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For each positive integer n, set y(n) = [[,, p. Given a fixed integer k # £1, we
establish that if the ABC-conjecture holds, then the equation y(n+1)—y(n) =k
has only finitely many solutions. In the particular cases k = +1, we provide a large
family of solutions for each of the corresponding equations.
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1. Introduction. Comparing values of an arithmetic function at consecutive
integers is a common problem in number theory. For example, in 1952, Erdos
and Mirsky [4] asked if there are infinitely many integers n such that d(n) =
d(n+1) (here d(n) stands for the number of divisors of n), a question which
was answered in the affirmative when Heath-Brown [8] proved in 1984 that the
number of positive integers n < x such thatd(n) =d(n+1) is > x/log7x,
a lower bound which was later improved by Hildebrand [9] and thereafter by
Erdos et al. [6].

An apparently more difficult problem seems to be that of establishing that
the equations ¢p(n) = ¢(n + 1) (where ¢ is Euler’s function) and o(n) =
o(n+1) (where o(n) stands for the sum of the divisors of n) each has in-
finitely many solutions n; see Erdos et al. [5] for developments concerning this
problem.

The distribution of the values of the kernel function y(n) := ]_[pmp (also
called the core function or the algebraic radical of n) is the source of a variety
of open problems, many of them tied in with the famous ABC-conjecture. For
instance, in 1999, Cochrane and Dressler [2] showed that, assuming the ABC-
conjecture, if two positive integers have the same prime factors, they cannot
be too close; more precisely, they proved that if the ABC-conjecture is true,
then given any € > 0, there exists a positive constant C = C(&) such that if
y(n) = y(n+k), then k = Cnl/2-¢. No easier is the conjecture of P. Erdés and
A. Woods which asserts that there exists an integer k > 3 such that if m and
n are positive integers satisfying y(m +1i) = y(n+1i) for all 1 < i < k, then
m = n. Although it remains unsolved, this conjecture has been extensively
studied and generalized; see, for instance, Langevin [10], Balasubramanian et
al. [1], as well as Langevin [11].
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Many more results regarding the kernel function and the ABC-conjecture
have been published; for some recent ones, see Mitrinovic et al. [12], Granville
[7], or Cutter et al. [3].

Perhaps an even more difficult problem seems to be the one of comparing
the values of the kernel function at consecutive integers. In this note, we look
at the values of the function y(n+1)—y(n) for positive integers n.

2. Preliminary observations and statement of the main results. We first
make a few observations. Note that it is always the case that one of the numbers
n and n + 1 is even and the other one is odd. In particular, y(n+1) —y(n) is
always an odd number, and therefore the equation y(n+ 1) — y(n) = k has
no solutions when k is a fixed even positive integer. From now on, we assume
that k is a fixed odd positive integer. When k = 1 and both n and n+ 1 are
square-free, we certainly have that y(n+1)—-y(n) = (n+1) —n =1 = k. Since,
for a large positive real number x, there are only (1 —6/12 + 0(1))x positive
integers n < x for which n is not square-free, it follows that there are at most
(2—12/1m2 +0(1))x positive integers n < x such that one of n or n+1 is not
square-free. In particular, the number of numbers n < x for which both n and
n+1 are square-free is at least

x—(Z—ir—Zz+0(1))x:(;—22—1+0(1)>x>0.215x. (2.1)

Thus, the solutions n of the equation y(n+1) —y(n) = 1 form a subset of all
the positive integers of positive lower asymptotic density.

From now on, we look for positive integer solutions »n of the equation y (n+
1) — y(n) = k such that n(n + 1) is not square-free. Here is a “parametric
family” of solutions for k = 1. Let » > 1 be an integer and assume that both
27-1 —1 and 2" — 1 are square-free. Put n = 2"*1(2""1 —1). Then n+1 =
2r+L(2r-1 1) 41 =22 —27+1 11 = (2" —1)2.Itis clear that n + 1 is not square-
free, and if » = 3, then n is not square-free either. Since both 2"~! —1 and 2" -1
are square-free, we have y(n+1) =2" -1, y(n) = 2(2""1 - 1) = 2" — 2, which
implies that y(n+1) —y(n) = (2" —-1) — (2" —2) = 1. It is not even known if
there are infinitely many 7 such that 2" — 1 is square-free, and therefore it is not
known if there are infinitely many solutions n of the above form to the equation
y(n+1)—-y(n) = 1. However, computations revealed that there are 106 values
of the positive integer » < 200 having the property that both 2"~ -1 and 2" -1
are square-free; all these values are listed in Section 5. A similar type of “para-
metric solution” can be found when k = —1. In this case, if v > 1 is such that
both 2"~ +1 and 2" +1 are square-free, then taking n = 271 (271 +1), we have
n+1=(2"+1)% inwhichcase y(n+1)—ymn) = 27 +1)-2(2" 1 +1) = —1.
The list of those < 200 such that both 2"~! +1 and 2" + 1 are square-free is
also included in Section 5.
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We conjecture that for every fixed value of k + +=1, the equation y(n+1) —
y(n) = k has only finitely many positive integer solutions n; the solutions
n < 107 of this equation, when 1 < |k| < 100, are given in Section 4. We also
conjecture that when k = =1, the equation y(n+1) — y(n) = k has only finitely
many positive integer solutions n, which are not of one of the forms specified
above.

In this note, we prove that our conjectures are implied by the ABC-conjec-
ture. In fact, assuming the ABC-conjecture, we prove a much stronger state-
ment which implies the above conjectures.

We first recall that the ABC-conjecture is the following statement.

THE ABC-CONJECTURE. For every € > 0, there exists a constant K := K(¢)
such that whenever A, B, C are three coprime nonzero integers with A+ B = C,
then

max {|Al,|B|,|C|} < Ky(ABC)'*<. (2.2)
We will choose to write the above inequality as
max {|Al, |Bl,|C|} <¢ y(ABC)'*¢. (2.3)

THEOREM 2.1. (i) Let € > 0 be given. Then the ABC-conjecture implies that
the inequality

lym+1)—ymn)| >.n'/10-¢ (2.4)

holds whenever |y (n+1) —y(n)| > 1. In particular, if k > 1 is any fixed positive
integer, then the equation |y (n+1) —y(n)| = k has only finitely positive integer
solutions n.

(ii) The ABC-conjecture implies that there are only finitely many positive solu-
tions n to the equationy (n+1) —y(n) = 1 such thatn(n+ 1) is not square-free,
and such that n is not of the formn = 2"*1(2"~1 — 1) with some integer v > 1
such that both 27! —1 and 2" — 1 are square-free.

(iii) The ABC-conjecture implies that there are only finitely many positive
solutions n to the equation y(n+1)—y(n) = —1 for which n is not of the form
n = 27121 + 1) with some integer v > 1 such that both 2"~ +1 and 2" +1
are square-free.

REMARK 2.2. The above result implies that the only cluster points of the
sequence {|y(n+1)—y(n)|},>1 are 1 and infinity, and that

log |ly(n+1)-y(n)| -

.. 1
hmlgf logn - 10’

nes

(2.5)
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where o is the set of all positive integers n such that n(n + 1) is not square-
free, and n is not of the form 27+1 (271 +1).

The following result is a more general version of Theorem 2.1.
THEOREM 2.3. (i) Let € > 0 be given. Then the ABC-conjecture implies that
the inequality

ly(m)—yn)| >, lm-n|/1>¢ (2.6)

holds for all coprime positive integers m and n.
(ii) Let € > 0 be given and let j > 1 be a fixed integer. Then the ABC-conjecture
implies that the inequality

ly(n+j)—ym)| > n'/0-= (2.7)
holds for all positive integers n coprime to j such that |y(n+j)—y(n)| > j.
(iii) Let j > 1 be a fixed integer. Then the ABC-conjecture implies that all but
finitely many solutions in positive integers n coprime to j of the inequality
ly(n+j)-ym)| <j (2.8)
have the property that n(n + j) is square-free, unless j = j(z) is a perfect square,
in which case all the other solutions of inequality (2.8) are of the form n =
2" (2" +2njo), for some n € {+1} and some nonnegative integer v such that
both 2" +2njo and 2" +njo are square-free.
3. The proof of Theorem 2.1. We let € > 0 be some small number. Now let
k be an odd integer and n a positive integer such that y(n+1) —y(n) = k.
Furthermore, let a and b be the two square-free integers given by a := y(n +

1) and b := y(n). Assume first that max{a,b} < 2|k|. In this case, the ABC-
conjecture applied to the equation

n+1)-n=1 3.1)
yields

n=n+l<, (ymym+D)" < (ab)'*¢ <, (21k])*" <, [k[20+9),
(3.2)

leading to

k| >, nt/2d+e (3.3)
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which is an even better inequality than inequality (2.4). We note that when k
is fixed, then the fact that the equation y(n+ 1) — y(n) = k has only finitely
many positive integer solutions »n satisfying max{a,b} < 2|k| can be proved
unconditionally as follows. Let % be the set of all prime numbers p < 2|k| and
let & be the set of all positive integers whose prime factors belong to %. In this
case, both n and n + 1 belong to &, and therefore the pair (x,y) := (n+1,n)
is a solution of the equation x —y = 1, with x,y € ¥, and it is known that
such a diophantine equation has only finitely many solutions (x,?y) which are
effectively computable.

Thus, we may assume that max{a,b} > 2|k|. In this case, since a — b = k,
it follows that max{a,b} < 2min{a, b}. In particular, both inequalities a < 2b
and b < 2a hold. Further, let c:= (n+1)/y(n+1) and d := n/y(n). We may
assume that max{c,d} > 1, for otherwise both n and n + 1 are square-free, and
this implies that k = 1. We now have the system of equations

a—b=k, ca—db=1. (3.4)
Applying the ABC-conjecture to the second equation of (3.4), we get
ca < y(abed)' ¢ = (ab)'*¢ <, (2a%)'7° <, a?*2. (3.5)
Inequality (3.5) implies that
¢ < alt? «, (2b)'1%E <, b1+, (3.6)
A similar argument shows that the inequality
d <. (min{a,b})"* (3.7)

holds. We now multiply both sides of the first equation of (3.4) by ¢ and sub-
tract the second equation of (3.4) to get

kc-1=db-cb=b(d-c). (3.8)

Note that d and c are coprimes and that at least one of them is larger than 1.
Hence, d — ¢ # 0. Thus, in view of (3.6) and (3.8),

|d—clb =|kc—1]| < 2|k|c <; |k|b'*2¢ (3.9)
so that

ld—c| < [kIb*. (3.10)
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In particular, since b < 2a, it follows that
|d—c| < |k|(min{a,b}). (3.11)
We now write d —c = e. Then, since b = a—k and d = ¢ + e, we have

l=ca-db=ca-(c+e)(a—k)=ca—-(ca+ea—kc—ke)=kc—ea+ke,
(3.12)

in which case
kc—ea=1-ke. (3.13)

Assume first that 1 — ke + 0. In this case, since y(c)|a, we read from (3.13) that
y(c) divides |1 — ke|. In particular, it follows from (3.11) and (3.13) that

y(c) <|1—ke| <2|k|le| < |k|?a®. (3.14)
Therefore,

l=ca-db=(d—-e)(b+k)—db = (db—eb+kd—ek)—-db=—eb+kd-ek,
(3.15)

and hence,
kd—eb =1 +ek. (3.16)

Assume now that 1+ek =+ 0. In this case, since y(d)|b, we get that y(d) divides
|1+ ek| and therefore

y(d) < |1+ek| <2[klle|] <, [k|*a®. (3.17)
Applying the ABC-conjecture to the equation
d-c=e, (3.18)
we get, using (3.11), (3.14), and (3.17), that

max{d,c} <. y(dcle])"™ < (y(dy(c)lel)™*

. (3.19)
<<g(|k|4a4€|e|) <<|k|4(1+£)a55|e|1+5’
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provided that € < 1/4. On the one hand, inequality (3.19) combined with (3.11)
gives

max{d,c} <, |k|4(1+£)a5£|e|l+s < |k|5(1+s)a£(5+2(1+5)) < |k|5(1+8)a8£’
(3.20)

provided that &€ < 1/2, while on the other hand, returning to (3.8), it follows
from (3.19) and (3.11) that

ble| =bld—c| = |kc—1| < 2|klc <, |k|]>T*a>¢|e|1 ¢, (3.21)
and therefore
b <. |kP*¥a>¢ |e|f <, k[P O a7 (3.22)
Since a < 2b, it follows from (3.22) that
b < |k[PUHOIA=78) P +108) (3.23)

provided that € < 1/35. Substituting (3.23) into (3.20) and using again the fact
that a < 2b, we get

max{d,c} <, |k|>((1++8:1+108) [} |5(1+108) (3.24)
provided that € < 1/80. From (3.23) and (3.24), we immediately get that
n =bd <, |[k[100+109), (3.25)
leading to
[k| 3>, nt/100+108) 5, 5 1/10-¢ (3.26)

which is precisely inequality (2.4).

Our reasoning was based on the fact that we assumed, aside from the ABC-
conjecture, that 1 — ke + 0 and 1 + ke + 0. Hence, we now assume that (1 —
ke)(1 + ke) = 0. Note that this is possible only when |k| = 1, which, together
with the previous arguments, justifies Theorem 2.1(i). Now assume that 1 —
ke = 0. In this case, ke = 1 and therefore 1 + ke = 2. Equation (3.16) now tells
us that y(d)|2 and therefore d = 2" for some integer v > 0. Since ke = 1, we
eitherhavek=e=10ork=e=-1.Whenk =e =1, we have d—c = 1, in which
cassec=d-1=2"-1and a—b = 1. From (3.13), we also have ¢ —ea = 0 so
thata=ea=c=2"-1,andb=a-1=2"-2=2(2""1-1). The condition that
a and b are positive and square-free forces ¥ > 1 and both 2" —1 and 271 -1
to be square-free. Hence n +1 = ac = (2" —1)%, while n = (2" -1)2 -1 =
27+1(27-1 1), which is exactly the parametric family mentioned in Section 2.
Now assume that k = e = —1. In this case, we have d — ¢ = —1, which implies
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thatc =d+1=2"+1,and a—-b = —1. From (3.13), we also have ¢ = a so
thata=2"+1,and b =a+1 =2"+2 =2(2""1 +1). The condition that a
and b are square-free forces v > 1 and 2" ! +1 and 2" + 1 to be square-free.
Thus n+1=2"+1)2and n = (2"+1)2—-1=2"*1(2"-1 +1). Now assume that
1+ ke = 0, in which case (3.16) shows that kd = eb. Since ke = —1, we get that
k = —e € {1}, and therefore d = —b. This is impossible because both d and
b are positive. The proof of Theorem 2.1 is thus complete.

4. The proof of Theorem 2.3. The proof of this result can be achieved by
following the same procedure as in the proof of Theorem 2.1, and we will only
sketch it. Let € > 0 be a very small number. Put j:=m—-n, k:=y(m)—-y(n),
and K := max{j,|k|}. We may assume that j > |k|, for otherwise we already
have that |y(m) —y(n)| = |k| = j = |[m —n/, which implies inequality (2.6).

We write a := y(m) and b := y(n). If max{a,b} < 2K, then the ABC-
conjecture applied to the equation m —n = j shows that

j <e (abK)'te <« K39, 4.1)
which gives
K >, jl3a+o, (4.2)

which is a better inequality than the one asserted at (2.6). Thus, we may assume
that max{a,b} > 2K. As in the proof of Theorem 2.1, we set ¢ := m/y(m) and
d:=n/y(n) and we have the system of equations

a-b =k, ca—db=j. (4.3)
Applying the ABC-conjecture to the second equation of (4.3), we get
ca <¢ (y(abed)j)' <, K'teq?+2e, (4.4)

which, together with the fact that a < 2b, leads easily to the fact that

¢ <¢ K'*¢(min{a,b})" . (4.5)
In the same way, one shows that
d <¢ K¢ (min{a,b})" "%, (4.6)

We now multiply both sides of the first equation of (4.3) by ¢ and subtract the
second equation of (4.3) to get

kc—j=b(d-c). 4.7)

Note that d and c are coprimes, thus d —c = 0 only when d = ¢ = 1. This, in
turn, is possible only when both m and n are square-free, therefore |k| = j,
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which is a contradiction. Hence, d — ¢ # 0. Thus, in view of (4.5) and of (4.7),
bld—c| = |kc—j| <Kc <¢ K?*¢p1+2¢ (4.8)
so that
|d—c| < K**$b?, (4.9)
and since b < 2a, we get that
|d—c| < K**¢(min{a, b})*. (4.10)

As before, we let e = d — ¢ and using the fact that b =a—k and d = c + e, we
rewrite the second equation of (4.3) as

kc—ea = j—ke. (4.11)
Assume that j—ke + 0. Since y(c)|a, we then get from (4.11) and (4.10) that

2¢e

y(c) < |j—ke| < Kle| < K3 (min{a,b}) (4.12)

An inequality similar to (4.12) holds with ¢ replaced by d provided that j+ke #
0, and now the ABC-conjecture applied to the equation d — ¢ = e gives

max{c,d} < (y(©)y(d)lel)'"" <, K©6+290+8) (min{a,b})*"* |1+
(4.13)
< K029 (min{a,b})>|e|' ¢,

provided that € < 1/4. On the one hand, inequality (4.13), together with (4.10),
gives

max{c,d} <, K6(+29+2+a(1+8) (min{q, b})> 20+

ge (4.14)
<¢ K81+29 (min{a,b})™,

provided that € < 1/2, while, on the other hand, inequality (4.13) and (4.7) show
that

ble| = |kc—j| < Kc <¢ K7*12¢(min{a,b})>|e|1*¢ (4.15)
and therefore

b <. K712 (min{a,b})’* |e|f
, (4.16)
<. K7+125+e(2+s)(min{a’b})SHZEZ < K”lsg(min{a,b})k.

Multiplying (4.14) and (4.16) and using the fact that a < m, we get

m = bd <, KP31E,15¢, 4.17)
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leading to the conclusion that
K >, mO-150/(54310) 5, gy 1/15-2e 5 71/15-2¢ (4.18)

which implies inequality (2.6) in light of the fact that € can be taken arbitrarily
small.

It remains to consider the degenerate cases in which j + ke = 0. Assume
first that j — ke = 0. In this case, we have that k|j. Put j = kjo. Then e = jj.
Note that k and j, have the same sign. Equation (4.11) then shows that kc =
ea = joa. Write D := gcd(k, jo) > 0 and write k = Dk, jo = Dji. Note that k;
and j; have the same sign. We then get that ¢ = j1p and a = k;p, and since
y(c)la and a is square-free, we get that j;|p, and therefore p = j, p;, which
implies that ¢ = jlzpl and a = ki jip1. The analogue of relation (3.16) is now
kd —eb = j+ek = 2j, which can be rewritten as kd — job = 2k jo. Simplifying
D, we get kid — j1b = 2k, jo. Reducing this modulo k;, we get that k; divides
Jib, and since k; is coprime to ji, we get that k; divides b. But k; also divides
a, therefore k; divides both m and n, which shows that k; = +1. Since j,
is a multiple of j;, we may reduce the above equation modulo j; and read
that j; divides k;d, which implies that j; divides d. Since it also divides a, it
follows that j; = +1. Thus, we have showed that k = njo, j = jg, a = ¢, and
d = b+2njo,where n € {+1}. Therelation a—b = k gives a = b + njo, therefore
m=ac = (b+njo)?andn = bd = b(b+2njo).Itis clear that m —n = j, and the
only restriction now is that both b and b + njo = a are square-free, coprimes,
and that every prime number p dividing b + 2njo, = ¢ divides b. Every prime
dividing b + 2njo and b must divide 2 jy, but if it divides jy, then it will divide
both b and a = b + njy, which is impossible. Therefore, the only possibility is
that either ¢ = b+2njy = 1 or jj is odd, and that b +2nj, is a power of 2, say,
b+2njo = 2" for some nonnegative integer . This gives that b = 2" —2nj, and
that both 2" —2nj, and a = 2" — nj, are positive and square-free. At any rate,
note that in this case we have that K = j3, therefore |y (m) —y(n)| = Im-n|'/?,
which confirms inequality (2.6) in this case as well. The remaining case, that
is, the one for which k —ej = 0, also does not lead to any solution by sign
considerations.

The above arguments take care of part (i) of Theorem 2.3. Part (ii) can be
proved in an identical manner as Theorem 2.1 (simply treat the number j as a
constant); note that since |k| > j, the degenerate instances considered above
do not occur here. Finally, part (iii) of Theorem 2.3 follows from the above
discussion of the degenerate instances. Theorem 2.3 is therefore proved.

5. Computational results. There exist 106 integers v, 1 < v < 200, such
that 2" —1 and 27! —1 are both square-free. These are
2,3,4,5,8,9, 10, 11, 14, 15, 16, 17, 23, 26, 27, 28, 29, 32, 33, 34,
35, 38, 39, 44, 45, 46, 47, 50, 51, 52, 53, 56, 57, 58, 59, 62, 65, 68,
69, 70, 71, 74, 75, 76, 77, 82, 83, 86, 87, 88, 89, 92, 93, 94, 95, 98,
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TABLE 5.1
k n <109 such that y(n+1)—y(n) =k
3 4,49
7 9,12
11 20, 27, 288, 675, 71199
13 18,152, 3024
15 16, 28
17 1681, 59535, 139239, 505925
19 98, 135, 11375
21 25, 2299, 18490
23 75,1215, 1647, 2624
27 52, 39325
29 171, 847, 1616, 4374
31 32, 36, 40, 45, 60, 1375
39 76,775
41 50, 63000
43 56, 84
45 22747,182182
47 92, 1444, 250624
49 54, 584, 21375, 23762, 71874, 177182720
53 147, 315, 9152, 52479
55 512, 9408, 12167, 129311
59 324, 4239
67 72, 88,132, 5576255
69 82075, 656914
71 140, 3509, 114375
73 872, 1274, 3249
75 148, 105412, 843637
79 81,104, 117, 156, 343, 375, 7100, 47375, 76895
83 164, 275, 5967, 33124, 89375, 7870625, 38850559
85 126, 1016, 16128, 471968, 10028976
89 531,11736
91 96, 100, 1050624
93 832,201019, 1608574
97 3807, 4067, 12716, 73304

99

112, 1975, 8575

4259
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TABLE 5.2
k n <109 such that y(n+1)—y(n) = -k
5 7,11
7 44, 80
9 19
11 17, 360, 31212
13 15, 175, 944, 69375
17 23,351, 1183, 5750, 240064
19 63, 116, 120, 242, 29645
21 43,424
23 26, 99, 279, 2400, 110079
25 51, 1808, 2808
27 1519
29 31, 35, 39, 59, 168, 2375, 6655, 167112000
31 350
33 67
35 423,1376
37 9800
41 47,55, 62, 83, 296, 824, 3699, 3968, 100499
43 207, 260, 528, 5687
45 91
47 53,539
49 1475, 3536, 317600, 834272
51 9250
55 332
57 115,124
59 74,89, 711, 735
61 123, 62000, 945624
65 71,87,131
67 1224, 11583, 362556
69 79,139, 18784
71 855, 2988
73 188, 549, 624, 783, 975, 2645, 28593
77 103, 155, 1368, 129032
79 476, 725, 2600, 2783
81 163, 10624
83 97, 4655, 26568, 334719
85 6128
87 244
89 95, 119, 440, 58080, 1292400
91 548, 1025, 2208, 50255
93 187
95 1143
97 111, 6992, 44375, 68607
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99,104, 107,112,113,116, 117,118,119, 122, 123, 124, 125, 128,
129,130, 131, 134, 135, 142, 143, 146, 149, 152, 153, 154, 158, 159,
164, 165, 166, 167,170,171,172,173,176,177,178,179, 182, 183,
184, 185, 188, 191, 194, 195, 196, 197.

There exist 113 integers v, 1 < 7 < 200, such that 2" +1 and 2" ! + 1 are

both square-free. These are

56,7,8,12,13,14,17,18, 19, 20, 23, 24, 25, 26, 29, 32, 35, 36, 37,
38, 41, 42, 43, 44, 47, 48, 49, 53, 54, 59, 60, 61, 62, 65, 66, 67, 72,
73,74, 77, 80, 83, 84, 85, 86, 89, 92, 95, 96, 97, 98, 101, 102, 103,
104,107,108,109,113,114,115,116,119, 120,121, 122,125, 126,
127,128,132,133,134, 137,138, 139, 140, 143, 144, 145, 146, 149,
152,155, 156,157,158,161, 162,163, 164, 167, 168, 169, 173, 174,
175,176,179, 180, 181, 185, 186, 187, 188, 192, 193, 194, 197, 198,
199, 200.

Moreover, here Table 5.1 presents all the solutions n < 10° to the equation
y(n+1)—y(mn) =k, for 1 < k < 100 (note that this equation has no solution
n <10 for k =5,9,25,33,35,37,51,57,61,63,65,77,81,87, and 95.)

Finally, Table 5.2 presents all the solutions n < 107 to the equation y(n +
1)—y(n) = —k,for 1 < k < 100 (note that this equation has no solution n < 10°
for k =3,15,39,53,63,75, and 99).
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