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We deal with kernel convergence of domains in C" which are biholomorphically
equivalent to the unit ball B. We also prove that there is an equivalence between
the convergence on compact sets of biholomorphic mappings on B, which satisfy
a growth theorem, and the kernel convergence. Moreover, we obtain certain con-
sequences of this equivalence in the study of Loewner chains and of starlike and
convex mappings on B.
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1. Introduction and preliminaries. Let C" be the space of n complex vari-
ables z = (z1,...,2z,) with the usual inner product (z,w) = Z}‘:l z;w; and the
Euclidean norm ||z|| = (z,z)!/2, z € C". Let B(a,r) be the open ball of radius
v centered at a € C". The ball B(0,7) will be denoted by B, and the unit ball
B; will be denoted by B. Also the closed ball of center a and radius » will be
denoted by B(a,r). In the case of one variable, B(a,r) is denoted by U(a,7),
B, is denoted by U,, and the unit disc U; by U. If G is an open set in C", let
H(G) be the set of holomorphic mappings from G into C". If {gi}ren 1S a se-
quence of holomorphic mappings from a domain Q < C" into C™, we will write
gk — g to mean that {gy}ren converges (simply or locally uniformly on Q) to
gask — oo,

By L(C™,C™) we denote the space of continuous linear operators from C"
into C" with the standard operator norm. Let I be the identity in L(C",C").
If f € H(B), we say that f is normalized if f(0) =0 and D f(0) = I. We also
say that f € H(B) is locally biholomorphic on B if f has a local holomorphic
inverse at each z € B. This is equivalent to J¢(z) # 0 for z € B, where J¢(z) =
detD f(z) is the complex Jacobian determinant of f at z € B. A biholomorphic
mapping of B will also be called a univalent mapping. Let S(B) be the subset
of H(B) consisting of normalized univalent mappings on B. In the case of one
variable, S(B) is denoted by S. Let S*(B) and K(B) be the subsets of S(B),
consisting, respectively, of starlike and convex mappings on B.

In this paper, we discuss the connection between an unusual notion of
convergence of domains in C" and biholomorphic mappings which satisfy a
growth result. In the case of one variable, the notion of kernel convergence
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was introduced and studied by Carathéodory [2] (see also [5, 8, 15, 24, 27]). He
proved a fundamental result of independent interest, which was later used to
prove certain important results in the theory of univalent functions, especially
in the study of Loewner chains and the Loewner differential equation. His re-
sult is a complete geometric characterization of the convergence of univalent
functions in terms of the convergence of their image domains. Gehring [7] de-
fined the notions of kernel and kernel convergence in the case of domains in
R3, and obtained an analogue of the Carathéodory kernel convergence result
in the case of K-quasiconformal mappings in R3. Other results in this direction
were obtained by Reshetnyak [25] in the case of quasiconformal mappings in
R" (see also [30, pages 72-75]). We mention that a metric space analogue of
the Carathéodory kernel convergence result was obtained in [19].
We begin with the following definitions.

DEFINITION 1.1. Let {Gy}ren be a sequence of domains in C" such that
0 € Gy for k € N. If 0 is an interior point of (;cn Gk, We define the kernel G of
{G}ken to be the largest domain which contains 0 such that if K is a compact
subset of G, then there is a positive integer k( such that K C Gy for k > k¢ (in
other words, K is contained in all but finitely many of the sets Gy). If 0 is not
an interior point of ey Gk, we define the kernel to be {0}.

Let G be the set of all domains Q in C" such that 0 € Q and each compact K
of Q is contained in all but finitely many of the sets Gi. We assume that 0 is
an interior point of ey Gk- An application of the Heine-Borel theorem shows
that if D = Ugeq Q, then D%, and it is clear that no larger domain can belong
to . This yields the existence of the kernel of any domains G,...,Gk,..., such
that 0 is an interior point of (ycy G-

DEFINITION 1.2. We say that the {Gy}ren Kernel converges to G and write
G — G, if each subsequence of {G}ren has the same kernel G.

It is not difficult to see that if {Gy}ren iS an increasing sequence of domains
in C", that is, Gx < Gk+1, k € N, such that 0 € G, k € N, then G = Ugen Gk
is the kernel of {Gi}ren and {Gi}ren converges to G in the sense of kernel
convergence.

Let S¢(B) be a compact subset of S(B). Then it is clear that for each v € [0,1),
there exists some M = M(v) > 0 such that ||f(z)|| < M(r) for ||z]| = r for
f € S¢(B). On the other hand, if zo € B\ {0} is fixed, then the functional
Il f(zo)ll is continuous on S¢(B) with respect to the topology of locally uni-
form convergence, and hence attains its infimum for some f; € S¢(B). Since
fo is biholomorphic on B, this infimum cannot be zero. Therefore, there exists
a function m(r) which is positive for v € (0,1) such that m(r) < || f(z)] for
Izl =7 <1 and f € S¢(B). (It is also easy to see that m(r) is a strictly in-
creasing function by the maximum principle for holomorphic mappings and
lim, o+ m(¥) = 0.) Consequently, we have proved that

m@r) <||f@)||<M®), lzll=r, Vfe€S(B). (1.1)
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In [10] it is shown that the set S°(B), consisting of all mappings in S(B)
which have parametric representation, is also a compact subset of S(B) since
any mapping in the class S°(B) satisfies the 1/4-growth result. Moreover, S°(B)
contains the set $* (B) as a proper subset (see also [1, 9]). On the other hand, the
set K(B) is also a compact subset of S(B) since any mapping in K (B) satisfies
the 1/2-growth result (see [6, 26, 29]).

It is known that in the case of one variable, the class S is compact; however,
in several variables, the class S(B) is not compact, and there exist mappings f
in S(B) which do not satisfy the above growth result, that is, S¢(B) & S(B) in
dimension n > 2 (see [9, 10]).

In the next section, we will prove that there is an equivalence between the
kernel convergence and the convergence on compact sets of biholomorphic
mappings on the unit ball B which satisfy the growth result (1.1). In the last
section, we will obtain some consequences of this result in the case of the ker-
nel convergence and the convergence on compact sets of normalized starlike
and normalized convex mappings on B. Also, we will prove that there is an
equivalence between the notions of a Loewner chain, which satisfies a certain
normality condition, and kernel convergence.

2. Kernel convergence and biholomorphic mappings. In this section, we
prove the main result of this paper, which is an analogue of the Carathéodory
kernel convergence theorem [2], on the convergence of conformal functions of
one variable for biholomorphic mappings which satisfy the growth result (1.1).

THEOREM 2.1. Let {fx}ren be a sequence of biholomorphic mappings on
B such that fi(0) = 0 and D fiy(0) = oI, where ot > 0, k € N. Assume that
fr/ox € S€(B), k € N. Also let Gy = fx(B), k € N, and let G be the kernel of
{Gi}ren. Then { fi}ken converges locally uniformly on B to a mapping f if and
only if Gy — G = C". In the case of convergence, either f = 0 and G = {0}, or
else f is biholomorphic on B, f /o« € S¢(B), where & = limy_.., xi, and f(B) = G.
In the latter case, f;*—f~! locally uniformly on G as k — .

PROOF

NECESSITY. First, assume that fy— f locally uniformly on B as k — o. In
view of a version of Hurwitz’s theorem in higher dimensions, we deduce that
either Jy = 0, or else f is biholomorphic on B.

CASE 1. First, assume that J; = 0. Since fi— f locally uniformly on B, it
follows that limy ., J 7, (0) = J#(0) = 0, that is,

’lim o =0. (2.1)

Since fi /o € S€(B), we deduce in view of relations (1.1) and (2.1) that fi — 0
locally uniformly on B as k — oo.

Next, we show that G = {0} and Gy — {0} in the sense of kernel convergence.
Let gk = f; ! for k € N. Suppose that G # {0}. Then there is € > 0 such that
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B: = Gi for k € N. Then gy is a biholomorphic mapping on Gg, and thus in
B: such that gx(0) = 0 and ||gx(w)|| < 1, w € Be. By the Schwarz lemma for
holomorphic mappings, we deduce that ||gx(w)|l < (1/¢)||w] for lw] < € and
IDgy(0)]| < 1/¢ for k € N. Consequently, we deduce that o > € for k € N.
However, this is a contradiction to (2.1), and thus we must have G = {0}. Fur-
ther, since each subsequence of {Gy}ren has the same kernel {0} by a similar
argument as above, we deduce that Gy — {0}.

CASE 2. We next assume that Jy # 0, and thus f is biholomorphic on B.
Then « = limy_« ¢ > 0 and, taking into account the fact that fi /oy € S¢(B)
and S¢(B) is compact, we easily deduce that f/x € S¢(B) too.

Let Q = f(B). We prove that G = Q and Gy — G in the sense of kernel con-
vergence.

FIRST STEP. We prove that Q < G. To this end, it suffices to prove that if K is
a compact subset of Q, then K C Gy, for sufficiently large k. Indeed, if K is such
a compact subset of Q, f~1(K) is a compact subset of B, and thus there is some
r € (0,1) such that f~'(K) C B,. Let y = 0B, and I' = f(y). It is obvious that
KnT = @ since f is biholomorphic. Further, let n be the Euclidean distance
between I and K. Then n > 0 and clearly

n=min{||f(z)-w|:w €K, |zl =r}. (2.2)

If v € K, then || f(z) — voll = n for z € y. On the other hand, since f; — f
uniformly on y as k — o, there is some ko = ko(y) € N such that

lf(z)=f(2 <n, zey, k=ko. (2.3)
Hence, if k > k¢ and z € y, we obtain

Il fi(2) = f (@ < If(2) = voll, (2.4)

and in view of Rouché’s theorem (see [18, Theorem 3] and also [3, 17]), we
deduce that both equations

Se(z)=vo=0, f(2)-vo=0 (2.5)

have the same number of solutions inside y, that is, on B,, for k > k. But the
equation f(z) —vo = 0 has only one solution on B, since f is biholomorphic
on B, and thus for each k > kg, there is a unique point zx € B, such that
vo = fx(zr). Hence, vg € fi(B) for k > ko. Also since ko does not depend on vg
(ko depends only on K) and Gy = fi(B), we deduce that K = Gy, for sufficiently
large k. We have therefore proved that Q < G.

SECOND STEP. We prove that there is a subsequence {k,},ecn such that
fk’pla f~! locally uniformly on Q. Indeed, the inverse functions gi = f;; ' are
well defined on any fixed compact subset of Q for k sufficiently large, since
Q < G, and moreover ||gx(w)| < 1 for k large. By Montel’s theorem, there is
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a subsequence {gy, } pen such that g, —g locally uniformly on Q. Then g is a
holomorphic mapping on Q, g(0) =0, and

Dg(0) = lim Dgu, (0) = lim [D fe, (0)] ™ = lim aikpl. 2.6)

Since f is biholomorphic on B, we must have lim,,_ ., &, > 0. Hence, J4(0) #
0, and thus g is biholomorphic on Q.

Next, we can prove that g = f~! by an argument based again on the Rouché
theorem.

THIRD STEP. We next prove that f; ' — f~! locally uniformly on Q as k — c
and Q =G.

The argument in the second step implies that each subsequence of {gi}xen
contains a further subsequence which converges locally uniformly on Q to f~1.
Since the sequence {gx}ken is locally uniformly bounded, a further application
of Montel’s theorem yields that the whole sequence {gy}ren converges locally
uniformly on Q to f~!. In fact, the same argument combined with Vitali’s the-
orem (see, e.g., [20]) yields that {gi}xen converges locally uniformly on G to a
biholomorphic mapping ¢ of G onto B. Since ¢|q = g and g is a biholomorphic
mapping of Q onto G, we must have Q = G.

We have therefore proved that the kernel of {Gy}ren is f(B), and since each
subsequence { fkp}peN of {fx}ren converges locally uniformly on B to f, the
corresponding subsequence {Gkn}peN of {Gk}ken has the same kernel f(B).
Hence Gy — G and G = f(B).

SUFFICIENCY. We now assume that Gy—G + C" in the sense of kernel con-
vergence and prove that { fy}xen converges locally uniformly on B.

CASE 1. First, assume that G = {0}. We show that o« — 0 as k — oo, that
is, J 5, (0) — 0 as k — co. Otherwise, if {x}ren does not converge to zero, then
there exist some & > 0 and a subsequence { o, } pen Of {x }xen such that o, >
e for p e N.

Since {fkp | &k, Y pen C SC(B), it follows in view of (1.1) that

o, m(lzll) <||fi, (2|, z€B, peN, (2.7)

and thus fkv (B) 2 Bgy for p € N, where 0 < p = lim,_;- m(r). (Clearly, u < oo
since fx, € S¢(B).) However, this is a contradiction to the fact that Gy, — {0}.
Hence, we must have o, — 0 as k — o. Using an argument similar to that in
Case 1 of the proof of necessity, we deduce that f; — 0 locally uniformly on B
as k — .

CASE 2. We now assume that G + {0} and G = C". We first prove that the
sequence {o }ken is bounded. Otherwise, there is a subsequence {k,}yen such
that o, > p for p € N. Using again an argument similar to that in the previ-
ous case, we deduce that Gk, = fkp (B) 2 Bpy, p € N, and thus the sequence
{Gk, } pen has the kernel C". This contradiction shows that there is L > 0 such
that ox < L for k € N. Taking into account the relation (1.1), we can easily
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obtain
lfe ()| <caM(llzl) <LM(l|zl), z€B, keN, (2.8)

and thus {fi}ren is a locally uniformly bounded sequence on B. In view of
Montel’s theorem, there is a subsequence { fk,, }pen Of { fi}ken which converges
locally uniformly to a holomorphic mapping f. If Jr = 0, then using a similar
argument as in Case 1 of the proof of necessity, applied to the subsequence
{fx, }pen, we deduce that f = 0 and hence G = {0}. However, this is impossible,
and thus f'is a biholomorphic mapping of B onto the kernel of {G, } pen by the
necessary part of the proof applied to the sequences {fkp tpen and {Gg, }pen-
But the kernel of {ka }pen is the same as the kernel of {Gy }ken, thatis G, since
Gk — G. Therefore, f(B) = G. Further, since {fkp/(xkp}peN C S°(B) and S¢(B)
is compact, it follows that f/x € S¢(B) too and fk’p1 — f~! locally uniformly on
G by the necessary part of the proof.

We next prove that fy—f locally uniformly on B as k — . To this end, it
suffices to prove that fx(z)—f(z) as k — o, for all z € B, in view of Vitali’'s
theorem and the fact that { fi}xen is a locally uniformly bounded family on B.

Suppose that there is some zy, € B such that {fx(zo)}ren iS not conver-
gent. Since {fx(zo)}ken is @ bounded sequence, there exist two subsequences
(S, (zo)}pen and {fyy (z0)}pen Of {fk(20)}ken, which converge to some dis-
tinct limits denoted by wo and wg. Since {fi, }pen and {fi;}pen are locally
uniformly bounded families, we may extract two subsequences of these se-
quences, again denoted by { fk;, tpen and {f; Ky } pen, which converge locally uni-
formly on B to h; and h», respectively. Itis easy to see that h; and h; are biholo-
morphic mappings on B, h;(0) = h>(0) = 0, Dh,(0) = BI, and Dh;»(0) = yI,
where 0 < B = limy_« o, and 0 < y = limy_ oy - It is also obvious that
wo = h1(zp) and w(, = h2(zp). Moreover, since Gk% — G and Gk; — G and by the
necessary part of the proof, hi(B) = h>(B) = G. Next, let g = hgl oh;:B — B.
Then ¢ is a biholomorphic mapping of B onto B, g(0) = 0, and since B is a cir-
cular domain, we deduce that g is the restriction of a unitary linear operator
(see [28, Theorem 2.1.3]). This yields B = y. Consequently, g(0) = 0, Dq(0) =1,
and in view of a uniqueness result due to Cartan (see, e.g., [28, Theorem 2.1.1]),
we conclude that q(z) = z for z € B, that is, h; = h,. However, this is a contra-
diction to hi(zg) # h(zo). Thus, we must have fi(z) — f(z) as k — oo, for all
z € B. This completes the proof. |

3. Applications. We first apply the result of Theorem 2.1 to obtain the fol-
lowing connections between the kernel convergence and locally uniform con-
vergence of normalized starlike and convex mappings.

THEOREM 3.1. Let {fy}ren be a sequence of mappings in S*(B) and let
Gk = fx(B). Also let G be the kernel of {Gy}ken. Then { fi}ren converges locally
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uniformly on B to f if and only if G, — G += C*. Moreover, f € S*(B), G = f(B)
(thus G is a starlike domain with respect to the origin), and f;, Lo -1 locally
uniformly on G as k — co.

THEOREM 3.2. Let {fi}ren be a sequence of mappings in K(B) and let Gy =
fx(B). Also let G be the kernel of {Gy}ren. Then {fx}ren converges locally uni-
formly on B to f if and only if Gx—G + C". Moreover, f € K(B), G = f(B) (thus
G is a convex domain), and fk‘l—»f’1 locally uniformly on G as k — .

Next we use Theorem 2.1 to prove that there is an equivalence between the
notions of a Loewner chain f(z,t), such that {e~! f(z,t) };>0 is a normal family,
and the kernel convergence of the family {f(B,t)};~0. To this end, we recall
some notions and results which are useful in the proof of Theorem 3.5.

If f,g € H(B),we say that f is subordinate to g if there is a Schwarz mapping
v (i.e.,, v € H(B), v(0) =0, and ||lv(z)|| < 1, z € B) such that f(z) = g(v(z)),
z € B. We will write f < g to mean that f is subordinate to g.

A mapping f : Bx[0,0) — C" is called a Loewner chain if the following
conditions hold:

@i f(-,t) is univalent on B, f(0,t) = 0, and Df(0,t) = e'I, for each t > 0;
(i) f(-,s) < f(-,t) whenever 0 <s <t < co.

Condition (ii) is equivalent to the fact that there is a unique univalent Schwarz
mapping v = v(z,s,t) called the transition mapping associated to f(z,t) such
that

f(z,s)=f(v(z,s,t),t), z€B, 0<s<t<oo. (3.1)

Note that Dv (0,s,t) = e* ', 0 < s <t < o0, in view of the normalization of
f(z,t).

Recently, in [10, 14], the authors have proved the following growth result
for Loewner chains f(z,t) such that {e~!f(z,t)}-0 is a normal family. Still
this result does not hold for an arbitrary Loewner chain (see [10]).

LEMMA 3.3. Let f(z,t) be a Loewner chain such that {e ! f(z,t)};=0 Iis a
normal family on B. Then

Iz 2 SHe’tf(Z,t)Hs( Il zep t=0. (3.2)

(1+1zl 1-zl)°

On the other hand, in [12] (see also [13, 14]), Graham and Kohr proved the
following absolute continuity result for Loewner chains.

LEMMA 3.4. Let f(z,t) be a Loewner chain. Then, for each r € (0,1) and
T >0, thereisM =M (v, T) > 0 such that

If(z,t1) = f(z, )| <M, T) [t —t2|, NIzl <7, tr,t2 € [0, T]. (3.3)



4236 GABRIELA KOHR

Let S¢(B) be the subclass of §(B) consisting of all mappings in S (B) which
satisfy the 1/4-growth result. That is, f € S¢(B) if and only if f € S(B) and

[ET
(1-1zl)*’

Izl

m <[l f@| =

(3.4)

Alsolet g;(z) = g(z,t) be abiholomorphic mapping of B onto a domain G(t)
such that g;(0) =0, Dg;(0) = x(t)I, where x(t) > 0 for t > 0, and g,/ x(t) €
SE(B), t = 0. Also let &g = x(0). Further, assume that the family {G(t)};0
satisfies the following conditions:

GS)EG(), 0<s<t<o, (3.5)
G(tk) — G(to) if tyx — to < o,

3.6
G(ty) — C" if ty — oo, (3.6)

The convergence in question is the kernel convergence. Then we obtain the fol-
lowing result (cf. [24, Chapter 6] and [4]). Theorem 3.5(i) provides an example
of a Loewner chain associated to a given family of domains which are biholo-
morphically equivalent to the unit ball and converge in the sense of kernel con-
vergence. On the other hand, Theorem 3.5(ii) shows that given a Loewner chain
f(z,t) such that {e~! f(z,t)};0 is anormal family, the associated family of do-
mains satisfies conditions (3.5) and (3.6). For further applications of Loewner
chains in several complex variables, see [10, 11, 12, 13, 14, 16, 21, 22, 23].

THEOREM 3.5. (i) Let g; and G (t) satisfy the conditions in the previous para-
graph.
(a) Then « is a strictly increasing continuous function, and x(t) — o as
t — oo.
(b) If B(t) = logla(t)/xo]l, then f(z,t) = (xalg(z,ﬁ‘l(t)) is a Loewner
chain and f(B,t) = o' G(B~1(t)). Further, {e ' f(z,t)}=0 is a nor-
mal family on B.
(i) Conversely, let f(z,t) be a Loewner chain such that {e~t f(z,t)};»0 is a
normal family on B. Also let G(t) = f(B,t), t > 0. Then the family of domains
{G(t) }+=0 satisfies conditions (3.5) and (3.6).

PROOF. First we prove part (i). Using the relation (3.5), we have
g(z,s) <g(z,t), 0<s<t<o, 3.7)
and therefore there is a Schwarz mapping v = v(z,s,t) such that
g(z,s)=g(zs,t),t), z€B, 0<s<t<oo. (3.8)
Differentiating both sides of the above relation with respect to z, we obtain

x(s)I=Dg(0,s) =Dg(0,t)Dv(0,s,t) = x(t)Dv (0,s,t), 3.9)
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and thus «(s)/x(t) = [|[Dv(0,s,t)]| <1, that is, «x(s) < «(t). Since g(B,s) &
Jg(B,t),s < t,by(3.5), we deduce that x(s) # x(t) for s < t. Otherwise, if x(s) =
x(t) for some s < t, then Dv (0,s,t) =I. Since v(B,s,t) < B, v(0,s,t) =0, and
Dv(0,s,t) = I, we deduce in view of a uniqueness result due to Cartan (see [28,
Theorem 2.1.1]) that v(z,s,t) = z. Hence, g(z,s) = g(z,t), z € B. However, this
is a contradiction to (3.5). Thus, x(s) # x(t) for s # t, and, consequently, « is
a strictly increasing function from [0, «) into (0, c). Moreover, since G (ty) —
C" as ty — oo, we must have x(t) — o as t — oco. On the other hand, from
Theorem 2.1, we know that g, —g¢ locally uniformly on B as ty — t < o, s0
that the function « is continuous. These arguments prove (a).

We next prove assertion (b). To this end, it suffices to observe that « :
[0,00) — [xXg,0) is strictly increasing and continuous, hence one-to-one. Con-
sequently, B is also a strictly increasing function from [0, o) onto [0, o). Using
relation (3.7) and the above argument, we obtain

f(z,8) < f(z,t), z€B, 0<s<t<oo, (3.10)

and since g(-,t) is univalent, we deduce that f(-,t) is also univalent for t > 0.
Moreover, if T = f71(t), then t = B(T) and e! = x(T)/xo. Consequently, we
deduce that

Df(0,t) = x¢g'Dg(0,T) = oy x(T)I = e'I, t=0. (3.11)

We conclude that f(z,t) is a Loewner chain. Clearly, f(B,t) = 0(516(571(”)’
t > 0. Further, {e ! f(z,t)}¢-0 is a normal family since g;/«(t) € S(B) for
te[0,0).

We now prove part (ii). To this end, let f;(z) = f(z,t) for z€ Band t > 0.
Obviously, G(s) € G(t) for 0 < s <t < co. Suppose G(s) = G(t) for some s < t.
Then g = f; ! o fs is a biholomorphic mapping of B onto B such that gs(0) =
0. Since B is a circular domain, it follows that g, is the restriction of a unitary
linear operator. On the other hand, since Dg;;(0) = eS~tI, we must have s = t.
However, this is a contradiction. The claimed conclusion now follows. This
implies (3.5). Further, since {e~!f(z,t)};>0 is a normal family, we deduce in
view of Lemma 3.3 that f(B,t) 2 B,t,4 for t > 0. Hence, G(t) = f(B,t) — C" as
t — oo. This proves the second condition in (3.6). The first part in (3.6) follows
from Theorem 2.1 and Lemma 3.4. This completes the proof. |
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