sequence in cohomology

1
ﬁZ/Y

HO(T,sy) — H' (I, T} ,y) — H'(T,55,y) H(T,5%). (4.18)

The kernel of B} ;v 1s the set of isomorphism classes of coverings of degree
d of Y. By [3, (28.4)], this kernel is in canonical bijection with the orbit space
of H(I', TY,y) under the fixed-point group H°(T,5}). Note that H(T,5Y) is
the group of permutations of Y which commute with the action of T; in other
words, it is the group of automorphisms of the I'-set Y:

HO(I,5%) = Autr (Y). (4.19)
This group acts naturally on C4(Y), and
ker B}y = C4(Y)/Autr(Y). (4.20)

When the I'-action on Y is transitive, let Iy C I be the stabilizer of an arbitrary
(but fixed) element of Y so that Y = I'/T;. Then we may identify T/, with
Map(T'/Ty,5,4) and get a canonical bijection in the spirit of Shapiro’s lemma

H'(I,T},y) = H (To,54), 4.21)

see [3, (28.20)].

Whatever the action of I on Y is, when d = 2, the group T,y (= 5], where
n = |Y|) is abelian. Hence the set H' (F,'C’Z,Y) is an abelian group. When Z/Y is
the projection covering ({1,2} xY)/Y, the bijection HI(F,’C’Z/Y) ~ (C2%2(Y) is a
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group isomorphism for the group structure induced on C2(Y') by the operation
*y of Section 2.2. Note that this operation is generally not defined on the orbit
set ker B}y = C2(Y)/Autr(Y).

4.3. Torsors. As in Section 4.2, we fix a profinite group I'. Besides the cor-
respondence between H!(I',5,) and the isomorphism classes of I'-sets of n
elements explained in Section 4.2, there is also a one-to-one correspondence
between H'(T,5,) and isomorphism classes of $,-torsors, that is, of I'-sets
of n! = |5, | elements with a free action of §,, (on the right) compatible with
the I'-action (on the left), see [3, (28.14)]. Combining the correspondences, we
obtain a bijection between isomorphism classes of I'-sets of n elements and
S,-torsors. The class of X, (X), which is clearly an $,-torsor corresponds to
the isomorphism class of the I'-set X with |X| = n. Conversely, we associate to
an $,-torsor X the class of X/5,_,. The n projections

3, (X)) — X, (&,...,&) — & fori=1,...,n (4.22)
are I-equivariant maps and satisfy

Wi((gl,...,gn)a) = Tro’(i)(gl,---ygn) fOI' (02 6§n. (423)

DEFINITION 4.2. An 5,,-Galois closure of a I'-set X of n elements is a pair
(3,77), where 3 is an $,-torsor and X <~ 3 is a covering (necessarily of degree
(n—1)Y) such that m(x?) =m(x) forx eXand o € 5,,_1.

Every $,,-Galois closure of X is isomorphic to (X, (X), 1T;,).

A similar construction can be given for coverings, since the set H' (I',$415,)
classifies $4 15, -torsors as well as coverings of degree d of T-sets of n elements.
fy X Zisa covering of degree d of aI'-set Y of n elements (so that |Z| = nd),
let 2(Z/Y) be the set of arrays (L;j), 1 <i<d, 1 < j < n, of pairwise distinct
elements of Z such that (Z;;) depends only on j for i = 1,...,n. The set
3(Z/Y) is a 54 1 5y-torsor. Its isomorphism class, viewed as an element of
HY(I',5415,), corresponds to the isomorphism class of the covering Y 7.
The nd projections

e : 2(Z)Y) — Z, (Cij) 1=i=a — Ce (4.24)

I<j=n

are I'-equivariant maps. The projection 1 : Z — Y induces an 5,-equivariant
projection

Z(T() ZZ(Z/Y) —_— Zn(Y), (Qj) — (n(gl),...,rr(Cm)) (4.25)
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and >, (Y) 2m >(Z]Y) is a covering of degree (d!)"™. Moreover, the diagram

)

s
S0 (V) < 5(2)Y)
m; l lni J (4.26)
Yy~—"7
is commutative. We say that %, (Y) 2m 3(Z/Y) is an 5,41 5,,-Galois closure of
Y & Z. (We leave it to the reader to formalize the definition of an $4 1 5, -Galois
closure of Y < Z7.)

Note that the set Q(Z/Y) of sections of Z/Y (see Section 2.2) can be identi-
fied with the set 2(Z/Y)/(54-1154).

4.4. Cohomology and étale algebras. In this section, F is an arbitrary field,
F; is a separable closure of F, and I' = Gal(Fs/F) is the absolute Galois group
of F. The antiequivalence Et; = Set; induces a canonical bijection between the
set of isomorphism classes of étale F-algebras of dimension n and the set of
isomorphism classes of T-sets of n elements. Since the latter set is in one-
to-one correspondence with the cohomology set H! (T',5,,) (see Section 4.2),
there is also a canonical bijection between H!(I',5,) and isomorphism classes
of étale F-algebras of dimension n. This bijection can be set up directly by
identifying §,, with the group of automorphisms of the split algebra F!*. More
precisely, given an étale algebra A and an isomorphism « : F* ® F; — A ® F;,
the corresponding cocycle is (fy)yer, where

fy=ato(ley)oxo(loy ') € Auty, (F"®F;) = 5,. 4.27)
Conversely, given a cocycle (fy)yer in 5,, the corresponding étale algebra is
Ay ={xeF!'|yfy(x)=x}, (4.28)

where T acts on F{* entrywise.

As in Section 4.2, the basic constructions on étale algebras of Section 3.1
can be interpreted in terms of morphisms of cohomology sets. Details are left
to the reader, as well as the analogues for extensions of étale algebras and the
cohomology of wreath products. We simply note for later use the canonical
isomorphism

Quad(F) ~ H'(F,5>), (4.29)

where Quad(F) is the group of isomorphism classes of quadratic étale F-
algebras (see Proposition 3.7). For any étale F-algebra A, we also have canonical
isomorphisms

Quad(A) = C*(X(A)) = H' (I, Txana) xa))s (4.30)
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see Section 4.2. The set of isomorphism classes over F of quadratic extensions
of A is Quad(A)/Autr(A). The operation * 4 is generally not defined on this
set.

4.5. Galois algebras. As in Section 4.4, F is an arbitrary field and T is the
absolute Galois group of F. Let G be a finite group. A G-Galois F-algebra is an
étale F-algebra of dimension |G| with an action of G by F-algebra automor-
phisms such that the algebra of fixed points is F (see [3, (18.15)]). Equivalently,
an étale F-algebra E of dimension |G| with an action of G is G-Galois if and
only if the T'-set X(E) is a G-torsor for the induced action of G. Therefore, the
discussion of torsors in Section 4.3 has an analogue in terms of Galois alge-
bras, and the set H!(T',5,,) is also in one-to-one correspondence with the set
of isomorphism classes of §,-Galois F-algebras.

If E is an étale F-algebra of dimension n, the algebra X, (E) has a natural
action of §,, for which it is an 5,-Galois algebra. There are n embeddings
& 1 E - 3, (E) corresponding to the projections t; : 3, (X(E)) — X(E). They
are defined explicitly as follows. For x € E,

gilx)=5p,-1®---9x®---®1 (xin ith position), (4.31)

where s,, € E®" is the idempotent such that %, (E) = s, E®". Clearly, for o € 5,
and x € E,

gy (x) = 0 (g1(x)). (4.32)

DEFINITION 4.3. An $,-Galois closure of an étale F-algebra E of dimension n
is a pair (2, ¢), where X is an 5,,-Galois F-algebra and ¢ : E — X is an embedding
such that o(e(x)) = &(x) foroc €5, and x € E.

Every §,-Galois closure of E is isomorphic to (2, (E), &,). This construction
was suggested by Saltman, see [8, page 42].

EXAMPLE 4.4. Let A be a cubic étale F-algebra, that is, dim A = 3. The choice
of any of the three canonical embeddings &; : A — 33(A) induces an isomor-
phism

A®A(A) =Z3(A). (4.33)

This follows from the fact that the corresponding map 33(X) — X X A(X) is
bijective if | X| = 3, see [3, (18.27)].

We next sketch an analogue of the Galois closure for extensions of étale
algebras on the model of the corresponding construction for coverings in
Section 4.3.

Let B/A be an extension of degree d of an étale F-algebra A of degree n.
Viewing B as an étale A-algebra of degree d, we have an $;-Galois closure
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>4(B) of B which is étale of degree d! over A,
SA(B) = sh/* . Bead, (4.34)

where sg/ A is the idempotent corresponding to the characteristic function of
the subset {(&1,...,8a) | & # &; for i # j, and w(§;) = (&;) fori=1,...,d} in

X(B) XX(A)---XX(A)X(B)=X(B®A---®AB). (4.35)

There are d canonical embeddings e{‘ :B — Z‘Q(B) and a canonical embedding
JiA-— ZQ(B) corresponding to the A-algebra structure on ZQ(B). Define

S(B/A) = j®" (sp) - =5(B)®". (4.36)

As for Proposition 3.8 we have the following proposition.

PROPOSITION 4.5. For any extension B/A of étale algebras, X(Z(B/A)) =
2(X(B)/X(A)).

The algebra X(B/A) is an extension of 3, (A) of degree (d!)" and there exist
nd canonical embeddings

&j:B—2(B/A), 1=<i<d,1<j=<n (4.37)
such that the diagram

Zn(A) —Z(B/A)

giT TEU (4.38)

A B

is commutative for all i and j. We say that the extension X(B/A) /3, (A) is an
5415, -Galois closure of the extension B/A. Since 22(3)5#1 = B, we have

S(B/A)%d-15n = O(B/A). (4.39)

If d = 2, each of the canonical embeddings &7, % : B — 35 (B) is an isomor-
phism (where 5 = £{'oy,4),and j: A — 35 (B) = Bis the inclusion. The algebra

S(B/A) = j®"(sh) - B®" (4.40)
is an extension of degree 2" of X,,(A), and

Q(B/A) ~Z(B/A)™, (4.41)
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EXAMPLE 4.6. Suppose, as in Example 3.9, that A and B are split of dimen-
sions 3 and 6, respectively, with minimal idempotents ey, 2, e3, and f1, fi, f2,
f, f3, f3 such that

ei=fi+f fori=1,2,3. (4.42)
The algebra X(B/A) is split. Its 48 minimal idempotents are

foey®fo®foz  fou)®fo@ ®foi)
fo(l)®f&(2)®f¢;(3)a f(;'(l)®f0'(2)®f0'(3)1
f¢;(1)®fo(2)®f¢;(3), fo(1)®f¢;(2)®fa(3),
Je)® Lo ®foz)  fom®fo@ @ fr)

(4.43)

where o varies in $3. The action of $3 on these idempotents is clear and the
fixed subalgebra is Q(B/A) as described in Example 3.9.

PROPOSITION 4.7. Let B/ A be an extension of étale algebras of degree d and
let n = dimg A. If b € B is a generator of B as F-algebra, then the nd elements
&ij(b) generate 3(B/A) over 3,(A).

PROOF. Let 3’ be the subalgebra of X(B/A) generated over X(A) by the
&j(b). We show that ¥ = X(B/A). We may assume that A and B are split
and we assume for simplicity that n = 3 and d = 2. We use the notations
of Example 3.9. Let

b =B1fi+BLf1+Bafa+ Bofs+Bsfs + Bsfs (4.44)
with B1,...,85 € F, hence
b = Byfi+Bifi + Bofz + Bafs + Byfs + Bafs- (4.45)
Since b generates B, the 6 elements ; and Bf,- are pairwise different. We have
en(b)=s{-bolel, &1(b) =s{-bolel. (4.46)
Thus

(b)) (e1®@er®e3) = (Brfi+B1f1) ®er®es,

4.47
e1(b)(e1®ex®e3) = (B1fi+B1f])®e2®e3 @47

are elements of 3. It follows that f; ® e; ® e3 and f] ® e, ® e3 are in X'. Hence
all the minimal idempotents of X(B/A) are in X’ and X' = X(B/A). O

5. The symmetric group on four elements. In the rest of this paper, we
focus on various aspects of étale algebras of dimension 4 (called guartic étale
algebras) which, as explained in the preceding sections, can be viewed from the
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perspective of I'-sets of 4 elements, or of the cohomology of 5,4, or of $,4-torsors,
or of 54-Galois algebras. It turns out that there is a group isomorphism

5:X54=52153 (5.1)

which relates the various “quartic” notions listed above to those associated
with the cohomology of 5, 1 §5: quadratic extensions of cubic étale algebras,
double coverings of sets of 3 elements, 5, 1 $3-torsors, and 5, ! $3-Galois alge-
bras. We explain this relation in the simplest case, namely, I'-sets and coverings,
and then give the cohomological viewpoint in the next subsection. In the last
two subsections, we give explicit constructions of % (Q) for a quartic algebra
Q, making clear that this algebra is related to the resolvent cubic of quartic
equations, and of Q(B/A) and ¥(B/A) for a quadratic extension of a cubic
algebra A.

5.1. Sets of four elements and double coverings. In this section, I' is an
arbitrary profinite group. Suppose X is a I'-set with | X| = 4, as in Example 2.1,
where the constructions of A, (X) and % (X) are made explicit. Our first obser-
vation concerns the discriminants of A, (X) and R(X).

PROPOSITION 5.1. The map which carries (§1,&2,&3,&4) € 34(X) to

({{&1,&2), 183, &t} {181, &3, {82, 8a b ), {181, 8a )L {82,831 ) € Z3(R(X))
(5.2)

induces a canonical isomorphism of T -sets
AX) — AR(X)). (5.3)

Moreover, the I'-action on A(Ap (X)) is trivial.

The proof is a straightforward verification. To see that the I'-action on
A(A2(X)) is trivial, it suffices to observe that every transposition on X—hence
every permutation of X—induces an even permutation of A, (X). For another
approach, see Proposition 5.9.

To get a better grasp of the various constructions associated with X, it is
useful to think of X as the set of diagonals of a cube. (We are indebted to F.
Buekenhout for his suggestion to use geometric language in this context.) Each
pair of diagonals determines a diagonal plane (passing through an edge and its
opposite), hence A, (X) is identified with the set of diagonal planes of the cube.
The map yx carries each diagonal plane to the plane through parallel edges,
and % (X) can therefore be identified with the set of directions of the edges.
The canonical map % (X) EA(X) maps each diagonal plane to the direction of
the edges it contains. The set Q(A2(X)/% (X)) consists of (unordered) triples
of diagonal planes with different edge directions. For each such triple T, either
the intersection of the planes is a diagonal, or the intersection is just the center
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of the cube. However, if the intersection is a diagonal, then the intersection of
the complementary triple T = ya,x);a(x) (T) is the center. Therefore, we may
associate to the pair {7,7} € $(A2(X)/R(X)) a unique diagonal in X, and
obtain a map

P (A2(X)/R(X)) — X. (5.4)
PROPOSITION 5.2. For |X| =4, the map
O P (A2 (X)/R(X)) — X (5.5)
is a canonical isomorphism of T -sets.

PROOF. From the definition, it is clear that @ is I'-equivariant. Bijectivity of
® is checked by direct inspection. |

To put this result into perspective, consider the full subcategory Setff of
Setr whose objects are the I'-sets of four elements, and the category Cov%z3 of
double coverings of I'-sets of three elements, with morphisms of coverings.
There are functors

A:Seti — Covi®,  S:Covi'® — Setf (5.6)
defined by
A(X) = A2 (X) /R (X), S(Y =2)=9(Z/]Y). (5.7)

Proposition 5.2 yields a natural equivalence between So A and the identity on
Set}.

To investigate the composition AoS, suppose Y <= Z is a double covering of
aT-set Y with |Y| = 3. (See Example 2.3 for an explicit description of Q(Z/Y)
and ¥(Z/Y).) We may consider Z as the set of faces of a cube, Y as the set of
directions of edges, and 7t as the map which carries each face to the orthogonal
direction. Then Q(Z/Y) is the set of (unordered) triples of faces which are not
pairwise parallel. Since the faces in each such triple meet at one vertex, we
may view Q(Z/Y) as the set of vertices of the cube. The map yz,y carries each
vertex to its opposite, hence ¥(Z/Y) is the set of diagonals of the cube. As in
the discussion before Proposition 5.2, we may then identify A, (¥(Z/Y)) with
the set of diagonal planes and (¥ (Z/Y)) with the set of edge directions. It
is then clear that R(¥(Z/Y)) is canonically identified with Y, but there is no
canonical identification of A, (¥(Z/Y)) with Z.

As we now show, we may however define a canonical bijection

A(Z) %A (F(Z]Y)) = Z, (5.8)

hence an isomorphism of coverings between YL Z and the covering R(F(Z/Y))
£ A(Z) % Ax($(Z]Y)) induced by the canonical covering R(¥(Z/Y)) <
N2 (F(Z]Y)). (We denote both coverings by ¢.)
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Our first goal is to give a geometrical interpretation of the set A(Z). Recall
the map

07:Q(Z]Y) — A(Z) (5.9)

of (2.20). By Proposition 2.4, this map is onto. It may therefore be used to
consider A(Z) as a quotient of Q(Z/Y), the set of vertices of the cube. It is
easily checked that the four vertices which have the same image under 6,
are the vertices of a regular tetrahedron whose edges are the diagonals of the
faces of the cube. Therefore, we may identify A(Z) with the set {T;,T>} of
such tetrahedra. Given a diagonal plane A € Ax(¥(Z/Y)) and a tetrahedron
T € A(Z), there is a unique face z € Z whose intersection with A is an edge of
T. The same face z intersects the “complementary” plane A following an edge
of the “complementary” tetrahedron T. Therefore, the map (T,A) — z induces
a well-defined map

Y:AZ) % A2 (S(Z]Y)) — Z. (5.10)

PROPOSITION 5.3. The map ¥ defines an isomorphism of coverings between
R(L(Z]Y)) <= AZ) % A2(F(Z]Y)) and Y = Z.

PROOF. The map Y is clearly equivariant. The other properties are checked
by direct inspection. |

This proposition shows that A0S is not equivalent to the identity. However,
when A(Z) is a trivial I'-set, the proposition yields an isomorphism between
Z]Y and AoS(Z/Y):

COROLLARY 5.4. If the T-action on A(Z) is trivial, then there is an isomor-
phism of coverings between R(S(Z|Y)) < Ax(¥(Z]Y)) andY < Z.

PROOF. This readily follows from Proposition 5.3 and Proposition 2.5(b).
O

Corollary 5.4 applies in particular to double coverings of the form A, (X)/
R(X), for X aT-set with | X| =4, by Proposition 5.1. Therefore, AoS(X) ~ X.

THEOREM 5.5. The functors A and S define a canonical one-to-one corre-
spondence between the set of isomorphism classes of T-sets of 4 elements and
the set of isomorphism classes of double coverings Z | Y of T-sets Y of 3 elements
with trivial action on A(Z).

The authors are indebted to F. Borceux for enlightening comments about
the following remark.

REMARK 5.6. For X, X’ € Setff, every morphism of coverings f : A>(X) /R (X)
- A2 (X")/R(X") induces a morphism ¥ (Az(X)/R(X)) — L(A2(X")/R(X")),
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hence, by Proposition 5.2, a morphism f : X — X'. The functor A carries f to
f, hence it is full. Since S o A is equivalent to the identity, the functor A is
also faithful. Moreover, Corollary 5.4 shows that every covering Z/Y € COV%ZS,
such that the I'-action on A(Z) is trivial, is isomorphic to a covering of the
form A(X). Therefore, it follows from [6, Theorem 1, page 93] that A is an
equivalence of categories from Setf to the full subcategory of Covi'® whose
objects are the coverings Z/Y with trivial I'-action on A(Z).

In order to take into account the double coverings of T'-sets of three elements
which have nontrivial action on the discriminant, we consider the product cat-
egory Set? X Setf— whose objects are pairs (U,X) of I'-sets with |U| = 2 and
|X| =4, and extend A and S to functors

A:Set? xSetf — Covi®®,  §:Covi® — Set? x Setf (5.11)
defined by
AU, X) = (UxA2(X)) 9R(X), S(Yy = 2)=(A2),9(Z]Y)).  (5.12)

Proposition 5.3 yields a natural equivalence between A o $ and the identity on
Covi'3.

On the other hand, for U and X with |U| = 2 and |X| = 4, we have canonical
isomorphisms

F(U A2 (X)/R(X)) = F (A2 (X)/R(X)) = X, (5.13)
by Propositions 2.8 and 5.2, and
A(U*A2(X)) = A(UXR(X)) x A(A2(X)) =~ U xA(A2(X)), (5.14)

by Propositions 2.6 and 2.7. The I'-action on A(A (X)) is trivial by Proposition
5.1, hence the rightmost I'-set in (5.14) is isomorphic to U by Proposition 2.2(b).
Note that the latter isomorphism is not canonical, hence S+ A is not naturally
equivalent to the identity on Set? x Setf. However, since $ o A(U,X) = (U, X),
we have an isomorphism between sets of isomorphism classes.

THEOREM 5.7. The functors A and S define a canonical one-to-one corre-
spondence between the set of isomorphism classes of pairs of T-sets (U, X) with
|U| =2 and | X| = 4 and the set of isomorphism classes of double coverings of
I'-sets with three elements.

An alternative proof in cohomology can be derived from diagram (5.24).
Theorems 5.5 and 5.7 have analogues in terms of quartic étale algebras and
double coverings of cubic algebras, whose statements are left to the reader.
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REMARK 5.8. The functor § is faithful since A oS is equivalent to the iden-
tity. Moreover, every (U, X) € Set? X Se‘[ff is isomorphic to an object of the form
§(Z/Y) (mamely, Z/Y = A(U, X)). Furthermore, every morphism f:8§(Z/Y) —
§(Z'1Y’) induces a morphism A(f) : Ao8(Z/Y) — Ao $(Z'/Y"), hence, by
Proposition 5.3, a morphism f :Z]Y — Z'/Y'. We may check that f = §(f),
hence the functor § is full. By [6, Theorem 1, page 93], it defines an equiva-
lence of categories Covi'® = Set? x Sety.

5.2. Cohomology. This section presents the cohomological perspective on
Theorem 5.7. We use the same notation as in Section 5.1.

Let U = {1,2} and X = {1, 2, 3,4} with trivial I'-action. The group of automor-
phisms of (U,X) in the category Set? x Set} is §, x 54, and since §o A (U, X) =~
(U, X), the functor A yields an isomorphism

A:S5, x5, = Aut (U % A2 (X) /R (X)) =~ 52 153. (5.15)

For definiteness, consider $, { 53 as the group of automorphisms of the cov-
ering

Y =1{1,2,3} 2= {1,2} x{1,2,3} = Z, (5.16)

where T acts trivially on Y and Z. The right isomorphism in (5.15) depends on
the choice of an isomorphism U *x A (X) /R(X) =~ Z/Y.
Similarly, the functor § yields an isomorphism

SAZ§21§3;AU’[(A(Z),9(Z/Y))=§2X§4, (5.17)

where again the latter isomorphism is given by identifications A(Z) ~ {1,2}
and ¥(Z/Y) =~ {1,2,3,4}. The isomorphisms A and § induce bijections

H'(T,5,x54) ~ H (I,5,153). (5.18)

Since these cohomology sets are in one-to-one correspondence with the sets
of isomorphism classes in Set? x Set} and Covi'?, respectively (see Section 4.2),
we thus recover Theorem 5.7.

The isomorphisms A and § can also be described in purely group-theoretical
terms. The subgroup $, =5, x {1} C 5, X5, is mapped to the “diagonal” sub-
group 5, C 5, 153, which is the center of $, { $3. On the other hand, the restric-

tion of A to 54 = {1} x5, is a homomorphism

A5, — 50153 (5.19)
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which may be described as the action of 5, by conjugation on its transpositions.
Indeed, 54 contains six transpositions, which sit by pairs in the three Sylow 2-
subgroups of 54. The map which carries each transposition to the unique Sylow
2-subgroup which contains it is a double covering of a set of three elements.
Note that the composition of A with the canonical homomorphism B: 5,153 —
55 is the surjective homomorphism

p:§4 —>§3 (5-20)

which is the action of §4 on its three Sylow 2-subgroups. (Alternately, the map
p may be identified with the canonical homomorphism Sy — 54) for X =
{1,2,3,4}, since there is a canonical one-to-one correspondence between % (X)
and the Sylow 2-subgroups of $x.) The kernel of p is the Vierergruppe 0.

By definition, it is clear that the first component of § is the signature map

SgN: 52153 C 5¢ — 5o, (5.21)

since the map 57,y — 5a(z) is the signature. The second component is a homo-
morphism

$:515;5 — 5, (5.22)

which is the action of $, ¢ 53 on its four Sylow 3-subgroups. (There is a nat-
ural one-to-one correspondence between the Sylow 3-subgroups of §7,y and
¥(Z]Y).) The image of A is the kernel of sgn, by Proposition 5.1 or by Prop-
osition 4.1, and the map s splits A (if the Sylow 3-subgroups of 5, 153 are suit-
ably indexed). The maps p, A, and B, and the inclusions ¢ and n are part of the
following commutative diagram with exact rows and columns:

1 1
1 0— =5 —" s 1
A
1 —= 5 — =518 —=5; —> 1 (5.23)
- sen
s, s,
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where o is the sum. Since the exact sequences in this diagram are split, there
is a corresponding commutative diagram of exact sequences in cohomology:

Bl
11— H'(I,s3) ——= H'([,5,15;) ——= H'([,53) ——> 1
ol sgnl
HY\(T,5;) H'\(T,5,)
1 1

Cohomology vields an alternative proof of Proposition 5.1.

PROPOSITION 5.9. For anyTI'-set X with |X| =4,
AX) = A(R(X)).

Moreover, the T'-action on A(Ap (X)) is trivial.

PROOF. The commutative diagram

54 *p>§3

sgnl lsgn

5 ——35;

induces a commutative diagram in cohomology

1
H'(T,54) L>Hl(r,§3)

sgnl l \Lsgnl

HI(T,S,) =— H'(T,5,).

(5.24)

(5.25)

(5.26)

(5.27)

The first part of the proposition follows since p! maps the isomorphism class
of X to the isomorphism class of % (X), and sgn' maps the isomorphism class
of any I'-set to the isomorphism class of its discriminant. The second part
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follows from the fact that

sgnl

H'(T,5:) 2 H'(T,5,153) 2% H'(T,5») (5.28)

is a zero-sequence. O

As another application of cohomology, we describe the quartic étale algebras
which have a given resolvent cubic.

Let R be a I'-set of three elements and let Xy = R1I1{0} be the I'-set of four
elements obtained by adjoining to R a fixed point 0. To each partition of X,
into 2-element subsets, we may associate the unique element » € R such that
{0,7} is in the partition, and thus identify

% (Xo) = R. (5.29)

As in Section 4.2, we let I' act by conjugation on the groups 5y, and 5g, and
denote by §}<0 and 5y the I'-groups thus defined. The inclusion R — Xj yields a
I-equivariant embedding 5% - 5%, which splits the map p : §%, — Sg. The split
exact sequence

1 — 0%, — 5y, = 5 — 1 (5.30)
yields an exact sequence in cohomology
1 1
1 — H'(T,0%,) ‘—»Hl(r,.s;m)"—»Hl (r,s) — 1, (5.31)

and the isomorphism classes of X & Set} such that % (X) =~ R are in one-to-one
correspondence with kerp! = im¢'. They form a pointed set with the isomor-
phism class of X, as a distinguished element. Note that exactness of the se-
quence (5.31) does not mean that ¢! is injective. In fact, the group Autr(R) =
H(T',5%) acts on H!(I',0Y,), and im(! is in canonical bijection with the orbit
set H'! (T,0y,)/ Autr(R), by [3, (28.4)].

To give a more explicit description, we use a variant of diagram (5.24). First,
observe that we may identify A»(Xp) to {1,2} x R as follows: we map a 2-
element subset U ¢ Xy to (1,7) if 0 ¢ U and r ¢ U, and to (2,v) if U = {0,7}.
We may then identify the double covering A» (Xy) /R (Xp) to

R % {1,2} xR. (5.32)

Let Zy = {1,2} X R. As above, we let I' act by conjugation on 5z, and denote
by §,Zo ,r the corresponding I'-group. As in Section 4.2, let 'C’ZO ,r be the kernel
of the canonical map Bz,r : 57,/r — Sg- The exact sequence

’ , Bzyir
l1— ZO/RL§ZO/RL'§R —1 (5.33)
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is split and induces an exact sequence in cohomology
1 — H'(I, T, z) LI (T,57,%) Lo (T,5%) — 1. (5.34)
As above, there is a canonical bijection
imn' =kerp' =~ H' (I, T}, z)/ Autr(R). (5.35)

The orbit set on the right side may therefore be identified with the set of
isomorphism classes of double coverings of R, see Section 4.2. Consider the
following commutative diagram analogous to (5.24):

1 1

1
H'(T,0%) ——= H'(T,5},) —— H'(I,5;)
1 1
H (I, Ty r) ——= H'(T,5}, z) ——= HY(T,5}) (5.36)
ol sgn!

HI(T,S,) =——— H'(T,5,)

1 1.

The left vertical sequence is an exact sequence of groups. It shows that H! (T,
VY,) can be identified with the kernel of o'. Recall from Section 4.2 that
H!(T', TY%, ) is in canonical bijection with the set C?(R) of isomorphism classes
over R of double coverings of R, and that H (T',5;) classifies I'-sets of two ele-
ments up to isomorphism. By commutativity of the lower square in (5.36), the
map o carries every double covering to the isomorphism class of its discrim-
inant. Therefore, we may identify H' (F,t)j(o) with the group cg (R) of isomor-
phism classes over R of double coverings of R with trivial discriminant:

H'(I,0%,) = C5(R). (5.37)

We have thus shown the following proposition.

PROPOSITION 5.10. The set of isomorphism classes of sets X of four elements
such that R(X) ~ R is in canonical bijection with the set cg (R)/Autr(R) of
isomorphism classes of double coverings of R with trivial discriminant.

Suppose now I is the absolute Galois group of a field F with separable closure
F,, and let A be a cubic étale F-algebra. Using the antiequivalence Sety = Etp, we
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may translate Proposition 5.10 into the following statement, where we denote
by Quad(A) the set of isomorphism classes over A of quadratic extensions of
A whose discriminant (as F-algebra) is trivial.

PROPOSITION 5.11. The set of isomorphism classes of quartic étale F-alge-
bras Q with R(Q) ~ A is in canonical bijection with the set Quady(A)/Autg(A)
of F-isomorphism classes of quadratic extensions of A with trivial discriminant.

The next proposition gives an explicit description of the group Quady(A).

PROPOSITION 5.12. Let N'(A) be the (multiplicative) group of elements of A
of norm 1 and let T°(A) be the (additive) group of elements of A of trace 0.

(@) If charF = 2, Quady(A) ~ N1 (A)/N1(A)2.

(b) If charF = 2, Quady(A) =~ T°(A)/9(T°(A)), where g is the Artin-Schreier
map p(x) = x> - x.

PROOF. If Ais a field, the action of I on X(A) is transitive. Letting I, C T be
the absolute Galois group of a copy of A in Fy, we have Quad(A) =~ H' (Iy,5;) as
observed in Section 4.2, and the map ¢! can be interpreted as the corestriction

H'(Ty,5,) — H'(T,53). (5.38)

If charF # 2, we identify $, with {1,—1} C FY. The exact sequence

1—58, — FX 2 Fr—1 (5.39)
yields isomorphisms
H'([,8,) ~F*/F*?,  H'(Iy,5,) ~ A*/A*?, (5.40)
under which the corestriction corresponds to a map induced by the norm. Its
kernel is N'(A)/N'(A)? since if v € A* is such that Na,p(y) = z? € F*?, then
Najrp(¥3z72) = 1.
If charF = 2, we identify 5, with {0,1} C F;. The exact sequence
0—$, —F -~ F —0 (5.41)
yields isomorphisms
H'(I,5;) ~F/p(F), H'(Io,52) =~ A/p(A), (5.42)
under which the corestriction corresponds to a map induced by the trace. Its
kernel is T?(A) /p(T°(A)) since if Ta;r() = 22—z, then Tar(y —2z2+2z) = 0.

If A is not a field, it decomposes into a direct product of fields:

A~FxK or A~FXFXF. (5.43)
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In the first case,
(F*/F*?) x (K*/K*?) if charF # 2,

(F/9(F))x (K/p(K)) if charF =2,
(5.44)

Quad(A) ~ Quad(F) x Quad(K) = <|

and the map o' can be again interpreted as induced by the norm or the trace.
We may then use the same arguments as above. The case where A ~ F X F X F
is left to the reader. |

Following Section 4.5, the set H'(I',5%) for R = X(A) is also in one-to-one
correspondence with the set of isomorphism classes of $3-Galois F-algebras,
where the distinguished element corresponds to the isomorphism class of
the $3-Galois closure =3(A). Likewise, the set H! (F,§}(0) classifies $4-Galois
F-algebras up to isomorphism, with the class of 34 (F x A) as a distinguished
element. The upper exact sequence of diagram (5.36) shows that the 54-Galois
F-algebras M which are the $4-Galois closure of an étale quartic F-algebra Q
with R(Q) ~ A are in one-to-one correspondence with Quadg(A)/Autg(A). Us-
ing Proposition 5.12, we may make this correspondence explicit as follows.

PROPOSITION 5.13. Let A be a cubic étale F-algebra, identified with a subal-
gebra of its 53-Galois closure 33(A), and let p € S3 be an element of order 3.
(@) IfcharF # 2, let a € A* be such that Najr(a) = 1, and set

M= 23<A>[ﬁ,\/p<a>,\/p2<a>]. (5.45)

(b) IfcharF =2, leta € A be such that Ta;r(a) =0, and set
M=33A)[p  a),p " (pa),p  (p*(a))]. (5.46)

In each case, there is an $54-action on M which endows it with the structure
of an $4-Galois algebra. The quartic subalgebra Q = M>3 satisfies R(Q) =~ A.
Moreover, every S4-Galois F-algebra which is the 54-Galois closure of a quartic
étale F-algebra Q with R(Q) ~ A is of this form.

REMARK 5.14. Similar constructions are described by Serre [9] (we are in-
debted to J.-P. Serre for calling our attention to this reference) and by Weil
(for the construction of dyadic field extensions with Galois group 5., see [13,
Section 31]).

5.3. Quartic étale algebras. In this section, our goal is to make explicit the
relation between resolvent cubics of quartic polynomials and the construction
of R(Q) for Q a quartic étale F-algebra. Our first observation is a direct con-
sequence of Proposition 5.1 (see also Proposition 5.9).
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PROPOSITION 5.15. Let Q be a quartic étale F-algebra. There is a canonical
isomorphism

A(R(Q)) — A(Q). (5.47)

Moreover, A(A2(Q)) =~ F XF.

PROOF. The proposition readily follows from Proposition 5.1 under the
antiequivalence Ety = Setr, since the A, &, and A, construction commute with
the functor X. O

Recall from [12] that the resolvent cubic of a quartic polynomial

Fu) =u?— o ud + cou® — U+ oy (5.48)

with roots uy, u2, us, and u4 in an algebraic closure is the polynomial g(v)
with roots

v1 = (U1 +uz2) (us +us), Vo = (U +us) (U2 +uy),
(5.49)
V3 = (u1 +u4)(u2 +1/L3).
This polynomial has the form
g) =v3—B1v*+ Bov — s, (5.50)
where
B1 =200, B2 = 010 + 0 — 4o,
(5.51)

2 2
B3 = X102 (X3 — X] X4 — 5.

An alternative resolvent cubic, suggested by Lagrange [4, (32), page 266] in
characteristic different from 2, has roots

2 2
wy= (U1 +uz—uz—uq4)", wr=(Ur-uUz+uz—uq)",
, (5.52)
w3 = (u1 — U2 —U3 +u4) .
Since w; = 0(‘]2 —4v; for i = 1,2, 3, this polynomial has the form
(x%—w : 2
h(w) = —43g(T> = w3 —xw? +xow —x3, (5.53)
where
%1 =306 -8z,

%2 =30} - 16030t + 160 003 + 163 — 640y, (5.54)

x3 = (o3 — 4oy o2 +80x3)°.
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Now, let Q be a quartic étale algebra over a field F of arbitrary characteristic.
For x € Q, let

Ar=5-(x®1+1®x) €A2(Q). (5.55)

PROPOSITION 5.16. Suppose x € Q is a generating element with minimal
polynomial f(u) as in (5.48) so that the coefficient «; is the trace T, r(x) of x.
Then

(@) Ax +yq(Ax) = To/r(x);

() yo(Ax)Ax € R(Q) is a generating element with minimal polynomial g (v)
as in (5.50). Moreover, if the characteristic of F is different from 2, then
(Ax—yq (Ax))? € R(Q) is a generating element with minimal polynomial
h(w) asin (5.53).

In arbitrary characteristic, if the element x3 of (5.54) is not 0 (in characteristic
2, the condition is thus Tor(x) # 0), then Ax € A2(Q) is a generating element
over R(Q), with minimal polynomial

t2 = Tor ()t +yo (Ax)Ax € R(Q)[L]. (5.56)

PrROOF. Extending scalars, we may assume that Q is split, with a basis (e,
e2,e3,e4) consisting of minimal (orthogonal) idempotents. Then % (Q) is split
and (1 ®erx +erx®e; +te3®es+e40e3, 61®e3+e30€1 +er ey +e4®en,
e1®es+e4®e; +e2®e3+e3®er) is a basis of R(Q) consisting of minimal
idempotents. Let

X = X161 +Xep+ X363+ X4ey4 (5.57)

with x1,x2,x3,x4 € F. Since x generates Q, the coefficients x; are pairwise
distinct. Computation shows that

Ay = Z (xi+xj)(ei®ej +ej®ei), (5.58)
l<i<j<4
hence
yQ(/\X) = Z (Xi+Xj)(ei'®€j/+€j'®ei'), (5.59)
l<i<j<4

where {i,j,i’,j'} = {1,2,3,4}. It follows that

Ac+yo(Ax) = (x1+x2+x3+x4) D, (ei®ej+e;®e;) =Tor(x).  (5.60)
l<i<j<4
Similarly
yQ(AX)Ax = (X1 +X2)(X3 +X4)(€1 ®eprt+er®e; +e3 ®e4+e4®e3)
+(x14+x3)(x2+x4)(e1®e3+e3@e1+e2®@es+es®e2)  (5.61)

+(x1+x4)(x2+x3)(e1®es+es®e; +er®e3+e3®en).
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This shows that yg (Ax)Ax is a root of a polynomial g whose roots in F are

yi=(x1+x2)(x3+x4), 2= (x1+x3)(x2+x4),
(5.62)
v3 = (x1+x4) (X2 +x3).
These roots are distinct since an easy computation yields
1 =>2) i —y3) (2—y3) = - [ (xi—x;). (5.63)

i<j
Therefore, yo (Ax)Ay is a generator of R(Q) and g is its minimal polynomial.
Similarly,
2 2
(?\X—yQ(/\X)) = (X1 + X2 — X3 —X4) (61 ®ert+er®e; +e3®ey +e4®e3)
2
+(X1 — X2 +X3—X4) (e1®e3+e3 ®e;t+ep ®€4+€4®€2)
+(x1—x2—x3 +x4)2(e1 ®estes®e; +er®e3+ez®er),

(5.64)

and the same arguments show that (Ay — yQ(AX))2 is a generating element
of % (Q) with minimal polynomial h as in (5.53) if the characteristic of F is
different from 2.

Since

X3 = (X1 + X2 — X3 —X4)2(X1 — X2 +X3 —X4)2(X1 — X2 — X3 +X4)2, (5.65)

the condition x3 # 0 implies that the elements x; + x; for 1 <i < j < 4 are
pairwise distinct, hence A, generates A (Q). Since Ax +yq (Ay) = Tg/r(x), the
minimal polynomial of A, over & (Q) is as stated in the proposition. |

REMARK 5.17. Allison gives in [1, Section 6] another description of the al-
gebra R (Q), for Q a quartic étale F-algebra. For x € Q, he considers the image

2
f = @2(\x) € Endr ( A\Q) (5.66)

of Ay € A2(Q) under the map @, induced by the homomorphism in (3.18) (see
Lemma 3.3); thus

fxlanb)=xanb+anrxb fora,beqQ. (5.67)

Assuming that the characteristic of F is different from 2, Allison defines R (Q)
as the span of the products fx o f), for x, € Q of trace 0. This definition
coincides with the definition in Section 3.1 under an isomorphism induced

by @..
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5.4. Quadratic extensions of cubic étale algebras. Let A be an étale F-
algebra of dimension 3 and let B be an extension of degree 2 of A. In the
same spirit as the preceding subsection, we proceed to give explicit equations
for generating elements of ¥(B/A).

Our first observation is the analogue of Proposition 2.4 through the antiequi-
valence between coverings of I'-sets and extensions of étale F-algebras.

PROPOSITION 5.18. There is a canonical embedding A(B) — Q(B/A) such
that

Q(B/A) =~ A(B) @ F(B/A). (5.68)

In the case where B (and therefore A) is split, the image of A(B) in Q(B/A)
is spanned by the idempotents

d=go+g1+92+g93, d =9g,+9,+395+3; (5.69)

in the notation of Example 3.9.
In the general case, for b € B, we set for brevity b = yB/a(b), and

by =s{-(bele®l)=¢1(b), b)=s{-(bol®l)=en(b),
by=s{-(18b®1)=¢e12(b), Dby=s4-(1ebe1l)=e¢n(b), (5.70)
b3 =si-(1®1®b)=¢e13(b), bi=s4-(191®b)=¢x3(b),

where &;;: B — 3(B/A) are the embeddings of (4.37). Hence we have X(B/A) =
33(A)[by,by,...,b3,b5], by Proposition 4.7, and $3 acts on 2(B/A) through the
action on X3(A) and by permuting the b; and the h; The algebra Q(B/A) is gen-
erated over F by all the polynomials in the b; and the b;. which are symmetric
under $3. In particular,

6[; =Db1byb3 +bibéb3 +bib2bé +b1b,2bé,

5.71
wWp = b] + bz +b2 ( )

are elements of Q(B/A).

PROPOSITION 5.19. The element 6y, lies in the image of A(B) inQ(B/A), and
Y5 (6p) = 0p. (5.72)

Moreover, the following conditions are equivalent:
(a) b generates B over A;
(b) 6p generates A(B).

Similarly, the following conditions are equivalent:
(@) wyp generates Q(B/A) over A(B);
(b’) (b—b)? generates A.
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PROOF. It suffices to prove the assertions after scalar extension. We may
therefore assume B is split, and use the same notation as in Example 3.9. Let

b=pB1fi+BLf1+B2fo+Bofs+Bsfs+BsSf3 (5.73)

with B4,...,85 € F, hence

D = B fi+Bifi+Bofo+Bafs+BsSfs +Bsfs. (5.74)
Computation yields

Op = (B1B2B3 + B1B2B5 + B1B2B5+ B1B2B3) (go+ 91 + g2 + 33)

5.75
4 (B BoBy + B BaBs + BiBuBs+ BuBeBy) (gh+a + b +ah), )

proving that 6, € Ag. Since yj interchanges go+---+g3 and g; + - - - + g5, it
is clear that

Y5(0p) = 05 (5.76)

We have §) € F if and only if the coefficients of go+---+g3 and g{+- - -+ g5
in (5.75) are equal, and this condition is equivalent to 6, = d3. On the other
hand, b generates B over A if and only if 8; # ; for i = 1,2, 3. Since

0p—05=(B1—B1)(B2—B2) (B3 —B3)(go+ 91 +92+393—9go— 91 — 92— 93)»
(5.77)

this condition holds if and only if 6, # 6. The equivalence of (a) and (b) is
thus proved.
To complete the proof, let

Wp = UoGo + U191 +U2G2 +U3G3 + UGG+ UG +ULGs +U3G5. (5.78)

This element generates Q(B/A) over A(B) if and only if ug,...,u3 are pairwise
distinct and ug,...,u; are pairwise distinct. Computation yields

uo=P1+P2+P3,  ur=P1+Po+P3,  ux=PB1+Po+P3  uz=Pp1+B>+Ps,
uy=p1+Po+P3,  uj=p1+B2+P3,  u,=p1+Pr+P3,  uz=Pi+f2+p3.
(5.79)

Computation also yields

(uo—u1) (o —u2) (o —usz) (w1 —uz2) (w1 —us) (w2 —us)
= ((B2=B5)* = (Bs=B5)") (B1=B1)* = (B2=85)") (B1=B1)° = (Bs—B5)*)
= (uo—uy) (wo—uy) (ug —uz) (uy —us) (ui —ujg) (us —us).
(5.80)



QUARTIC EXERCISES 4303

Therefore, w), generates Q(B/A) over A(B) if and only if (81— B7)2, (B2—B5)?,
and (B3 — B4)? are pairwise distinct. Since

(b-b)* = (B1—B7)’er+ (B2~ Bb) ea + (B3 — B5) e, (5.81)

this proves the equivalence of (a’) and (b"). O

Recall from [3, page xviii] the forms T = T4;r, S = Sa/r, and N = N/ of
degrees 1, 2, and 3, respectively, on A, such that the generic polynomial of
every element a € A has the form

X} —T(a)X?+S(a)X—-N(a) € F[X]. (5.82)

(The form T is the trace, and N is the norm.) For a € A, let a; = €;(A) € 33(A).
One has T(a) =a;+ay +as, S(a) =aia, +a,as +aras, and N(a) = aja»as.
Fix b € B and let

1 =b+beEA, &> =bb € A. (5.83)
Computation yields
Op+0p =N(a1),
8p65 = S(0f —200) T (o) = T (] —20x2) T (] —20x2) x2) (5.84)
+T((02 =20) % ox2) + 4N (x2).
PROPOSITION 5.20. If w) generates Q(B/A) over A(B), its minimal polyno-
mial is
X*=2T (01)X? + (T (o) +2T (ctz) + 35 (1) ) X°
— (4ot +20,+2T (1) T(ox2) + S (1) T(ex1) —=3N(0t1)) X

+(26p +65) T (o) + T(a1)°T(e2) — S (e) T(exz)
~T(afoe) + T (o) =T (o) N (o) =28 (oxz).

(5.85)

PROOF. Use that in the split case, the four roots of the minimal polynomial
of wyp over A(A) are (with the notations of the proof of Proposition 5.19) the
elements u;, i =0,...,3. O

If charF + 2, we may simplify the results above by a specific choice of a
generating element b. Let b € B be such that b = —b and assume that a = b?
A generates A.

PROPOSITION 5.21 (charF = 2). With the notation above,

A(B) = F[5b], Q(B/A) :F[(Sb,wb] = A(B)[wb]. (5.86)
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Moreover, the minimal polynomial of 5, over F is X> —16N (a), and the minimal
polynomial of wy over A(B) is

X*-2T(a)X?-28pX +T(a®)-2S5(a). (5.87)

PROOF. Proposition 5.19 shows that §, generates A(B) and that w; gen-
erates Q(B/A) over A(B). This last fact can also be seen directly: the algebra
Q(B/A) is generated over F by the elementary symmetric functions in the b;;
since

2(b1b2 +b1b3+b2b3) = wf,— (b12+b§+b§) = wi—T(a), (5.88)

we have Q(B/A) = F[dp,wp] = A(B)[wp]. The formula for the minimal poly-
nomial of §) (resp., wy) follows from (5.84) (resp., Proposition 5.20). One can
also repeat the proof of Proposition 5.20 with the special choice of b. O

COROLLARY 5.22 (charF =+ 2). The discriminant A(B) is split if and only if
N(a) € F*2. If N(a) = v2 for some v € F*, then ¥(B/A) is generated over F by
an element whose minimal polynomial is

X*-2T(a)X?-8vX+T(a®)-2S(a). (5.89)

PROOF. The first part readily follows from Proposition 5.21. If N(a) = v?,
then A(B) ~ F X F. Let d and d’ be the minimal idempotents of A(B). By
Proposition 5.18, we have

Q(B/A) =S (B/A)XF(B/A), (5.90)
and we may identify dQ(B/A) and d'Q(B/A) with ¥(B/A). Since
doyp = +4vd, a'ép = F4vd’, (5.91)
the minimal polynomials of dw) and d'A, are

Xt -2T(a)X?+8vX +T(a®)-25(a). (5.92)
O

Assume now charF = 2. Let b be a generating element for B over A with
b =Db+1,hence b2 +b € A. Letting a = b? + b, that is, using the notation g for
the map x — x2 + x, we have

a=g(b) €A (5.93)
Assume, moreover, that a generates A, hence
A=F[al, B=F[p Ya)]. (5.94)

In contrast with Proposition 5.21, wj, does not generate Q(B/A) since (b —
b)? = 1 does not generate A (see Proposition 5.19). One could take for example



QUARTIC EXERCISES 4305

wap as a generator of Q(B/A), since (ab —ab)? = a? (assuming that a? also
generates A, which, for a cubic étale algebra, is the case in general). However,
a simpler minimal polynomial is obtained for the element

Hp = b1b2+b1b3+b2b3 (5.95)
(with the notations of (5.70)). Moreover, we have
510 =b1+b2+b3 (5.96)

if charF=2and b+b =1.

PROPOSITION 5.23 (charF = 2). With the notation above,
A(B) = F[8p], Q(B/A) =F[8p,up] = AB)[up]. (5.97)
Moreover, the minimal polynomial of 8, over F is
X*+X+T(a), (5.98)
and the minimal polynomial of u, over A(B) is
X4+ X3+ (65 +1) X2+ (85 +S(a) +1)X + (6p +S(a) +1)S(a) + N(a).  (5.99)

PROOF. Since b generates B over A, Proposition 5.19 shows that A(B) =
F[6p], and (5.84) yields the minimal polynomial of 5.

To prove the rest, we extend scalars and assume B is split. Using the same
notation as in Example 3.9, we have

b=B1fi+(Bi+1)fi+Bafo+ (B2+1)f3+B3f3+ (B3+1)f3 (5.100)
for some B4, B2, B3 € F. Then, letting
d=go+gi+92+g3, d =gy+9,+395+3; (5.101)
be the minimal idempotents of A(B) C Q(B/A), we have

Op=(B1+B2+B3)d+ (B1+B2+B3+1)d,

4 4 4 7 14 4 4 14 (5-102)
Hp =Vogo +Vpgy tV1g1 + V19 tV2g2 + Vg, + V393 + V373,
where
vo = B1B2+P1B3+ B2B3, vy =vo+1,
vi=PBiBo+BiB3+B2B3+B2+B3+1,  vi=vi+1,
(5.103)

vy = P12+ P1B3+P2B3+P1+B3+1, Uy =241,
v3=P1Bo+P1B3+B2B3+Bi+B2+1,  vy=vz+1.
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Then

[T wi-v)= ] Bi-Bj)" (5.104)

O<i<j<3 1<i<j<3

Since b generates B over A, the elements f;, B2, and B3 are pairwise dis-
tinct. Hence this equality shows that vy,...,v3 are pairwise distinct. Similarly,
V), ..., V5 are pairwise distinct, hence p;, generates Q(B/A) over A(B). We have

T(a) = (Bi+B1)+(B3+B2)+(B5+B3),
S(a) = (Bi+B1) (B5+B2) + (BT +B1) (B3 +B3) + (B3 +B2) (B5+B3), (5.105)
N(a) = (Bi+B1) (B3 +B2) (B3 +B3),

and brute force computation shows that vy, vi, v2, and vs are roots of

X4+ X3+ (B3 +B3+B5+1)X°+ (B2 +B3+B5+S(a)+1)X

(5.106)
+(B1+B2+PB3+S(a)+1)S(a) +N(a).
Similarly, v, vi, v;, and v; are roots of
X+ X2+ (BT +B5+B3) X+ (Bi+ B3 +B5+S(a)X (5.107)
5.107
+(Bi+B2+PB3+S(a))S(a)+N(a),
hence the proof is complete. O

COROLLARY 5.24 (charF = 2). With the same notation as in Proposition 5.23,
the discriminant A(B) is split if and only if T(a) € $(F). If T(a) = $(v) for
some v € F, then ¥(B/A) is generated over F by an element whose minimal
polynomial is

X+ X4+ v2X2+ (v +S(a) X+ (v+S(a))S(a) +N(a). (5.108)

PROOF. The first part readily follows from Proposition 5.23.If T(a) = p(v),
then A(B) = FXF.Letd, d’ be the minimal idempotents of A(B) C Q(B/A). We
may assume d =6, +v and d' = 6, + v + 1, hence

dépy = (v+1)d. (5.109)

As in the proof of Corollary 5.22, we may identify dQ(B/A) and d'Q(B/A) with
¥ (B/A), and it follows from Proposition 5.23 that the minimal polynomial of
duy is as stated. O

Combining the results of Sections 5.3 and 5.4, we get the following propo-
sition.
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PROPOSITION 5.25. Let Q be a quartic étale algebra.

(@) If char F = 2, let x € Q be a generator such that To,r(x) = 0. There exists
an isomorphism ¢ : Q — F(A2(Q)/R(Q)) such that ¢ (x) = wa,.

(b) If charF = 2, let x € Q be a generator such that To,r(x) = 1. There exists
an isomorphism ¢, : Q — F(A2(Q)/R(Q)) such that ¢ (x) = pa,.

6. Special actions on four elements. As in the preceding sections, I’ denotes
a profinite group. The constructions on I'-sets given in Section 2.1 take a special
form when the T'-action has some particular properties. For instance, if the
action on a set X is not transitive, then the orbits Xi,...,X, under I yield a
I'-set decomposition

X=xU---1IX,. (6.1)

Even if the I'-action on X is transitive, the induced action on X, (X) may not be
transitive.

PROPOSITION 6.1. Let X be a I'-set with |X| = n and let « : T — 5x be the
action of T. If (5x : x(I')) = r, there is a I'-set decomposition

Sp(X) = U---1Q,. (6.2)

Each T-set Q; is a Gi-torsor for some subgroup G; C S, isomorphic to x(T),
and the subgroups G; are conjugate in 5,,. Moreover, the I'-sets Q,,...,Q, are
isomorphic.

PROOF. The T-orbits of X, (X) yield the decomposition (6.2). To see that
each Q; is a Gi-torsor, recall that for (xi,...,x,) € Z,(X), y €T, and o € 5,,
we have by definition

Y (X1, x0) = (x(y) (x1),..., x(¥) (xn)),

(6.3)
(X1,...,Xn)0 = (Xg(l),...,Xo-(n)).
For each y €T, there is a unique o € §,, such that
y(x1,.e0xn) = (X1,..0,x0) 7, (6.4)

and the map y — o defines a homomorphism I — §,, which depends on the
choice of (x1,...,Xx;,) and factors through « to yield an injection x(I') < §,. If
(X1,...,Xn) € Qj, let G; C S, be the image of this map. Then Q; is a G;-torsor.
Moreover, if (x1,...,x,) € Q; and (y1,...,n) € Qj, there exists o € 5, such
that

V1yeoyYn) = (X150, x0)°. (6.5)

Conjugation by o maps G; to G; and the action of ¢ defines an isomorphism
of I-sets Q; — Q;. O
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REMARK 6.2. The $,-torsor X,,(X) can be obtained as the induced torsor
Ind‘z’i Q;, by mimicking the construction in [3, (18.17)].

Note that if the I'-action on X is transitive, then the map X Jn > (X) restricts
to each Q; to define a covering X — Q;. Extending Definition 4.2, this covering
may be regarded as a G;-Galois closure of X.

Taking for T the absolute Galois group of a field F, and using the antiequiv-
alence Ety = Setr of Section 3, we may adapt the construction above to étale
algebras. Disjoint unions of I'-sets correspond to direct product decomposi-
tions of algebras, hence an étale F-algebra is a field if and only if the I'-action
on X(E) is transitive. If dimE = n, Proposition 6.1 thus yields a direct product
decomposition of the $,-Galois closure X, (E) into isomorphic fields

SW(E) =Ly X---XL,. (6.6)

Each L; is a Galois extension of F with Galois group G; C §,, isomorphic to the
image of the action T — Sxg). If E is a field, each L; can be regarded as a Galois
closure of E/F, see [3, (18.22)].

In the rest of this section, we consider the particular case where n = 4. To
determine the various possibilities for the image of the action T' — §4, we list
the subgroups of 5,.

PROPOSITION 6.3. In the symmetric group 5.,
(i) the alternating group A, is the unique subgroup of ovder 12;
(ii) there are four subgroups of order 6, conjugate to 53;
(iii) there are three subgroups of order 8, pairwise conjugate and isomorphic
to the dihedral group D,.
Moreover, every proper subgroup of S, is contained in at least one of the sub-
groups listed above.

PROOF. Any subgroup of index 2 in $4 must contain all the Sylow 3-sub-
groups of 54. Since these Sylow subgroups are generated by the cycles of length
3, the first claim is clear.

A subgroup of order 6 in §; cannot be transitive on {1,2,3,4}. On the other
hand, it has an orbit of 3 elements since it contains a Sylow 3-subgroup, hence
it must be the isotropy group of one of 1, 2, 3, or 4.

The dihedral group D4 acts on the four vertices of a square, hence it may be
considered as a subgroup of 5,. It is then identified with a 2-Sylow subgroup
of 54, and all the 2-Sylow subgroups are conjugate.

Finally, let G C 54 be a subgroup. If its order is divisible by 3, then it is 3, 6,
or 12. Hence G is contained in 4,4 or in a conjugate of §3. If its order is a power
of 2, then G is contained in a 2-Sylow subgroup. |

In the following subsections, we examine the additional information on a
I'-set X with [X| = 4 (or on a quartic étale F-algebra Q) when the I'-action
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factors through a subgroup 53 or D4. We then collect the information to obtain
a classification of quartic étale F-algebras in Section 6.3.

6.1. Action through $3;. Suppose first the action of I' leaves an element x €
X invariant. It then preserves a disjoint union decomposition

X = {x}1R, (6.7)

where |R| = 3. The 2-element subsets of X containing x are in one-to-one
correspondence with R, hence A, (X) decomposes as

A2(X) = RUA2(R). (6.8)

Moreover, the “complementary subset” involution yx on A, (X) interchanges R
and Az (R) and defines an isomorphism R ~ A, (R). Therefore, we have canon-
ical isomorphisms

A2(X) = RLR, R(X) =R. (6.9)

(See also Section 5.2.)
Assuming T is the absolute Galois group of a field F, we may translate the
results above in the framework of étale F-algebras.

PROPOSITION 6.4. Let Q be a quartic étale F-algebra. If theT-action on X(Q)
factors through a subgroup 53 C 5x(q), then there is a cubic field extension L/F
such that

Q=FxL, Ax(Q)=LxL, R(Q)=L. (6.10)

Moreover, the following conditions are equivalent:
(a) theT-action factors through a cyclic subgroup Cs;
(b) the extension L/F is Galois (hence cyclic);
(c) A(Q) =FXxF.

6.2. Action through D4. Suppose now that the action of T factors through
a Sylow 2-subgroup of Sy, that is, through a dihedral subgroup D,. Since the
Sylow 2-subgroups of $x are the isotropy groups of partitions of X into 2-
element subsets, there is such a partition which is invariant under I'. This
observation characterizes the case where I' acts through Dj.

PROPOSITION 6.5. ForasetX € Set‘rl, the following conditions are equivalent:
(a) theT-action factors through a Sylow 2-subgroup of Sx;
(b) theI'-action leaves a point of R (X) fixed;
(0) R(X) = {x}HA(X);
(d) X is a double covering of a set of two elements, that is, there exists a map
(D — X) € Covi'?.
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PROOF. The points of R(X) are the partitions of X into 2-element sub-
sets, hence (a)<(b). The implication (c)=(b) is clear, and (b)=(c) follows from
Proposition 5.1. If D = {{x1,x2},{x3,x4}} € R(X) is fixed under I', then the
canonical map D — X which carries x; and x» to {x1,x2}, and x3 and x4
to {x3,x4} is a double covering, hence (b)=(d). Finally, (d)=(a) follows from
50157 =~ Dy. O

The following proposition establishes the existence of a dual I'-set X.

PROPOSITION 6.6. If the equivalent conditions of Proposition 6.5 hold, then
there exists a I'-set X € Set?, with T'-action through a Sylow 2-subgroup of 5y,
such that

A (X) = A(X) 11X, Az (X) = AX) 11X,
.- (6.11)

R(X) = {AX)LHA(X), R(X) =~ {AX)}LIA(X).

Moreover, X is a double covering of A(X), and X is a double covering of A(X).

If the T-action on A(X) is not trivial, the I'-set X is canonically determined.
If the T-actions on A(X) and A(X) are not trivial, then there is a canonical
isomorphism

X = X. (6.12)

PROOE. Let D € %(X) be a fixed point of I. Define X as the complementary
subset in A»(X) of the fiber e 1(D) under the canonical map % (X) £ Ar(X).
The set X is thus canonically determined if I has a unique fixed point D € R (X),
or, equivalently by Proposition 6.5, if the I'-action on A(X) is not trivial.

We proceed to prove that X satisfies the stated properties. To clarify the
discussion, we use geometric language. If D = {{x1,x2}, {x3,Xx4}}, we identify
X with the set of vertices of a square, letting {x1,x>} and {x3,x4} be the pairs
of opposite vertices. We may thus identify D to the set of diagonals of the
square, and we have a decomposition

A>(X) =DLX, (6.13)

where X is the set of pairs of adjacent vertices, which may be identified with
the set of edges of the square. (Note that X may also be viewed as the dual
square of X in the sense of polytope theory.) There is a dual decomposition

Az (X) = MIIX, (6.14)

where X is identified with the set of pairs of adjacent edges (by mapping every
such pair to their common vertex) and M is the set of pairs of parallel edges,
which may be identified with the medians of the square. The “complementary
subset” involutions yx and yy preserve the decompositions (6.13) and (6.14),
and the set of orbits of X (resp., X) under yy (resp., yy) can be identified with
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M (resp., D). Hence
R(X)={D}IM, R(X)={M}LD, (6.15)

and there are natural maps D — X and M — X which show that X and X
are double coverings of D and M, respectively. By Proposition 5.1, (6.15) yield
canonical isomorphisms

M=A(X), D=A(X). (6.16)

If the T-action on A(X) is not trivial, then M is the unique fixed point of
R(X), and X C A»(X) is the Complemeptary subset of the fiber of M under the
canonical map % (X) — A»(X), hence X = X. This completes the proof. 0

REMARK 6.7. For a given covering (D — X) € Covi'?, the I'set X can be
defined as Q(X /D).

We may use the I'-set X to obtain information on the I'-action on X as follows.

PROPOSITION 6.8. LetX € Set{f be aT-set satisfying the equivalent properties
of Proposition 6.5, and suppose the T-action on A(X) is not trivial, so that the
dual set X is uniquely determined. The following properties are equivalent:

(a) theT-action on X factors through a cyclic subgroup Cy;
(b) X =X;
(©) AX) =~ A(X).

PrROOF. If the action of T factors through C,, we may regard X as the set
of vertices of an oriented square, and use the orientation to define a canonical
isomorphism X — X, proving (a)=(b). Since the implication (b)=(c) is clear, it
only remains to prove (c)=(a). If the image of I under the action contains the
Vierergruppe Oy, then there is an element in I which acts trivially on M and
nontrivially on D, hence A(X) # A(X). Similarly, if some element of T acts by
a single transposition on X, then it acts trivially on D and nontrivially on M,
hence A(X) # A(X). Therefore, (c) implies that the image of the action of T
contains at most cycles of length 4 and one element of V. O

REMARK 6.9. The I'-set D% M = A(X) % A(X) can be identified with the set
of orientations of the square.

For the following proposition, recall that the dihedral group D4 contains two
nonconjugate elementary abelian subgroups C» X C». Viewing D4 as a subgroup
of 54, one of these subgroups is U (= D4 NA,). The other one is generated by
two disjoint transpositions and is not transitive on {1,2,3,4}.

PROPOSITION 6.10. Let X € Set‘rl be aT-set satisfying the equivalent proper-
ties of Proposition 6.5, and suppose the T'-action on A(X) is not trivial, so that
the dual set X is uniquely determined. The following properties are equivalent:
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(a) theT-action on X factors through an elementary abelian subgroup C» X
C2 +* Dx,

(b) the T-action on X factors through 0y;

(c) the T-action on A(X) is trivial.

The proof is left to the reader.
Finally, we consider the case where the I'-action on X factors through 0y.

PROPOSITION 6.11. For aT-set X € Set}, the following conditions are equiv-
alent:
(a) theT-action on X factors through the Vierergruppe Ux;
(b) theT-action on R(X) is trivial;
(c) theT-set A»(X) has a decomposition into 2-element subsets stable under
the canonical involution of A2 (X)/R(X):

A>(X) =D, UD>1Ds5; (6.17)

(d) X satisfies the equivalent conditions of Proposition 6.5 andT acts trivially
on A(X).
Moreover, if these conditions hold, then the I'-action on D * D; * D3 is trivial.

PROOF. The Vierergruppe canbe defined as the subgroup of $x which leaves
all the partitions of X into 2-element subsets invariant, hence (a)<(b). The
equivalence of (b) and (c) is clear: take for Dy, D>, and D3 the fibers of the
canonical map R (X) — Ax(X). The equivalence (b)<(d) readily follows from
Proposition 6.5.

If the equivalent conditions of the proposition hold, then the set X of Prop-
osition 6.6 can be arbitrarily chosen as D;1ID,, D,11D3, or D, UD;3. If we
choose X = D; LD, Proposition 6.6 yields A(X) = D3. On the other hand, it is
easily checked that

A(D] UDZ) ~ Dy % Do, (6.18)

hence D, * D, ~ D3 and, therefore, the I'-action on D; * D> * D3 is trivial. O

Taking for I' the absolute Galois group of a field F, we may translate the
results of this section in terms of étale F-algebras, by using the antiequivalence
Etr = Setr of Section 3. By a quartic 2-algebra we mean an étale algebra which
is a quadratic extension of a quadratic étale algebra. These algebras can be
characterized through Proposition 6.5.

PROPOSITION 6.12. For a quartic F-algebra Q, the following conditions are
equivalent:
(@) theT-action on X(Q) factors through a Sylow 2-subgroup of Sx(q);
(b) R(Q) is not a field;
() R(Q) = FxA(Q);
(d) Q is a quartic 2-algebra.
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Proposition 6.6 proves, for every quartic 2-algebra Q, the existence of a dual
quartic 2-algebra Q, which is canonically determined if A(Q) is not split. This
algebra is a quadratic extension of A(Q), and Q is a quadratic extension of
A(Q). Moreover, Q and Q satisfy the following relations:

A2(Q) =A(Q)xQ,  A2(Q) =A(Q)xQ,
. (6.19)
R(Q

R(Q) = FXA(Q), (Q) = FxA(Q).
We record a few special cases.

PROPOSITION 6.13. Let Q be a quartic 2-algebra over F.
(1) If Q is a cyclic field extension of F, then Q =~ Q, hence Q is a quadratic
extension of A(Q), and

A2(Q) =A(Q)xQ,  R(Q)=FxA(Q). (6.20)

(2) IfQ = Ky XK>, where K, and K» are nonisomorphic quadratic F-algebras,
then Q =~ K, ®r K>, A(Q) = Ky ¥ K>, and

A2(Q) =FxFx (K, ®rK>), R(Q) = Fx (K1 *K>). (6.21)

(3) IfQ = K1 ®rK», where K, and K are quadratic field extensions of F, then
Q = K1 XK, K1 X (K1 % K>»), or Ko X (K1 * K»). Moreover, A(Q) is split,
and

A2(Q) ~ K1 XKz x (K1 % K3), R(Q) =~ FXFXF. (6.22)

These results are easily derived from Propositions 6.8, 6.10, and 6.11. Note
that split quadratic algebras are allowed in (2.20), and that the case where
Q = K XK for some quadratic field extension K of F is covered by (3.18) since
KXxK=K®FK.

Since A2 (Q) =~ A(Q) xQ, we may use the computations of Section 5.3 to give
an explicit description of Q.

PROPOSITION 6.14. Let Q be a quartic 2-algebra over F and let K C Q be a
quadratic étale F-algebra. Denote by ~ the canonical involution of K over F.
(1) Suppose charF + 2 and Q = K(,/y), where )y € K generates K. Then

M =F(Ner ), a=F(\7+7),  a@) =k 623

(2) Suppose charF =2 and Q = K(~'(y)), where v € K generates K. Then
AQ) =F(p (Tx/r (),  Q=F(p'Op '), A(Q)=K. (6.24)

In the proof below, we simply write T(y) and N () for Tk,r () and Nk/r ().
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PROOF. (1) By hypothesis, the element x =,/ generates Q over F. Its min-
imal polynomial is

u*—T(y)u?+N(y) € Flul. (6.25)

Let Ax € A2(Q) be defined as in (5.55). By Proposition 5.16, yg (Ax)Ax generates
%(Q) and its minimal polynomial is

t(t+T () —4N(»)). (6.26)

Therefore,

R(Q) :FxF(W), (6.27)

determining A(Q). Moreover, Proposition 5.16 also shows that yg (Ax) = —Ax,
hence, regarding (6.27) as an identification,

A2 = (O,T(y) -2 N(y)). (6.28)

Therefore, the projection Ay of Ay toO O under the isomorphism A»(Q) =
A(Q) x Q satisfies

AL=T(y)-2N() =y +7 -2y (6.29)

If the minimal polynomial (6.25) of x has no root in F, computation shows that
T(y)—-2+/N(y) is not a square in A(Q), hence

Q =F(Ay). (6.30)

The proof is complete since (6.29) shows that we may identify Ay with VY,
determining the square roots in such a way that /7 = —/N().

If the minimal polynomial (6.25) has a root in F, then Q has a factor F and
we are in the situation of Proposition 6.13(2) with K; or K, split. This case is
left to the reader.

(2) Suppose now charF = 2. The element x = yp~'(y) generates Q with
minimal polynomial

W+TOH)UW+ (TP +TOOINOY)+NY)u?+T(¥)’°N(y)u+N(y)3 eFlul.
(6.31)

Consider again the element A, € A»(Q) defined in (5.55). By Proposition 5.16,
Yo (Ax)Ax generates R(Q) and has minimal polynomial

(t=N) (P =NO)t+T () +T(¥)’N(y) + T(¥)N()?). (6.32)
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TABLE 6.1
() Q A(Q) R(Q) A2(Q)
{13 F4 F? F3 F6
Co ¢ 0 F2xK K FxK F2xK?
CoCD KxK F? F3 F2xK?
C3 FxL, L cyclic F? L LxL
CoxCod0 Ky xKp K1 % K> FxKy*Kp F2x (K1 ®K>?)
0 K1 ®K> F? F3 K1 %Ky x K1 % K>
Cy Cyclic Kca FxK KxQ
53 FxL K L LxL
Dy QoK K FxK KxQ,0>K
2y 24-quartic F2 L cyclic N>OL
S4 $4-quartic K L $3-cubic N>OL

If w is a root of the quadratic factor, then
PIND) N (w-T)-T(I)N))) =T(y), (6.33)
hence
R(Q) =FxF (o~ (T(¥))). (6.34)
Proposition 5.16 also shows that the projection Ay of A, onto Q satisfies
X +T()Ax+w =0. (6.35)

If p~1(y) and p~'(¥) are determined in such a way that p~1(y) + 1 () =
£ (T (y)), computation shows that g~ (T (y))(T(y) +p L (y)p 1 (¥)) also
satisfies (6.35), hence we may identify Q with F(p~1(y)p 1 (3)). O

We refer to [5] for a description of quartic 2-extensions of fields in charac-
teristic different from 2.

6.3. Classification of quartic algebras. Combining the results of Sections
6.1 and 6.2, we obtain a classification of quartic étale F-algebras Q based on
the action of the absolute Galois group I' of F on X(Q). We summarize the
various possibilities for Q, A(Q), R(Q), and A>(Q) in Table 6.1. In this table,
x(I) C 5x(q) = 54 is the image of the I'-action. The letters N and L are used
for sextic and cubic separable field extensions of F, and K, K, K, and K, for
quadratic separable field extensions of F. A quartic separable field extension
is called an $4-quartic (resp., X4-quartic) if its Galois closure has Galois group
isomorphic to 54 (resp., 2A4).

7. Cyclic quartic algebras. Let F be an arbitrary field with absolute Galois
group I' = Gal(F/F). Quartic étale F-algebras Q such that the I'-action on X(Q)
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factors through a cyclic group C4 can be endowed with the structure of a Cy-
Galois algebra. (In Table 6.1, they can be found in the lines «x(I') = {1}, «x(I') =
C, €V, and x(I') = C4.) Fixing a generator of C4 (or, equivalently, choosing
an isomorphism C; ~ 7/47), we may consider a C4-Galois F-algebra as a pair
(Q,v),where Q is a quartic étale F-algebra and v is an F-algebra automorphism
of Q such that

{xeQ|v(x)=x}=F. (7.1)

The automorphism v then satisfies v* = Id, and it yields the action on Q of the
generator of C4. An isomorphism of Cs-Galois F-algebras B: (Q,v) — (Q’,Vv")
is an isomorphism B: Q — Q’ such that v/ o 8 = Bov. Let Cycly (F) be the set of
isomorphism classes of C4-Galois F-algebras. As observed in Section 4.5, there
is a canonical bijection

Cycl, (F) ~ H (T, Cy). (7.2)

If C4 is embedded in $4, the corresponding map in cohomology H!(TI',Cs) —

HY(T,54) maps the isomorphism class of (Q, V) to the isomorphism class of Q.
Since Cy4 is an abelian group, the set H! (T, Cy4) is an abelian group. The group

structure on Cycly (F) is induced by the following composition law (see [2]):

Q,v) % (Q',v) = ((QeQ)" ® ,veId). (7.3)

The class of the split algebra F* with the cyclic permutation of factors is the
neutral element. The squaring map p : C4 — $» fits into an exact sequence

1—s -2 s —1. (7.4)

Since H! (T',5,) ~ Quad(F) (see Section 4.4), the induced exact sequence in co-
homology takes the form

1 — Quad (F) - Cycl, (F) £ Quad(F). (7.5)

The map (! is induced by K ~ (K xK,v), where v(x,y) = (y,yk(x)), and the
map p! carries every C4-Galois algebra (Q,v)’to its discriminant A(Q) (which
is isomorphic to the quadratic subalgebra Q"Z, see Proposition 6.13).

REMARK 7.1. The algebra K x K contains K and F X F as quadratic subalge-
bras. However, Galois theory shows that if (Q,v) is a C4-Galois algebra and Q
is a field, then Q contains a unique quadratic extension of F.

In the rest of this section, we give an explicit description of H!(I',C4) and
use it to parametrize C4-Galois algebras up to isomorphism. The description
depends in an essential way on whether the characteristic is 2 or not.
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7.1. Characteristic not equal to 2. If charF + 2, the group u4(F;) C Fg of
fourth roots of unity is cyclic of order 4. Let S = F[X]/(X? +1). Twisting the
I'-action on py (Fs) by a cocycle whose image in H!(T',5,) defines S, we obtain a
I-module pi45) with trivial I'-action. Thus, pas) = C4, and C4-Galois F-algebras
are also classified by H' (T, pas;). To give an explicit description of this group,
consider the homomorphism

Y:F¥x8§* — F*x8* (7.6)
defined by
Y(,z) = (Ng;r(2),£2°). (7.7)
PROPOSITION 7.2. There is a canonical isomorphism
H' (T, pagsy) = (F* < S™) /Y (F* < §¥). (7.8)
PROOF. Leti=+/—1¢ S be the image of X. We may identify py[s) with
((1,1),(1,-1),(-1,1®1),(-1,-1®i)} CFSx (F;®S)", (7.9

which is the kernel of the map Y extended to F. The proposition follows from
the cohomology exact sequence associated with

1 — paps) — FXx (Fs®S) 2 FXx (F,®8)* — 1, (7.10)

since Hilbert’s Theorem 90 and Shapiro’s lemma yield H' (I, FX X (Fs®S5)*) = 1.
O

REMARK 7.3. Another description of H' (T, pas) is given in [3, (30.13)].

It follows from Proposition 7.2 that C4-Galois algebras are classified by the
group

(F*xS*)JY(F*xS*). (7.11)

(See [2] for a proof without cohomology and, more generally, for a class of
commutative rings in which 2 is invertible.) We give an explicit description of
this correspondence.

Leti=+—1€S.ForA€F<ands = s, +is2 € S%,let d = Ng/p(s) = s? + 53
and let

Qas = FIW,X,Y] /Iy, (7.12)

where I, ; is the ideal generated by

w?-d, XZ—%(d+51W), YZ—%(d—slw), XY—%szw. (7.13)
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The automorphism v of F[W,X,Y] defined by
v(W)=-Ww, v(X) =Y, v(Y)=-X (7.14)

preserves I, ¢ and induces an automorphism of Q, s which we denote by v, ;.

PROPOSITION 7.4. For any A € F* and s € §*, the pair (Qa,Vas) is a Cs-
Galois F-algebra. The map (A,s) — (Qas, Va,s) induces a group isomorphism

& : F*xS*/{(Nsr(2),£2%) | £ € F*, z € $*} — Cycl,(F). (7.15)

PROOEF. We first show that Q, , is a quartic étale F-algebra. Let w,&,n € Q¢
be the images of W, X, and Y, respectively. The algebra F[w] is quadratic,
Flw]=F[Vd].

If s+ 0, thend # sf, hence d + s; w is invertible. Computation shows that
(E1(A/2)s520)% = (A/2)(d - s1w), 5O

QA,S—F[w,E]:FNH][ %(d+51\/;l)}. (7.16)

If sp =0, then d = sf, hence F[w] ~ F X F and we may identify & and n to
$1(v/A,0) and s1(0,v/A) in

Qas = F[VA]xF[VA]. (7.17)

Therefore, in each case, Q, s is an quartic étale F-algebra, and the fact that the
subalgebra fixed under v, ; is F is easily verified.

To prove that ® is a group homomorphism, consider (A,s), (A’,s") € F*xS§*
with s = 57 +is; and s’ = s; +is5. Let d = Ng/r(s) and d’ = Ng,p(s’), and let
w,&,ne Qs and w',&,n" € Qr ¢ be defined as above. The elements

W, =wew, E, =E®E —nen, N« =&9n +ne& (7.18)

_1 aa .
are in (Qas® Qs)"®"Vs" and satisfy

w? =dd,
&= )\;, [dd’ + (5157 —s285) w4 ],
Eny = %(sls§+3251)w*, (7:19)
n? = /\;\, [dd’ — (s15] —$285) w4 ].

Moreover,

(aseld)(wy) = —ws,  (s®Id)(E) =n.,  (vas®Id)(n.) = —&..
(7.20)
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Therefore,

(QA,S;VA,S) * (QA’,S’;V)\’,S’) = (Q/\A’,SS’;VA/\’,SS’)- (7.21)

If (A,s) = (Ng/r(z),£z%) for some £ € F* and z = z; + iz, € S*, then the
homomorphism F[W,X,Y] — F4 defined by

W — {Ns/p(2)(1,-1,1,-1),
X — {Ns/p(2)(21,22,—21,—22), (7.22)
Y — {Ng/r(2)(z2,-21,-22,21)

induces anisomorphism (Qa s, Vas) — (F 4 o), where o is the cyclic permutation.

Conversely, suppose that for some (A,s) € F* xS there is an isomorphism
Qas = F*, and let (w;)1<i<4, (&)1<i<4, and (n;)1<i<4 be the images of w, &, and
n, respectively, in F4. Then, from the relations between w, &, and n, it follows
that z = w;' (&1 +in1) € S and £ = (€2 + n3)~Lw? satisfy

A=Ngp(z), s=4z% (7.23)

Therefore, the homomorphism & is injective, and it only remains to prove its
surjectivity.

Let (Q,Vv) be a C4-Galois F-algebra. If Q = F[,/u]xF[,/u] for some u € F*,
then Q = Qu,1, as was observed at the beginning of the proof. Therefore, for
the rest of the proof we may assume Q is a field. Let K = Q"2 C Q be the
subfield fixed under v?, let K = F(w) with w? = d for some d € F*, and let
Q = K(&) with €2 = y for some y € K*. We have y ¢ F since Q/F is cyclic.
Let y =a+bw with a,b € F, b # 0. Substituting for  an element of the form
u?y with u € K, we may assume a = 0. Letting A = 2ad ™! and s; = a~'bd, we
may then write y in the form

¥ ==(d+sw). (7.24)

o>

Letn =v(&).Since &2 € K and & ¢ K, we have v2(&2) = €2 and v2(§) = &, hence
v2(&) = —&. Therefore, v(En) = —&n, and it follows that £n € wF*. Let

&n= észw for some s, € F*. (7.25)
2

From the equation &2 = (A/2)(d + s;w), we obtain

n = %(d—slw). (7.26)
Therefore, (7.25) yields
A2 A2
Zs%dzz(d+slw)(d—slw), (7.27)

hence d = s? + 53. It is then clear that (Q,V) = (Qas,Vas) With s = 5y +is. O
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COROLLARY 7.5. A quadratic étale F-algebra F[/d] can be embedded in a
Cs-Galois algebra (Q,v) as F[/d] = Qvz if and only if d is a sum of two squares
inF.

PROOF. The “only if” part was shown in the last lines of the proof of Prop-
osition 7.4. (Alternately, it follows from Propositions 6.13 and 6.14.) The “if”

2
part follows from the observation that F[/d] = QK"\S'S whenever Ng,r(s) =d.
O

In other words, this corollary shows that the exact sequence (7.5) can be
extended to

1 — Quad (F) = Cycl, (F) £ Quad(F) 2- Br(F), (7.28)

where Br(F) is the Brauer group of F and & maps K = F[+/d] to the Brauer
class of the quaternion algebra (—1,d)r. Of course, this result is well known
and has an easy cohomological proof.

7.2. Characteristic 2. Cyclic Galois Cpn-algebras over fields over character-
istic p were constructed by Witt [14, Satz 13] using Witt vectors. The group
H!(F, Cpn) over a field of characteristic p was computed by Serre in [10, Chap-
ter X, Section 3], also in terms of Witt vectors. We recall explicitly the results
of Serre and Witt for the group C, over a field F of characteristic 2.

Let W» (F) be the additive group of Witt vectors of length 2. By definition, we
have W» (F) = {(t,s) | t,s € F} with the addition

(tl,Sl)-!-(tz,Sz)=(t1+t2,51 +Sz+t1t2). (7.29)
Alternately,
1 t s
Wy (F) = 0 1 ¢t s,teF cGLx(F). (7.30)
0 0 1

The neutral element is (0,0) and ~ (t,s) = (t,s+t2). The map

02 :Wa(F) — Wa(F), (t,s)— (t3,5%)~(t,s) = (t>+t,s> +s+t>+13),
(7.31)

is a group homomorphism and there is an exact sequence of I'-modules:
0 — Cy — Wy (Fs) 22 Wy (F) — 0, (7.32)

where C, is identified with the subgroup of W»(F) generated by (1,0).
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PROPOSITION 7.6. We have HY(I,W»(F;)) = 0 and H'(T,Cy) =~ W»(F)/
2 (Wa(F)).

PROOF. The first claim follows from the exact sequence of (additive) I'-
modules:

0 — Fs — Wa(Fs) — F; — 0, (7.33)

where ((s) = (0,s) and 1r(t,s) = t, and the fact that H (I, F;) = 0 (by the addi-
tive version of Hilbert’s Theorem 90). The last claim follows from the exactness
of (7.32) and from the first claim. O

For (t,s) € Wa(F), let I+ 5y C F[W,X] be the ideal generated by the polyno-
mials f; (W) and f>(W,X) such that

(LLW), f2(W,X)) = 02(W,X) = (L,5), (7.34)
and let
Q) = FIW,X]/1t,s). (7.35)

Letting w and & be the images of W and X in Q ,s), we can write the relations
defining Qs as

w’+w=t, E+E=tw+s. (7.36)

It is therefore clear that Q ;) is a quartic 2-algebra over F. The automorphism
of F[W,X] given by

w,X) — (W, X)+(1,0) (7.37)

induces an automorphism v of Q). We have by definition v ) (w) =
w+1 and v 6 (E) = &+ w, hence the fixed subalgebra of Q) is F. Thus,
(Qt,5), Vit,s)) is a C4-Galois F-algebra.

PROPOSITION 7.7. The map (t,s) — (Q.s),V(,s)) induces a group isomor-
phism

Y : Wy (F) /2 (W2 (F)) — Cycly(F). (7.38)

PROOF. Let (t,s),(t',s") € Wo(F), and let w,& € Q1) and w',&" € Qs 1)
be the elements defined as above. In Q) ® Q' ¢, consider the elements

wy=wel+lew, £, =E01+10& +wow'. (7.39)

Computation shows that w, and &, are invariant under v(‘t’ls) ® V() and sat-
isfy

W2 +w, =t+t, E+& =(t+t)w,+s+5 +tt'. (7.40)
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Moreover, (v ®Id) (W) = w4 +1 and (vt ®Id) (&,) = &€, + w+. Therefore,

Q) Vies) * (Quersys Vi ,sy) = (Qes) +t,5s Vit + (' s)) - (7.41)

If (t,8) = p2(x,y) = (x?>+x,v%+y +x3+x?) for some x,y € F, then the
map F[W,X] — F defined by

W— (x,x+1,x,x+1), X— (V,x+y,y+1,x+y+1) (7.42)

induces an isomorphism (Q t.s), Vit.s)) — (F4,0) where o is the cyclic permu-
tation of factors.

Conversely, if Q 5y = F* for some t, s € F, then, letting (;)1<i<4 and (&;)1<i<4
denote the images of w and & in F*, it is readily verified that

t=w?+w; $=E+E& +w;+w?, (7.43)

hence (t,s) = g2 (w1,&1). This shows that the map ¥ is an injective homomor-
phism of groups, and it only remains to prove its surjectivity.

Let (Q,Vv) be a C4-Galois algebra. If Q = F[p~'(u)] x F[p~'(u)] for some
u € F, then (Q,v) = (Q,u),Vou))- For the rest of the proof, we may thus
assume Q is a field. Let K = Q"2 C Q be the subfield fixed under v2 and let
Q = K(&) with €2 + & € K. Then v2(&) = £+ 1, and it follows that the element
w = &+ V(&) satisfies

vZ(w), viw) =w+1, (7.44)
hence K = F(w). We then have £2+ & = tw + s for some t,s € F, and
w?+w=(E+E) +v(E*+&) =t. (7.45)

Therefore, (Q,Vv) =~ (Q.5), Vit,s))- H

COROLLARY 7.8. Every quadratic étale F-algebra can be embedded in a Cy4-
Galois F-algebra (Q,v) as Q"2 ~A(Q).

2
PROOF. For any t € F, we have F[p~1(t)] ~ Q:’t(f;;’ forall s € F. O

The corollary shows that the last map in the exact sequence (7.5) is onto
when char F = 2. This is clear from a cohomological viewpoint, since the coho-
mological 2-dimension of T is at most 1, see [11, page 86].
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