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DIFFERENTIAL OPERATORS AND FLAT CONNECTIONS
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We consider filtered holomorphic vector bundles on a compact Riemann surface
X equipped with a holomorphic connection satisfying a certain transversality con-
dition with respect to the filtration. If Q is a stable vector bundle of rank » and de-
gree (1—genus(X))nr, then any holomorphic connection on the jet bundle J(Q)
satisfies this transversality condition for the natural filtration of J™(Q) defined
by projections to lower-order jets. The vector bundle J(Q) admits holomorphic
connection. The main result is the construction of a bijective correspondence be-
tween the space of all equivalence classes of holomorphic vector bundles on X
with a filtration of length n together with a holomorphic connection satisfying the
transversality condition and the space of all isomorphism classes of holomorphic
differential operators of order n whose symbol is the identity map.

2000 Mathematics Subject Classification: 32C38, 31A35, 14F10.

1. Introduction. Let E be a holomorphic vector bundle of rank (n+ 1) over
a compact connected Riemann surface X equipped with a flat connection V.
Let F be a holomorphic subbundle of E of rank . The second fundamental
form of V gives a filtration of V/

Fo:=0CFi:=FCF,CF3C---CFp (1.1)

by subbundles. More precisely, F;,1/F; is the subbundle of the vector bundle
E/F; generated by the image of the second fundamental form

S(F;): TX®F; — E/F; (1.2)

of the subbundle F; for the connection V. This condition defines the filtration
inductively. Let

Si:Fi/Fi-1 — Kx ® (Fi+1/Fi) (1.3)
be the homomorphism induced by S(F;). We call the pair (V,F) a coupled

connection if m = n+1 with F,;; = E, and S; is an isomorphism for all i €
[1,n].
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Let Q := E/F, be the final quotient in the above filtration for the coupled
connection (V,F). We show that there is a natural isomorphism of E with the
jet bundle J"(Q) (Lemma 3.2). Using Lemma 3.2, we construct a differential
operator

D € H(X,Diffi*! (Q, K%' ®Q)) (1.4)

of order n + 1, where Kx is the holomorphic cotangent bundle of X such that
the symbol of D is the identity automorphism of Q.

Conversely, given such a differential operator whose symbol is the identity
automorphism of Q, we construct a coupled connection on J”(Q) (Lemma 4.1).

Two coupled connections (V,F) on E and (V',F’) on E’ are called equiva-
lent if there is an isomorphism of E with E’ that takes F to F' and V to V'.
Similarly, two differential operators D and D’, on Q and Q’, respectively, of
the above type with identity maps as symbol will be called equivalent if there
is an isomorphism of Q with Q' that transports D to D’.

We prove that the space of all equivalence classes of coupled connections is
in bijective correspondence with the space of all equivalence classes of differ-
ential operators. More precisely, both of the above-mentioned constructions,
namely, from operators to coupled connections and from coupled connections
to operators, give a bijective correspondence and they are inverses of each
other (Theorem 4.5).

Let Q be a stable vector bundle over X of rank » and degree (1 —g)nv, where
g is the genus of X. We prove that J™(Q) admits a flat connection (Lemma 3.6).
Itis also shown that any flat connection on J"(Q), together with the subbundle
K" ®Q, defines a coupled connection (Lemma 3.5).

The special case of n = 1 was investigated in [2]. More on coupled connec-
tions can be found in [3].

2. Preliminaries. We recall the definition of jet bundles and its basic prop-
erties.

Let E be a holomorphic vector bundle over a Riemann surface X and let k
be a nonnegative integer. The kth-order jet bundle of E, denoted by J¥(E), is
defined to be the following direct image on X:

K(py . p;E
J (E)'_pl*(P§E®@xXx(—(k+1)A)>’ (2.1)

where p; : X XX — X, i = 1,2, is the projection onto the ith factor and A is the
diagonal divisor on X x X consisting of all points of the form (x,x).

Let Kx denote the holomorphic cotangent bundle of X. There is a natural
exact sequence

0 — K$*@E — JX(E) — J*"Y(E) — 0 (2.2)
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which is constructed using the obvious inclusion of Oxxx(—(k + 1)A) in
Oxxx(—kA). The inclusion map Kj?k ® FE — JX(E) is constructed by using the
homomorphism

K$k — J*(0x) 2.3)

which is defined at any x € X by sending (d.f)®*, where f is any holomorphic
function with f(x) = 0, to the jet of the function f*/k! at x. Any homomor-
phism E — F induces a homomorphism

JK(E) — JK(F) (2.4)

for any k > 0.
The sheaf of differential operators Diff§ (E,F) is defined to be Hom(J*(E), F).
The homomorphism

o :Diff% (E,F) — Hom (KX ® E, F) (2.5)

obtained by restricting a homomorphism from J¥ (E) to F to the subsheaf K}‘?k ®
E in (2.2), is known as the symbol map.
For all k,l > 0, there is a natural injective homomorphism

T: JMUE) — JR(JUE)). (2.6)

A holomorphic section of E over an open subset U of X gives a section of
JH(E) over U for each i = 0. This defines a map from a subspace of the space
of sections I'(U,J**!(E)) to a subspace of I'(U,J*(J'(E))). This map extends
to the Ox-linear homomorphism 7. We describe the image of T for the special
case k = 1. This will be done using induction on L.

So, first set | = 1. Using (2.4), the homomorphism J'(E) — E in (2.2) gives
a homomorphism y : J1(J'(E)) — J'(E). On the other hand, (2.2) gives a ho-
momorphism y’ : J' (J1(E)) — J'(E). The image 7(J2(E)) is the kernel of the
difference y —y’. In other words, we have an exact sequence

0 — J2E) = J' (U (E)) 222 Ky ®F — 0. 2.7)

Note that the image of y —y’ is contained in the subbundle Kx ® E C J! (E) since
the two projections of J!'(J!(E)) to E, obtained from y and y’, respectively,
coincide.

Now, suppose that

T JYE) — JLJENHE)) (2.8)

is the homomorphism in (2.6). As before, the projection J'(E) — J"1(E) in (2.2)
induces, using (2.4), a homomorphism

y: JYJYUE)) — JHJNHE)). (2.9)
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On the other hand, consider the homomorphism J!(J}(E)) — J'(E) defined as
in (2.2) and let

Y JYUUE)) — JHJENE)) (2.10)

denote its composition with the homomorphism ;-7 in (2.8). Just as before,
the image of the homomorphism

T JYUE) — JHJUE)) (2.11)

in (2.6) is precisely the kernel of y —y’.
A holomorphic connection on a holomorphic vector bundle E over X is a
first-order operator

V € H(X,Diff}, (E,Kx ®E)) (2.12)

with the identity automorphism of E as its symbol. It is easy to see that this
condition on E is equivalent to the Leibniz identity

V(fs)=dfes+fVs, (2.13)

where s is a local (holomorphic) section of E and f is a local holomorphic
function. The (complex) dimension of X being one, the curvature of V van-
ishes identically. Therefore, if 0 is the Dolbeault operator defining the holo-
morphic structure of E, then V +0 is a flat connection on E compatible with its
holomorphic structure. Conversely, the (1,0)-part of any flat connection on E
compatible with its holomorphic structure defines a holomorphic connection
on E. By a flat connection on a holomorphic vector bundle we always mean one
which is compatible with the holomorphic structure.

For a subbundle F of E, the second fundamental form of a holomorphic
connection V on E is the composition

Id xq

F—E- Ky®F Kx® (E/F), (2.14)
where the final homomorphism is defined using the natural projection q : E —
E/F. Note that the Leibniz identity ensures that the second fundamental form
is a homomorphism of Ox-modules. Therefore, it defines a vector bundle ho-
momorphism

S € H*(X,Kx ® Hom(F,E/F)). (2.15)

Now, S generates a subbundle of E containing F. Indeed, denoting by T the
torsion part of the cokernel (E/F)/S(K% ® F), for the homomorphism S, the
inverse image of T for the quotient map E/F — (E/F)/S(K% ®F) is a subbundle
of E/F containing the image, under S, of K¥ ® F. Denoting this subbundle by
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F’, the inverse image F» := g~ (F’) is a subbundle of E containing F. Clearly, F
is preserved by V if and only if F = F>.
We have a filtration

Fp:=0CcF,:=FCF,CF3C---CF, CFn1 (2.16)

of E by subbundles, where F;.; is the subbundle obtained by substituting F;
for F in the above construction of F». If F, 1, namely where the iterated con-
struction of filtration stabilizes, is a proper subbundle of E, then we will define
F,.» to be E itself. Note that F,,,; is preserved by V.

Since the operator V sends F; to Kx ® F;,1, the second fundamental forms
for the subbundles in the filtration (2.16) of E give a homomorphism

Si:Fi/Fi-1 — Kx ® (Fi+1/Fi) (2.17)

of vector bundles for each i € [1,n+1]. So, S; coincides with S in (2.15). Also,
if F,.1 # E, then S;,.1 = 0 (so, S,,.1 always vanishes) and S; # 0 for all i < n.

3. Coupled connection. Let X be a compact connected Riemann surface of
genus at least two. Let E be a holomorphic vector bundle, of rank (n+1)7 over
X, equipped with a holomorphic connection V. Suppose F is a holomorphic
subbundle of E of rank 7.

DEFINITION 3.1. The pair (V,F) will be called a coupled connection if F, 1,
namely where the filtration (2.16) stabilizes, coincides with E and the vector
bundle homomorphism S; in (2.17) is an isomorphism for each i € [1,n]. The
rank of the subbundle F, namely 7, will be called the rank of the coupled
connection.

Take a coupled connection (V,F) on a vector bundle E over X.
The final quotient E/F, for the filtration (2.16) of E will be denoted by Q.
Since each S; in (2.17) is an isomorphism, we have

SpoSp_10--:08:F—K{®Q (3.1)
as an isomorphism. Here, S; denotes the homomorphism
Ki'® (Fi/Fi.1) — K ' ®Kx @ (Fiy1/Fi) = Ky ® (Fi/Fi_1) (3.2)

obtained by taking the tensor product of the identity map of K& ! with the
homomorphism in (2.17). Furthermore, F;,;/F; = Kf?i ®F.

Let g : E — Q denote the natural quotient homomorphism. For any x € X
and any vector v € Ey in the fiber of E over x, let s,, denote the (unique) local
flat section of E, defined around x, with s, (x) = v. Let v denote the vector
in J/(Q) representing the (local) section g(s,) of Q. Consequently, we have a
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vector bundle homomorphism
i E—J(Q) (3.3)

that sends any v to v constructed above.

LEMMA 3.2. The homomorphism ¢,, is an isomorphism. Furthermore, there
is a commutative diagram

E—" o )

lq lh (3.4)

E/Fi — J""1(Q)

for every i € [1,n], where q is the natural quotient map and h is obtained from
(2.2).

PROOF. The lemma follows immediately by unraveling the definitions. To-
wards this, we first describe the second fundamental form and the filtration
in (2.16).

As in (2.15), let F be a subbundle of a flat vector bundle E. We give an inter-
pretation of the homomorphism S in (2.15). Take a point x € X and a vector
v € Fy over x. Let v, denote the (unique) flat section of E over the first-order
infinitesimal neighborhood of x, with v, (x) = v. Let U be a section of F over
the first-order infinitesimal neighborhood of x, with 7 (x) = v. The difference
U —v is clearly an element of (Kx ® E) . Its projection to (Kx ® (E/F)) coin-
cides with S(x)(v).

More generally, for i > 1, let v; denote the (unique) flat section of E over the
ith-order infinitesimal neighborhood of x, with v;(x) = v. Let U be a section of
F; over the ith-order infinitesimal neighborhood of x, with 7 (x) = v. Consider
the difference v; := v — v;. Using induction, it is easy to see that v; is a section
of Fi,1.Consequently, by projecting v;, we get an element in (Kj‘?i ® (Fis1/Fi))x.
This element in (Kj‘?i ® (Fi4+1/Fi))x coincides with (SjoSj_j0---087)(v) with
Sj asin (3.1). From this observation the lemma follows immediately. O

From Lemma 3.2 it follows that we have the homomorphism

Pnrrody' 1 JHQ) — JHQ) (3.5)
which is a splitting of the surjective homomorphism J**1(Q) — J*(Q) given

by (2.2). In other words, the homomorphism in (3.5) gives a splitting of the
exact sequence in (2.2). The resulting homomorphism

w:J"NQ) — K eQ (3.6)
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for this splitting is a differential operator
D € HO(X,Diff"! (Q,K}¥"' ®Q)) (3.7)

of order n+1 on X. Since D is defined by a splitting of the jet sequence, its
symbol, which is a holomorphic section of Ky" ' ® Q* e K¥*!' ® Q = End(Q),
coincides with the identity automorphism of Q.

In Section 4, we see that the above construction of differential operator from
a coupled connection can be reversed.

Transport the connection V on E to a connection on J™(Q) using the iso-
morphism ¢,, in (3.3). Consider the filtration (2.16) of /" (Q) for the subbundle
K¥®Q c J"(Q) in (2.2) corresponding to this connection. Lemma 3.2 says that
this filtration of J"(Q) coincides with the filtration obtained from (2.2). There-
fore, we have the following equivalent definition of a coupled connection.

DEFINITION 3.3. A coupled connection is a flat connection on J"(Q), where
Q is a holomorphic vector bundle on X, such that the filtration of J"(Q) ob-
tained from (2.2) coincides with the filtration (2.16) for the subbundle K¥ ® Q C

JHQ).

Note that for the filtration of the vector bundle j"(Q) obtained from (2.2),
the graded object is @?:OK??" ® Q. Therefore, if this filtration coincides with
the filtration obtained from (2.16), then each homomorphism S; in (2.17) must
be an isomorphism. Indeed, this is a consequence of the general fact that any
homomorphism between holomorphic vector bundles of the same degree over
X, which is an isomorphism outside finitely many points, must be an isomor-
phism.

A holomorphic vector bundle V over X is called stable if for every proper
holomorphic subbundle W C V the inequality

degree(W)/rank(W) < degree(V)/rank(V) (3.8)

is valid [4, 5].

DEFINITION 3.4. A coupled connection (V,F) will be called stable if the
vector bundle F is stable.

Note that since K§" ® Q = F, the vector bundle Q is stable if and only if F is
stable.

LEMMA 3.5. LetQ be a stable vector bundle and V a flat connection on J"(Q).
Then V is a coupled connection.

PROOF. Consider the filtration

0:=VoCV1:=K{"®QCVoCV3C++-CV,CVy=J"Q) (3.9
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obtained from the jet sequence (2.2). In other words, V; is the kernel of the
projection J*(Q) — J™1(Q) in (2.2). The quotient Vi, /V; is K}(“i ® Q, which
is a stable vector bundle of degree (g —1)(n —2i)r, where g = genus(X) and
¥ =rank(Q). The degree is computed from the fact that degree(J"(Q)) = 0
since it admits a flat connection. From this, it follows that there is no nonzero
homomorphism from V;/V;_; to Kx ® (V/V;;1). Indeed, it is easy to see that
HY(X,Hom(W;,W>)) = 0, where W; and W, are stable vector bundles with
degree(W;)/rank (W, ) >degree(W,)/rank (W>,). Consequently, if i < n—1, then

H°(X,Hom (V;/V; 1,Kx® (Vy11/Vn))) =0 (3.10)
as degree(Ky) > 0. Using the same argument, it also follows that if
H°(X,Hom (V;/Vi_1,Kx ® (Vns1/Vjs1))) =0, (3.11)

for some j > i+ 1, then H*(X,Hom(V;/V;_1,Kx ® (Vy+1/V;))) = 0. Therefore,
using induction, it follows that

H°(X,Hom (Vi/Vi_1,Kx ® (J"(Q)/Vis1))) = 0. (3.12)

For a subbundle W of J"(Q), let S(W) : W — Kx ® (J"(Q)/W) denote the
second fundamental form of W for the connection V. For a subbundle W; of
W, clearly, there is commutative diagram

Wl( w
lS(Wl) ls<w> (3.13)
Kx e (J"(Q)/W) ——= Kx® (J"(Q)/W)

of vector bundles, where f is the tensor product of the identity automorphism
of Kx with the obvious quotient map J™(Q)/W; — J"(Q)/W. Using this and
(3.12) it follows that

S(Vi) CKx®(Vi+1/Vi) CKx®(]n(Q)/Vi). (3.14)

Indeed, (3.14) is immediate for i = 1. It is straightforward to deduce (3.14)
using induction on i.
Let

S(Vi) :Vi/Vieg — Kx ® (Vis1/ Vi) (3.15)

be the homomorphism induced by S(V;) in (3.14). Since V;/V;_; and Kx ®
(Vi+1/V;) are both stable vector bundles of the same degree /rank quotient,
the homomorphism S(V;) must be either an isomorphism or the zero homo-
morphism. In view of (3.14), it is obvious that if S(V;) = 0, then V; must be
a flat subbundle of J*(Q). But degree(V;) # 0 if i € [1,n], and hence such a
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V; does not admit a flat connection. Therefore, S(V;) is an isomorphism. This
completes the proof of the lemma. |

The following lemma complements Lemma 3.5.

LEMMA 3.6. Let Q be a stable vector bundle over X of rank v and degree(1 —
g)nr. Then J"(Q) admits a flat connection.

PROOF. A theorem of Weil [6] and Atiyah [1] says that a holomorphic vector
bundle V over a compact Riemann surface admits a flat connection if and only
if every direct summand of it is of degree zero. A holomorphic subbundle W
of V is called a direct summand if there is another subbundle W’ of V such
that We W’ is isomorphic to V. Therefore, every irreducible, that is nondecom-
posable, holomorphic vector bundle of degree zero admits a flat connection.
Consequently, it suffices to show that J"(Q) is irreducible.

Consider the filtration of J™(Q) in (3.9) obtained from jet sequence. We
noted that the quotient V;,,/V; is a stable vector bundle of degree (g—1)(n—
2i)7. Therefore, the filtration (3.9) is the Harder-Narasimhan filtration of J" (Q).
This implies that any automorphism of J(Q) preserves the filtration (3.9). See
[4] for properties of Harder-Narasimhan filtration.

Assume that J"(Q) = W @ W'. Take two nonzero numbers c,c’ € C* with
c #c¢'. Let T denote the automorphism cIdy ®c’Idy- of J*(Q) that acts on W
as multiplication by ¢ and acts on W’ as multiplication by c¢’.

Since T preserves the filtration (3.9) and V; is simple, we conclude that
V1 is contained in either W or W’. Say that W contains V;. So J"(Q)/V; =
(W/Vy)e W', and T gives an automorphism of J"*(Q)/V;. This automorphism
of J"(Q)/V; will be denoted by T;.

Since

Vo/ViCV3[ViCors CVp[Vi C Vi /Vi=]"(Q)/ V1 (3.16)

is the Harder-Narasimhan filtration of J*(Q)/V1, and V> / V7 is simple, it follows
that V»/V; is contained in either W/V; or W'. If V5 /V; is contained in W', then
the subbundle Vo n W’ of V, gives a splitting of the exact sequence

00—V, — Vo, —Vo/V; — 0. (3.17)
But each exact sequence
0—Vi/Viii = Vi1 /Viei — Vin/Vi — 0 (3.18)
is nonsplit, where i € [1,n]. Indeed, the corresponding extension class in
H'(X,Hom (Vi31/Vi,Vi/Vii1)) (2 HY(X,Kx)) (3.19)

coincides with the element 1 € H! (X,Kx). Recall that Hom(Vi,1/V:, Vi/Vi_1) =
Kx®End (Vi1 /Vy).
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Therefore, we have V> C W. Now, clearly an inductive argument is valid.
More precisely, if V; ¢ W and V;,; is not contained in W, then Vi, nW' gives a
splitting of the exact sequence (3.18). Using induction, we conclude that W =
Vi+1. In other words, J"(Q) is indecomposable. This completes the proof of
the lemma. O

Isomorphism classes stable vector bundles of rank » form an algebraic va-
riety of dimension 72(g —1) + 1 [5]. Consequently, Lemma 3.6 combines with
Lemma 3.5 to produce examples of coupled connections.

4. Coupled connections from differential operator. Let Q be a holomor-
phic vector bundle over X of rank » and let

D € H°(X,Diff"! (Q,K}{"' @ Q)) (4.1)
be a differential operator whose symbol is the identity automorphism of Q.
The condition on the symbol of D ensures that the homomorphism J**1(Q) —
K%' ®Q defining D gives a splitting of the jet sequence
0—Ki'eQ — J"(Q) — J"(Q) — 0. (4.2)
Let

y:J"(Q) — J"(Q) 4.3)

be the homomorphism corresponding to this splitting.
Consider the commutative diagram of vector bundles

0——=K{''eQ —— Jm(Q) ——=J"(Q) ——=0

-

0 —Kx®J"(Q) —=J'(J"(Q)) —=J"(Q) —=0,

where T is defined in (2.6) and the horizontal exact sequences are as in (2.2).
The homomorphism

Toy:J"(Q) — J'(J"(Q)) (4.5)
is clearly a splitting of the bottom exact sequence in (4.4), where y is defined
in (4.3).

A splitting of the exact sequence

0—Ky®V—JW(V)—V—0 (4.6)
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in (2.2) defines a holomorphic connection on V [1]. More precisely, the space of
flat connections on V is in bijective correspondence with the space of splittings
of this exact sequence. As we noted earlier, any holomorphic connection on a
Riemann surface is automatically flat since there are no nonzero holomorphic
2-forms on it. We recall that given a flat connection on V, the corresponding
splitting homomorphism V — J1(V) of the exact sequence sends any vector
v € Vy in the fiber to the image, in J'(V), of the (unique) flat section s of V,
defined around x, with s(x) = v.

Therefore, the homomorphism 7 o y in (4.5) defines a flat connection on
J™(Q). This connection will be denoted by V.

Given a differential operator D; on X whose symbol homomorphism is an
isomorphism, the sheaf of solutions of D; defines a local system on X. More
precisely, if D, is of order m acting on a vector bundle of rank [, then the cor-
responding local system is of rank ml. It can be checked that the local system
defined by the operator D in (4.1) coincides with the local system defined by
the above flat connection V.

LEMMA 4.1. The connection V on J"(Q) is a coupled connection.

PROOF. To prove the lemma, we first give a description of the second fun-
damental form.

Let V be a vector bundle over X and let W be its subbundle. Consider the
commutative diagram

0
w
14
JUWV) ———V 4.7)
lj
0—> Ky ® (V/W) —> JU (VW) ——> VW 0
VIW ——=V/W,

where ( is the inclusion map and all other maps are as in (2.2). Now let V be a
holomorphic connection on V. So, V defines a homomorphism

h:V— JYV) (4.8)

such that p o h is the identity automorphism of V.
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Consider the homomorphism johot: W — J'(V/W). The commutativity of
the diagram implies that go johot = 0. Consequently, johot gives a homo-
morphism

SW):W —Kxo(V/W). (4.9)

It is easy to check that this homomorphism coincides with the second funda-
mental form of W for the connection V.

Foranyi € [0,n—1],let W; denote the kernel of the homomorphism J™*(Q) —
JH(Q) in (2.2). We have a commutative diagram

0
Wi
Q) =@ (410
l"
00— Ki'leQ — Ji*1(Q) —— Ji(Q) 0
JHQ) =—— JI(Q),

where ( is the inclusion map and all other maps are as in (2.2). Let h: J"*(Q) —
J"1(Q) be a splitting of p, thatis, p o h is the identity automorphism of J"(Q).
Just as before, the homomorphism jo h o gives a homomorphism

Si:W; —KifleQ (4.11)

since go johot=0.0n the other hand, we have a commutative diagram

0 Wi J(Q) JHQ) 0
lf l 4.12)
0 —=Ki'eQ ——=J*(Q) JHQ) 0.

It is straightforward to check that the above homomorphism f coincides with
Si constructed in (4.11).

Since the connection V is defined by T o y, where y is the splitting of the
homomorphism p in (4.10), from the earlier description of the second funda-
mental form it follows that the second fundamental form of the subbundle
W; ¢ J™(Q), for the connection V, coincides with the homomorphism S; in
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(4.11) constructed by substituting h with y. But S; coincides with f. Therefore,
the filtration (2.16) constructed from the subbundle W,,_; = K¥ ® Q € J"(Q)
for the connection V coincides with the filtration (3.9) constructed from (2.2).
This completes the proof of the lemma. O

In Section 3, given a coupled connection, we constructed a differential oper-
ator (see (3.7)). Let
D e H(X,Difft"' (Q, K} Q)) (4.13)
be the differential operator for the coupled connection (J"(Q),V) constructed
in Lemma 4.1 from the operator D in (4.1).

PROPOSITION 4.2. The differential operator D coincides with the operator D
in (4.1).

PROOEF. Itis straightforward to check that the homomorphism y in (4.3) co-
incides with the homomorphism ¢y, 41 © ¢;,! in (3.5) for the coupled connection
(J™(Q),V). The proposition follows immediately from this observation. O

Let
D' € HO(X,Diff¥" (Q", k¥ ® Q")) (4.14)

be a differential operator with the identity automorphism of Q’ as its symbol
(the same condition for D in (4.1)). The two operators D and D’ will be called
equivalent if there is an isomorphism

p:Q—Q’ (4.15)
which intertwines D and D’. In other words, (Id®p) oD = D’ o p, where Id®p
is the automorphism of KQ“ ® Q defined by p and the identity automorphism

of K#*L,
Let B(r,n) denote the space of all equivalence classes of differential opera-
tors

D € H(X,Diffi"™ (Q, K} ®Q)), (4.16)

where Q is some holomorphic vector bundle of rank v and the symbol of D is
the identity automorphism of Q.

If D, € HO(X,Diff"'(Q,Q.)) is a differential operator whose symbol is an
isomorphism, then Q; is isomorphic to K¥*! ® Q. Therefore, %(r,n) coincides
with the space of equivalence classes of differential operators of order n+ 1,
between two vector bundles of rank 7, such that the symbol is an isomorphism.

If D and D’ are two equivalent differential operators from Q to K¥*!'®Q,
then the automorphism p of Q that intertwines D and D’ induces an automor-

phism of J"(Q). Let p’ denote the automorphism of J*(Q). Let V (resp., V')
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be the coupled connection constructed from D (resp., D’) in Lemma 4.1. It is
easy to see that the automorphism p’ commutes with the connections V and
v

Let E and E’ be two holomorphic vector bundles over X of rank (n+1)r.
Let (V,F) and (V',F’) be two coupled connections of rank » on E and E’,
respectively. The two coupled connections will be called equivalent if there is

an automorphism
T:E—F (4.17)

such that T(F) = F' and T takes V to V', thatis, V'oT =To V.

Since T takes F to F’ and V to V', it follows immediately that T takes the
filtration (2.16) for F to the corresponding filtration for F’. In particular, T
gives an isomorphism of the final quotient Q = E/F, with the corresponding
quotient of E’.

Let sd(r,n) denote the space of all equivalence classes of coupled connections
of rank v on some holomorphic vector bundle of rank (n+1)r over X.

From the above comment on the construction in Lemma 4.1 it follows that
we have a map

P:RB(r,n) — A(r,n) (4.18)

that sends an operator D to the coupled connection V constructed in Lemma
4.1 from D.

Let the two coupled connections (V,F) on E and (V',F’) on E’, as above, be
equivalent. As before, Q and Q' denote the final quotient F;,;,/F, for (V,F)
and (V',F’), respectively. Consider the isomorphism

T:Q — Q' (4.19)
induced by T in (4.17). Let
T;:J/(Q) — J'(Q") (4.20)

denote the isomorphism induced by T’. The diagram

bj )
E——=>=]J/(Q)
T l T; 4.21)
& )
E——=J/(Q")
is commutative, where ¢ ; and (l);- are constructed in (3.3).
From the commutativity of (4.21) it is immediate that the differential oper-

ators D and D’ constructed, as in (3.7), from (V,F) and (V',F’), respectively,
are equivalent. More precisely, the isomorphism T’ takes D to D’.
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Therefore, we have a map
V:.d(r,n) — Br,n) (4.22)

that sends a coupled connection (V,F) to the differential operator D con-
structed in (3.7).
We now have the following corollary of Proposition 4.2.

COROLLARY 4.3. The composition ¥ o ® is the identity map of %B(r,n), where
® and Y are constructed in (4.18) and (4.22), respectively. In particular, ¥ is
surjective and ® is injective.

The following lemma complements Corollary 4.3.
LEMMA 4.4. The composition ® o ¥ is the identity map of A(r,n).

PROOF. Let « := (V,F) be a coupled connection on E and B := (V',F’) a
coupled connection on E’ such that the differential operator ¥ () is equivalent
to Y(B).

Let Q (resp., Q') denote the final quotient F,,,/F, in (2.16) for « (resp., B).
Since ¥ () and Y (B) are equivalent, there is an isomorphism

A:Q —Q’ (4.23)

that takes ¥(x) to ¥Y(fB). In other words, Id®A) o ¥(x) = ¥(B) o A, where Id
denotes the identity automorphism of K¥™L. Let

AJMQ) —J™MQ) (4.24)

be the isomorphism induced by A.
Let ¢y, (resp., ¢,,) denote the isomorphism from E (resp., E’) to J"(Q) (resp.,
J™(Q")) constructed in Lemma 3.2. Finally, consider the isomorphism

T:=(p))  0Aody:E—E. (4.25)

The isomorphism ¢, takes the filtration on E obtained from (2.16) to the fil-
tration (3.9) of J*(Q) and the same for ¢/,. Furthermore, A evidently takes
the filtration (3.9) of J™"(Q) to the corresponding filtration of J"(Q’"). There-
fore, the isomorphism T in (4.25) is compatible with the filtrations. It is easy
to check that T takes the connection V to the connection V'. This completes
the proof of the lemma. |

Corollary 4.3 and Lemma 4.4 combine together to give the following theorem.

THEOREM 4.5. The two maps ® and ¥ are bijective. Moreover, they are in-
verses of each other.
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Let o' (r,n) C A(r,n) be the subset defined by stable coupled connections
(see Definition 3.4). Similarly, let %' (,n) C %(r,n) denote the subset consist-
ing of all operators defined on a stable vector bundle.

Theorem 4.5 has the following corollary.

COROLLARY 4.6. Each of the two maps ® and ¥ defines a bijection between
A (r,m) and B’ (r,n). Furthermore, they are inverses of each other.
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