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A nonassociative algebra endowed with a Lie bracket, called a torsion algebra, is
viewed as an algebraic analog of a manifold with an affine connection. Its elements
are interpreted as vector fields and its multiplication is interpreted as a connec-
tion. This provides a framework for differential geometry on a formal manifold
with a formal connection. A torsion algebra is a natural generalization of pre-Lie
algebras which appear as the “torsionless” case. The starting point is the observa-
tion that the associator of a nonassociative algebra is essentially the curvature of
the corresponding Hochschild quasicomplex. It is a cocycle, and the correspond-
ing equation is interpreted as Bianchi identity. The curvature-associator-monoidal
structure relationships are discussed. Conditions on torsion algebras allowing to
construct an algebra of functions, whose algebra of derivations is the initial Lie
algebra, are considered. The main example of a torsion algebra is provided by the
pre-Lie algebra of Hochschild cochains of a k-module, with Lie bracket induced by
Gerstenhaber composition.

2000 Mathematics Subject Classification: 58A12, 14A22, 17A75.

1. Introduction. The differential calculus on a noncommutative algebra is
by now a classical topic (see [3, 5, 7, 11, 34] and the references therein). It is a
generalization of the differential calculus on a commutative algebra [26].

Replacing C*-algebras of functions by noncommutative algebras [6, 16, 27,
28] was essentially the birth of noncommutative geometry [33, page 4]. Al-
though Connes approach “... has had a considerable impact on mathematics
...7[29, Section 1.1, page 150], physicists rather adopted a cohomological point
of view (BRST-formalism, BV-theory, and so forth) towards what Stasheff calls
“cohomological physics” [31, 32].

The corresponding modern mathematical approach to noncommutative ge-
ometry [2, 25] is based on differential graded algebras (and more generally, on
A-algebras) as an algebraic model for a formal manifold (see [25, page 10]).
The main difference (in our opinion), in a rough stated form, is that the motto
is not to generalize functions, but rather vector fields, as it will be explained
below.

Classical differential geometry is built on the notion of space: differential
manifolds. A rough hierarchy is space, functions, and vector fields and differ-
ential forms, connections, and so forth.
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Algebraic geometry starts at the second level (functions) by considering an
arbitrary commutative algebra and then constructing the first level, the sub-
stitute for a spaceis its spectrum. A space (affine variety) is roughly a pair
consisting of a topological space and its algebra of functions.

A natural question arises: “what can be derived starting from the third
level—vector fields—and to what extent is it profitable?” [17].

A somewhat similar approach to algebraization of the basic concepts in dif-
ferential geometry and mechanics, focusing on Hamiltonian formalism of the
calculus of variations, has also been investigated in [13]. The idea of replacing
the ring of functions used for constructing such a scheme, with a Lie algebra
and a complex of Lie modules with a differential, is considered not only suit-
able for a calculus of variations, but has far reaching applications (see [13,
page 241] for details).

Another related direction of research that we should mention involves loops
and quasigroups (relaxing associativity) [22, 30]. For connections with web ge-
ometry (families of smooth foliations), see [1].

In this paper, we consider a (possibly) nonassociative algebra endowed with
an additional Lie algebra structure (A, u,[-,-]), called a torsion algebra (Defini-
tion 4.1), and a covariant calculus is defined. A torsion algebra is based on
the interpretation of its elements as vector fields with its multiplication inter-
preted as a connection. The above algebra generalizes pre-Lie algebras which
occur as the torsionless case (Proposition 4.2).

The main motivation for the above interpretation, at a formal level, is pro-
vided by the properties of the associator of a nonassociative algebra. The as-
sociator is the curvature of the Hochschild quasicomplex (Section 2) and has
the properties of the curvature of a linear connection (Theorem 3.11; see also
[10, 24]).

As a motivation for the emphasis on vector fields, at a semantic level, we
mention two sources. Physical understanding evolved from considering phase
spaces (Poisson manifolds) rather than configuration spaces. Moreover, the ac-
tual goal is to model the space of evolutions of a system. The second motivation
is the correspondence between Poisson-Lie group structures and Lie bialgebra
structures of a Lie algebra. After quantizing its universal enveloping algebra,
one has deformed vector fields, and it would be convenient to have a procedure
allowing to recover an algebra of functions from it.

In deformation quantization of Poisson manifolds, one keeps the classical
observables and deforms the laws of mechanics to account for the Heisenberg
bracket. We consider this approach as slightly conservative since the basic con-
ceptual level of quantum physics is rooted in the concepts of states (vectors)
and their evolution (operators), which does not need a concrete configuration
space. Our reconstructed functions are naturally operators on the given alge-
bra of vector fields.
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We investigate conditions on a given torsion algebra, allowing to construct
an algebra of functions (Definition 4.5), whose derivations form the Lie algebra
(A,[-,-]) (Theorem 4.12).

The reconstruction of the function algebra is immediate for the simple ex-
ample of the real line (Example 4.4).

In the associative case, it is pleasing to be able to represent in this way the
original associative algebra as an algebra of functions in our sense (Theorem
5.1), and to support the classical approach to noncommutative geometry: to
adopt a (possibly) noncommutative algebra as an algebra of functions on a
noncommutative space.

The main source of examples of torsion algebras is provided by the pre-Lie
algebra of Hochschild cochains associated to a k-module, with Gerstenhaber
composition (C*(V),3) and its associated Lie bracket (Theorem 5.2).

The paper is organized as follows. In Section 3, some well-known facts about
the Lie algebra structure on the Hochschild complex are generalized to the case
of a nonassociative algebra. Motivated by this generic example, we consider a
Lie algebra, with elements thought of as vector fields, with a multiplication (not
necessarily associative) thought of as a linear connection. In Section 4, the al-
gebra of functions is defined (second level). Conditions when the original Lie al-
gebra is obtained as a Lie algebra of derivations are considered (Theorem 4.12).
Section 5 includes some basic examples of torsion algebras.

2. The associator: an algebraic or a geometric concept? The question is
purely rhetoric since both points of view are needed to unravel this funda-
mental concept. The associator (from the algebraic point of view) may be in-
terpreted as a curvature (from the geometric point of view) or as a monoidal
structure through categorification (failure to be a morphism).

From the geometric side, the main reason for attempting to interpret an
algebra (A, u) as an algebraic model for a manifold with a connection is the
following. The associator of an algebra

a(x,y,z) = pu(p(x,»),z) —ulx,pu(y,z)), x,¥,z€A, (2.1

also denoted as (xy)z —x(yz) for short, is formally the curvature of the left
regular quasirepresentation L: (A,u) — (Endy (A),o):

x(x,y,z) = —(L(x)L(¥)—L(xy))(2). (2.2)

Indeed, at the infinitesimal (Lie algebra) level, the same map L, interpreted as
a quasi-Lie representation L : (A,[-,-]4) — (Endg(A),[,-]), defines a formal
curvature K:

L([x, 1) =2 [L(x),L()],
K(x,y) =[L(x),L(y)] - L([x,»]).

(2.3)
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Moreover, in the Hochschild quasicomplex (C*(A),d,) (Section 3), the differ-
ential d, has the properties of covariant derivative, for example, df, f=1lo,f].
Also o« = (1/2)[u,u] (the curvature) is closed, that is, a Bianchi identity holds.
(see Theorem 3.11.)

As a general rule, in the context of nonassociativity, it is natural to relax the
action requirement as well.

Now, an action (representation) of A on M is a morphism p : A — End(M),
and an associative multiplication is an action (regular left representation) A —
End(A). In the nonassociative case, we will need the following definition.

DEFINITION 2.1. A quasiaction (quasirepresentation) of A on M, in the cat-
egory of k-modules, is a k-linear map L: A — Endg(M).

A quasi-action/representation is the natural relaxation of the usual concept
since it amounts to considering the morphisms of the underlying category,
not necessarily preserving the additional structure, (e.g., commuting with the
monoidal operation).

This approach models the local aspects of differential geometry. The global
(cohomological) point of view should look at the associator, that is, the fail-
ure of a quasirepresentation to preserve the structure, as a 2-cocycle. In this
way, quasirepresentations are a natural generalization of projective represen-
tations.

More general still, via categorification, such a 2-cocycle may be interpreted
as a nonstrict monoidal structure:

Ox,y

L(xy) Lix)L(y), o(x,y)(2) =-a(x,¥,2). (2.4)
This interpretation of the associator should be understood from the perspec-
tive of the relation between non-abelian cohomology and cohomology of mono-
idal categories [18, 19, 20]. To further justify this point of view, and at the same
time stress the geometric interpretation, recall that the associator may be used
to model the monodromy of a connection [12, page 5], allowing to encode the
behavior of solutions of the KZ-equations (or of its associated flat connection)
in a modular category (see [12]).

3. The Hochschild quasicomplex. We begin by generalizing Hochschild co-
homology [14, 15] to the case of a possibly nonassociative algebra.

Although some of the simple statements and computations carry on without
modifications from the associative case (see, e.g., [23]), they were included for
the reader’s convenience.

Throughout this section, A will denote a module over a commutative ring R.
We will assume that 2 and 3 do not annihilate nonzero elements in A.

3.1. Pre-Lie algebra of a module. Consider the bigraded object C**(A,A) =
®p q=0CP 1, where
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CPA(A,A) = {f:A®" — A®" | fR-linear}, p,q=0, (3.1)

with total degree deg(f¥) = q — p. As usual, C% is identified with A®?. We
will be interested in the first column C*(A) = @,cyCPL. The grading induced
by the total degree is CP~1(A) = CP'1 (A, A) with p = 0.

We recall briefly the Gerstenhaber comp operation and the Lie algebra struc-
ture it defines on the graded module of Hochschild cochains, as initially intro-
duced in [14].

For simplicity, we will not use the language of operads (or PROPs).

If f¥ € CP(A) and g4 € C4(A), define the composition into the ith place,
wherei=1,...,p+1, by

fPoigh(ai,...,ap+q-1)

(3.2)
:fp(al!'--laifllgq(ai!'--lai+q*1)!ai+Q1--'lap+Q*l)l
and the comp operation
p+1
fPogi= Z(_l)u—l)quoigq ccpta, (3.3)
i=1
It is assumed that the composition is zero whenever p = —1. Note that the

(nonassociative) composition respects the grading. Denote by «x(f,g,h) = (fe
g)oh— fo(goh) the associator of o. It is a measure of the nonassociativity of
the comp operation.

The graded commutator is defined by

[f7,9%] = fPog?—(-1)P9gTo fP. (3.4)
It is graded commutative:
[f7,9%] = = (=DP[g7, 7] (3.5)
and the graded Jacobi identity holds:
(=DM[f,[g,h1]1+ (=D [g,[h, f1]+ (-DT[n,[f,9]] =0,  (3.6)

where F, G, and H denote the degrees of f, g, and h, respectively. It is equiv-
alent to ad being a representation of graded Lie algebras

[fv[g!h']] [[f,g]’h]+(_1)p"1[g,[f,h]],

3.7
ady ([g,h]) = [adf(g),h]+ (-1)P1[g,ads(h)]. 5

In order to give a short proof of the main properties of the comp operation, it
is convenient to introduce the following notation.
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NOTATION 3.1. We denote by fo(;, ) (g,h) the simultaneous insertion of two
functions g and h in the ith and jth arguments of f, respectively.

LEMMA 3.2. If f, g, and h have degrees p, q, and v, respectively, then
(@) foi(gojh)=(foig)oisisjhforl<i<p+landl=<j=<q+1;
(i) (fegloh—fo(goh)= ZiﬂE(i,j)(—1)(i‘1)q+(j‘1)’f°<i,j>(g,h), where
€(i,j)=1lifl<j<i<p+lande(i,j)=(-1DT"ifl<i<j<p+1;
(iii) x(f,g,h) = (1) «(f,h,g) (Gerstenhaber identity).

PROOEF. First two statements (i) and (ii) follow from a straightforward in-
spection of trees and signs. The key in (ii) is that the only trees which survive
in the associator «, built out of f, g, and h, are of the type fo(; ;) (g,h). The
supercommutativity sign (—1)9" appears when i passes over j and the order
of insertion (g before h) changes. O

To introduce pre-Lie algebras, we prefer an intrinsic definition (compatible
with [23, page 8]) to the generators and relations definition from [4]. In view
of the Gerstenhaber identity (pre-Jacobi [23, page 8]), our main example, the
Hochschild pre-Lie algebra, will satisfy both definitions (see Lemma 3.2 and
Corollary 3.6).

NOTATION 3.3. Let u € C'(A) and let u = u_ + . be the natural decompo-
sition, with

H-(a,b) = u(a,b) - (-1)"1u(b,a), (3.8)
H+(a,b) = pu(a,b) + (=1)"4u(b,a) (3.9)

the graded skew and symmetric parts of u, respectively. Alternatively, p_ will
be denoted by [, -], or just [-,-] if no confusion is expected. The associator
of p will be denoted by «,,.

DEFINITION 3.4. A (possibly) nonassociative algebra (A, u) is called a pre-
Lie algebra if (A,u_) is a Lie algebra.

LEMMA 3.5. Let (A,u) be an algebra and « its associator,
(i) Alt(xy,) =0,
(i) Alt(ox, ) =4Alt(e),
(iii) (A, ) is a pre-Lie algebra if and only if Alt(x) = 0.
If A is graded, then a graded alternation Alt is assumed in (i), (ii), and (iii).

PROOF. The proof is concluded by a direct computation. O

As previously announced, from Lemmas 3.2 and 3.5, the well-known fact
that the comp operation on Hochschild cochains defines a Lie bracket follows
immediately.

COROLLARY 3.6. (C*,0) is a (graded) pre-Lie algebra.
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PROOF. Since (f,g,h) = (-1)7«(f,h,g), we have

Alt(x) (f,g,h) = > e(f,g,h) (x(f,g9,h) — (-1)" a(f,h,9)) =0,  (3.10)

cycl

where €(f,g,h), in the graded case, is not necessarily 1. For example, €(g, h, f)
= (=1)a+mp, O

3.2. Quasi-DGLA of a nonassociative algebra. In this section, the differen-
tial structure is added and the special case of a coboundary quasidifferential
graded Lie algebra (QDGLA) is defined.

DEFINITION 3.7. A quasicomplex is a sequence of objects and morphisms
in a category s:

- 0
C-:{..._,C—ld_l,cod_,cl_,...}. (3.11)

The family of morphisms d° is called a quasidifferential.

Now assume that an element p: A® A — A of degree —1 is fixed so that
(A, u) is a (possibly) nonassociative R-algebra.

DEFINITION-THEOREM 3.8. Define the following quasidifferential as the ad-
joint action corresponding to the algebra’s (A, u) multiplication map:

du(f?) =[u, f1. (3.12)

Then (C*(A),dy,[,-]) is gDGLA, called the Hochschild quasicomplex corre-
sponding to the algebra (A,u).

Note the difference of sign when compared with [14, 15]:

dge = —=Lf,ul = (=DP[u, f1=(=DPd,f. (3.13)
As an example, for p = 1, with d = d,, and p(x,y) = xy,
af(x,y,z) =uo f(x,v,z)+ fou(x,y,z)

:u(f(xsy)!z)_u(xrf(y’z)) +f(H(X:y)sZ)—f(X:N(3’:Z))

=—{xf(y,2) - f(xy,2)+f(x,yz)- f(x,¥)z},
(3.14)

which is the usual Hochschild differential (excepting sign):
dHoch: (*1)deg'du :dGe- (3-15)

Note thatd, : C¥ — CP*1 has degreeoneand [-,-]: CP ® C1 — CP*4 is of degree
zero. Also note that duoch is not a graded derivation since it does not satisfy
the Leibniz identity (3.7).
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We state the following fact about graded Lie algebras, which is an immediate
consequence of the graded Jacobi identity.

LEMMA 3.9. Let (g,[-,-]) be a graded Lie algebra over a commutative ring
R. Then, if x is an even-degree element, [x,x] = 0. If x is odd, [x,[x,x]] =0
and ad[x x] = 2(ady)?.

If the multiplication u is associative, then (3.14) implies that
du(x,y,z) =2{(xy)z-x(y2)} =0 (3.16)

and [y, ] = 0. By the previous lemma, 2[u, [y, f11 = dipuu(f) = 0, and thus
(C*(A),d,) is a complex of R-modules.
The above particular context is captured in the following definition.

DEFINITION 3.10. A qDGLA (C*,d,[-,-]) is called coboundary if there is a
degree-zero element I which determines a degree-one element u = dI, which
in turn determines the differential via the adjoint action d = ad,.

3.3. The geometric interpretation. In the case of a coboundary gDGLA, in
the absence of a genuine multiplication, the element of degree one u may be
interpreted as the torsion and the associator « as the curvature of a formal
connection on a formal manifold (Section 2).

The motivation for the above geometric terminology comes from a formal
analogy with the corresponding notions in the context of a derivation law in
an A-module, where A is an R-algebra (see [26]), or from the context of a linear
connection V on a vector bundle, where the torsion T and the curvature F of
the total covariant derivative dV are defined as usual:

T=4d"I, T(X,Y)=VxY-VyX-[X,Y], (3.17)
F(X,Y)=[Vx,Vy]=Vixy,  (d%)’s=[F,s]. (3.18)
Here I denotes the identity tensor.

This geometric interpretation is captured in the following theorem and will
be developed in Section 4.

THEOREM 3.11. Let (A,u) be an R-algebra. Then (C*(A),d,) is a cobound-
ary quasidifferential algebra. Under the adjoint representation, its unit I corre-
sponds to the grading character

ad;(f) = —deg(f)f, (3.19)
and the associator is a 3-cocycle:

dyeey =0. (3.20)
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Moreover, the associator is formally a curvature:
dis = [w,s], (3.21)

and Bianchi’s identity (3.20) holds.

PROOF. Note first that the identity map I : A — A has degree zero. If f €
CP(A), then

ad;(f) =Tof=(=D)POf ol = f~(p+1)f = ~deg(f)f. (3.22)

Since [I, f]1 = —[f,I], the right adjoint action of the unit is a scalar multiplica-
tion by the degree map.

Obviously, d,I = [u,I] = deg(u)u = p, thus I is a unit. Now, by the Jacobi
identity, the associator is a cocycle d, = 0:

dulp,p] = [, [u,ul] =0, (3.23)

where the assumption that 2 and 3 do not annihilate nonzero elements in A is
used. The second equality follows from Lemma 3.9. A comparison with (3.18)
suggests interpreting the associator as a curvature. Then (3.20) states that the
curvature is closed (Bianchi’s identity). |

3.4. Relation with cohomology of nonassociative algebras. At this point,
we would like to note that quasicomplexes have been considered by other
authors, notably by Kapranov, who generalized the homology of complexes in
[21] (see also [8, 9]). This allows to define the cohomology of certain classes of
nonassociative algebras.

DEFINITION 3.12. An algebra (A, u) is called N-coherent if dﬁf =0.

Note that an algebra is associative if and only if it is a 2-coherent algebra,
and a 1-coherent algebra is just the trivial one y = 0.

Of course, an algebra (A, u) is N-coherent if and only if ad, is a nilpotent
element of order N.

For an N-coherent algebra, the gDGLA (C*,d,) is an N-complex, as defined
in [21], and its homology may be considered as a generalization of Hochschild
cohomology (see [21]). The specialization of the present approach to such cases
is postponed to a separate paper.

4. Torsion algebras. The Hochschild differential complex is defined for an
associative algebra with coefficients in a symmetric A-bimodule M. When relax-
ing both conditions, associativity and action requirement, one obtains formu-
las which are familiar in differential geometry, corresponding to a manifold
with an affine connection. This algebraic framework may be thought of as a
geometry of vector fields without starting from a function algebra.
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DEFINITION 4.1. A torsion algebra M = (C,D,[-,-]1¢) is a k-algebra (C,u)
together with a Lie bracket [-,-]¢. Its torsionis T=D_—[-,-]¢,

T(X,Y)=D(X,Y)-D(,X)-[X,Y]le, X,YeC, (4.1)

where D = D, +D_ is the decomposition of D into its symmetric (quasi-Jordan)
and skew-symmetric (quasi-Lie) parts. A morphism of torsion algebras is a k-
linear map preserving both algebra operations.

The notion of a torsion algebra is a natural generalization of the notion of
a pre-Lie algebra (Definition 3.4).

PROPOSITION 4.2. The torsionless algebras are precisely the pre-Lie alge-
bras.

PROOF. If T =0, the Lie bracket is given by D_, and therefore, according to
Definition 3.4, (A, D) is a pre-Lie algebra. O

This generalization includes the most important classes of algebras.

Associative algebras, with the usual Lie bracket [x,y] = xy — yx, are pre-
Lie algebras, and therefore torsion algebras, with T = 0. Lie algebras (C,[-,-]),
with D = (1/2)[-, -], are again torsion algebras with zero torsion.

Poisson algebras (with compatibility between D and [ -, -]) and Gerstenhaber
algebras (noncommutative Poisson algebras) can be interpreted as torsion al-
gebras in several ways (see Section 5).

We think of the Lie algebra part (C,[-, -]) of a torsion algebra as a Lie algebra
of vector fields on a formal manifold, with the multiplication D interpreted as
a formal connection. The main issue (addressed later on) is the possibility
of constructing an algebra of functions supporting this algebraic model of a
manifold endowed with a connection.

EXAMPLE 4.3. Obviously, any manifold V with a connection V defines a tor-
sion algebra. Take C as the Lie algebra of vector fields on V and interpret the
connection as a nonassociative multiplication D(X,Y) = VxY. In this geomet-
ric example, the torsion tensor (3.17) agrees with the torsion in the sense of
Definition 4.1.

To reconstruct the algebra of functions from the torsion algebra is an easy
matter when the topology is trivial.

EXAMPLE 4.4. If V is the real line, then the Lie algebra of vector fields Xy =
f0o: can be identified with (C*(V),[-,-1), where [f,g] = fg' —gf’. Also any
connection D has a canonical Christoffel symbol I and

Drg=f(g +gT) (D=d+T). 4.2)

4.1. A meta-notation. Denote by (C,u) apossibly nonassociative k-algebra,
where k is a ring. We will write DxY = D(X,Y) in order to emphasize the
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geometric interpretation. Basic definitions for the usual algebraic model are
assumed following [26]. The prefix .t will be used with notions referring to the
formal context (moncommutative space), and the prefix s will be used to refer
to the usual notions in the context of a geometric example, for example, on a
manifold V.

In the geometric world, functions can be identified as k-endomorphisms
(multiplication of vector fields by functions) for which the connection is linear
in the first argument.

4.2. The algebra of functions. We define functions in such a way to ensure
that our connection is linear with respect to function multiplication in one
argument as the annihilator of the left commutator of the multiplication.

DEFINITION 4.5. Let (C,D,[-,-]¢) be a torsion algebra. Its elements are
called Jt-vector fields. The set of Jl-functions is

A={p €Endi(C) | Dgx)Y = p(DxY)}. 4.3)

The multiplication of Jl-functions is the natural composition of k-endomor-
phisms in End (C).

Note that the multiplication of .(-functions is an internal operation

D(¢>°lﬂ)x = D<1>((le) = d)DlI/x = pYDy (4.4)

and that the set of Jl-vector fields C is a left A-module.
The multiplication D defines a k-linear map

D:C — Endy(0), 4.5)

called the left regular quasirepresentation of (C,D), as a nonassociative alge-
bra.

We will test the notions just introduced against the simplest geometric ex-
ample: the real line.

EXAMPLE 4.6. In the context of Example 4.4, multiplication of vector fields
C = C*(V) by functions is just the regular left representation L : C*(V) —
End(C*(V)) of C*(V) (in the usual sense):

(fXg) = f(gd) = (fg)0 = Xyg. (4.6)

Moreover, the .l-functions A are naturally identified as «-functions C* (V).
Indeed, if ¢ € Endg (C) left commutes with D:

Dgr)g = (Drg), 4.7)
then by (4.2),

b (g +gD) = Pp(f(g' +gD)). (4.8)
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But it is clear that g’ + gI' = h has a solution for any h € C* (V). Thus ¢(fh) =
¢d(f)h,so p(h) =¢(1)h and ¢ corresponds to left multiplication by ¢ (1).
We note that ¢ is a function if and only if Do = Lg o D, where

L :Endy(C) — Endy (Endy (C)) 4.9)

is the regular representation of the associative algebra (Endy(C),e). In other
words, D intertwines ¢ and Ly:

Dop=LgoD. (4.10)

To interpret Jl-vector fields as derivations on the algebra of functions A, an
action must be defined appropriately.

LEMMA 4.7. Let X € C and ¢ € A. Then any two of the following conditions
imply the third:
(i) the action of C on functions is defined by

(X-d) (V) = [X,p(V)]c-p(IX,Y]c), YeC (4.11)
(ii) D is a derivation law:
Dx(¢Y) = (X-Pp)Y +$pDxY, X-¢=[Dx,o]; (4.12)
(iii) the torsion is A-bilinear.
PROOF. Note that the torsion T is skew-symmetric and
T(X,¢Y) =Dx(¢pY)-Dyy X —[X, Y]
= {Dx(¢Y) -~ pDxY = (X - )Y} + T (X,Y) (4.13)
+{(X-P)Y+[X,Y]-[X, Y]]
Now it is clear that any two conditions imply the third:
T(X,¢Y)-¢pT(X,Y) = {Dx($Y) - pDxY - (X- )Y}

(X )Y+ PIX, Y]~ [X, pY 1. s

We will adopt the second condition in Lemma 4.7 as a definition for the
action of an .il-vector field on an J(-function.

DEFINITION 4.8. An .l-vector field X € C acts on an .(-function ¢ € A by
X-¢ =[Dx,]. (4.15)

Note that, defined in this way, the action measures the failure of D to be
right A-linear. Any X € C is a candidate to the status of “vector field,” thatis, a
derivation on the algebra of functions, except that X - ¢ need not be a function
at this point.
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PROPOSITION 4.9. The Jl-vector fields act as external derivations on A:
X-(poy)=X-P)loy+yo(X-y¢), XeC, P, €A (4.16)
PROOF. If ¢ and y are .l-functions, then

(X-(poy))Y =Dx(p(p(Y)))—(poy)DxY, win
4.17
(X-p)ow(Y)+do(X-@)(Y)=Dx(p(w(Y)))-p(w(DxY)). O

For X - ¢ to be again a function, so that elements of C act as derivations,
note the following alternative.

LEMMA 4.10. The following conditions are equivalent:
(i) forany X € C and ¢p € A, X - ¢ is an M-function;
(ii) the associator « of D is A-linear in the first two variables.

PROOF. Recall that the associator is
x(X,Y,Z) =(XY)Z-X(YZ) =DpyyZ—-DxDyZ, (4.18)

where multiplicative notation was alternatively used. The following are equiv-
alent:

Dx.¢)vZ =(X-¢p)DyZ,

Dpy¢yZ —¢DpyyZ = Dx(¢pDyZ) —pDxDy Z,
(Xop(Y))oZ-Xp(YoZ) = Pp(a(X,Y,2)),
(Xedp(Y))oZ-Xo(p(Y)oZ)+Xo[Pp(Y)oZ-P(YoZ)]=p(x(X,Y,2)),
x(X,p(Y),Z) +Xo[Dp)Z - p(DyZ)] = p(x(X,Y,2)).

(4.19)
Since
DpyyyZ =DepxyZ = ¢ (DpyyZ), (4.20)
the linearity of the associator in the first variable is clear:
x(pX,Y,Z) :DD¢XYZ—¢>(DXDYZ) =¢a(X,Y,Z). (4.21)
A direct computation proves the A-linearity in the second variable:
«(X,¢Y,Z) =DpypvyZ —DxDyyZ
=Dpy¢yZ —Dx(PpDyZ)
=D(x-¢)v+¢px1)Z— (X - P)DyZ+ pDxDyZ) (4.22)
=¢(DpyyZ —DxDyZ)
=¢ux(X,Y,Z).
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In order for the reconstruction of the first level (function algebra) to be
complete, an additional assumption is needed. With the above lemma in mind,
we suggest the following definition.

DEFINITION 4.11. A torsion algebra .l = (C,D,[-,-]¢) is called regular if
the torsion and the associator are A-bilinear in the first two variables.

Since Lemma 4.7(ii) holds by definition in a torsion algebra, any of the other
two imply the third. Now we can easily prove the following theorem.

THEOREM 4.12. LetM = (C,D,[-,-]¢c) be a regular torsion algebra and A its
algebra of functions. Then, for all X,Y € C and ¢ € A an M -function,

(1) X- ¢ is an M-function;

(2) X acts as a derivation on Jl-functions;

(3) the associator of D is A-linear in the first two variables;

(4) [X,¢pY]c=P[X,Y]c+(X-P)Y;

(5) D is a connection on M: Dx(¢pY) = (X-p)Y +PpDxY;

(6) the torsion T is A-bilinear.

PROOF. Since Lemma 4.10(ii) holds by definition, (1) follows.
Again from the definition, Lemma 4.7(ii) and (iii) hold, so (2) follows.
The other statements are clear from Lemmas 4.7 and 4.10. O

4.3. Differential forms. The exterior derivative will be defined as the differ-
ential of the Chevalley-Eilenberg quasicomplex.
Let M be a left A-module with a derivation law DM : C — Endy (M).

DEFINITION 4.13. The M-valued Jl-differential forms are defined as usual:

Q" (M,M) ={w:Cx---xC — M| w alternating and A-multilinear}.
(4.23)

Then Q° (i, M) is just the alternate part of the Hochschild cochains C*(C; M)
with coefficients in M (Chevalley cochains).

To define first the Hochschild quasicomplex, consider the following C-quasi-
bimodule structure on M:

A:CxM — M, A(X,u) = D¥u, CxM
A=DM
mml \ (4.24)
piMxC—M, p(u,X) = -D¥u, MxC——5- G

where A°P is the opposite quasiaction using the signed braiding. In the asso-
ciative case with M = A, the use of the signed braiding gives M a structure of
(A, Aop) supersymmetric bimodule structure: am = —ma.

Instead of the Hochschild quasicomplex derived from the associated graded
Lie algebra (C*(C),[-,-]), with dw = [u,w] = pow — (—1)P w o u, consider the
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Hochschild quasicomplex C¥ (C;M) = Homa (C¥,M), p > —1, of the Lie algebra
(C,[+,-]¢) as a nonassociative algebra, with coefficients C-quasi-bimodule M:

dw= (-1 ((A,p)ew—(-1)*wol-,-1c),
dw(as,...,ap:2) =Aa,w(az,...,aps2)) —w([a,azle,...,aps2)  (4.25)
+o+ (=DPp(w(a,...,aps1),ap+2).
Then, foru € C-! =M and w € C,

du(X) =A(X,u)—pu,X) =2Dxu,
dw(X,Y) =Dxw(Y)-Dyw(X) —w([X,Y]c),

ddu(X,Y) = Dxydu(Y) —Dydu(X)—du([-,-1c) (4.26)
=2(DxDyu —DyDxu —Dix,y)- ) u
=K(X,Y)u.

To obtain the usual formulas in geometry, consider the alternating part A®(A;
M) of the above complex and project the differential d¢; = Altod. A quasi-
complexis obtained, (A*(A;M),dcn), called the associated Chevalley-Eilenberg
quasicomplex of C with coefficients in M.

4.4. The Lie derivative. Let Al = (C,D,[-,-]¢) be a regular torsion algebra.
Consider the A-module M = A and the corresponding differential forms Q° (JlL).
The canonical derivation law on A is

Dx¢p=X-¢. (4.27)

As usual, extend the Lie derivative defined on functions and vector fields as
a derivation on the tensor algebra commuting with contractions. It is easy to
see that it is an internal operation. For example, if w : C — A is a 1-form, then
(Lxw)(Z)=Dxw(Z)—-w([X,Z]) is A-linear.

An exterior differential on forms Q°(A; %) is defined by the homotopy for-
mula £x = dix + ixd. The usual explicit formula holds for d. It coincides with
dcn defined above.

5. Examples. We will consider for the moment only torsion algebras for
which T = 0, that is, the pre-Lie algebras (Proposition 4.2).

5.1. Associative algebras. Let (C,D) be a unital associative algebra. Con-
sider the corresponding Lie algebra structure [X,Y]¢c = DxY —DyX. Then the
torsion is T = 0. The associator is zero and (C,D,[-,-]) is a regular torsion
algebra. If ¢ € Endx(C) is a function, then Dgx)Y = ¢(DxY) in multiplicative
notation is just ¢ (X)Y = ¢p(XY). Thus, Jl-functions are left multiplication by
elements of C and the algebra of .Il-functions is isomorphic to the initial alge-
bra. The morphism C — Der(A), realizing C as derivations of A, is the usual
Lie algebra representation.
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THEOREM 5.1. Any associative algebra (C,u) has a natural structure of a
torsion algebra, which is regular. The algebra C is isomorphic with the algebra
of M-functions.

It follows that our point of view allows to represent an associative algebra
as an algebra of functions, substantiating the classical point of view of non-
commutative geometry: to generalize the commutative case of the classical
algebraic geometry by assuming that a noncommutative algebra is an algebra
of functions on a noncommutative space.

5.2. Hochschild pre-Lie algebras. Let V be a k-module and C = (C*(V),5)
the corresponding Hochschild pre-Lie algebra (see Section 3.1). Then C is a
torsion algebrawith D =sand T=D_—-c =0.

A k-endomorphism ¢ € Endy (C) is an J-function if and only if

Dgxy = ¢(Dxy) (5.1)

and an argument similar to the case of associative algebras gives ¢ = Ly,

where 1 =idy and L : C — (Endg(C),s) is the regular quasirepresentation. Note

that 5 is not associative and Liq, is only a projector on the even part of C.
Denote ¢ (1) by f. Then (5.1) holds if and only if

Dysxy = fo(Dyxy), (5.2)

that is, (fox)oy = fo(xoy) for any x,y € C*. Itis easy to see that this is true
if and only if f € C°(V), and thus the set of functions is A = C(V).
The composition of functions is a composition of k-endomorphisms:

LfsLg =Lpsg, f,9 €A, (5.3)

since s reduces to the usual composition o of k-endomorphisms of CO(V) =
End (V). Thus we have the following theorem.

THEOREM 5.2. LetV be a k-module and (C*(V),s) the corresponding pre-Lie
algebra. Then
(i) C=(C*(V),D,[-,-]) is a zero torsion algebra, where D =75 is called the
canonical connection;
(ii) the algebra of functions of C is A = (C°(V),5), that is, (Endi(V),o);
(iii) C acts through exterior derivations on A:

(x-Lg)(¥) =Dx(Ly () =Ly (Dxy), x,v,f€C, (5.4)

where L : C — Endg (C) is the regular left quasirepresentation of C.
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We note that the failure to be a regular torsion algebra comes from the A-non-
linearity of the associator. Recall that the associator is graded skew-symmetric
in the last two variables (Lemma 3.2). Thus, being a regular torsion algebra is
equivalent to & being an A-multilinear form.

5.3. Poisson algebras. Let (C,-,{-,-}) be a Poisson algebra, with D = - com-
mutative and associative, and Lie bracket [ -, -] being the Poisson bracket {-, -}.
Then (C,D,[-,-]) is a torsion algebra with torsion T = —[-, -]. Since D is asso-
ciative, its algebra of Jl-functions A is isomorphic to C, in a manner similar
to the associative algebra case. In this way, a Poisson algebra is not a regular
torsion algebra.

If D=[--]={-}, then it becomes a zero torsion algebra, but it is not
clear what the algebra (A, o) of J-functions is, and what the relation with the
multiplication of functions is.

6. Conclusions and further developments. The potential applications of
an algebraic point of view of what a manifold is include the Hamiltonian for-
malism of the calculus of variations, classical Yang-Baxter equation, and co-
homology and deformations of Lie algebras [13]. To be of interest for gauge
theory, a connection should be included in this framework.

In the present paper, we sketched such a framework and pondered on the
relation with classical noncommutative geometry, an approach based on func-
tions (observables), addressing the representation and reconstruction prob-
lem.

The implementation of the suggested approach and the investigation of its
relation to other approaches (formal pointed manifolds [25], Fuchsian differ-
ential equation and CFT [12], and so forth) are deferred to another place (and
time), possibly leading to applications suitable for the Wilsonian approach to
QFT.
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