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We give some new versions of KKM theorem for generalized convex spaces. As an
application, we answer a question posed by Isac et al. (1999) for the lower and
upper bounds equilibrium problem.
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1. Introduction. In [5], Isac et al. raised the following open problem which
is closely related to the equilibrium problem. Given a closed nonempty subset
K in a locally convex semireflexive topological space, a mapping f : K XK — R,
and two real numbers «, 8, where « < f, it is interesting to know under what
conditions there exists an X € K such that

x < f(x,y)<B, VyeKk. (1.1)

First, Li [8] gave some answers to the open problem (1.1) by introducing and
using the concept of extremal subsets. Then Chadli et al. [1] gave some answers
to this open problem by a method different from that Li used. Our goal in this
paper is to derive some more results in answering this problem in G-convex
spaces. In fact, we will derive some results of problem (1.1) for bifunctions that
are defined on X x X, for which X is a G-convex space.

Let X be nonempty set. We denote by 2% the family of all subsets of X, by
%(X) the family of all nonempty finite subsets of X, and by |A| the cardinality
of A e F(X).

Let Y be a nonempty set and let X be a topological space. If F:Y — 2%
is a multivalued map, then we say that F is transfer closed-valued if, for any
(y,x) € Y x X with x ¢ F(y), there exists v’ € Y such that x & clF(y’); see
Tian [14]. It is clear that this definition is equivalent to saying that ﬂyey F(y) =
NyeyclF(y).If B<Y and A c X, then we say that F : B — 24 is transfer closed-
valued if the multivalued map y — F(y) N A is transfer closed-valued. In the
case when X =Y and A = B, we say that F is transfer closed-valued on A.

Let f be a bifunction on X x Y, then f is called A-transfer lower semicontin
uous (l.s.c.) on the first variable on X if, for each (x,y) € X XY with f(x,y) > A,
there exist v’ € Y and a neighborhood U (x) of x in X such that f(z,y") > A for
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all z € U(x). The bifunction f is said to be A-transfer upper semicontinuous
(u.s.c.) on the first variable on X if —f is A-transfer l.s.c. on the first variable.
If f is defined on Y x X, then A-transfer l.s.c. (u.s.c.) bifunction on second
variable on X is defined by a similar method. It is easily seen that an l.s.c
(u.s.c.) bifunction is A-transfer 1.s.c (u.s.c.) bifunction for each A.

A generalized convex space or G-convex space was first introduced by Park
and Kim [12], and more recently, it has been generalized by Park [10]. A G-
convex space (X,D;I') consists of a topological space X, a nonempty set D,
and a multivalued map T': (D) — 2%\ {@} such that, for each A € (D) with
the cardinality |A| = n + 1, there exists a continuous function &4 : A,, — T'(A)
such thateach J € #(A) implies ®4(A;) cT'(J), for whichif A = {ag,a.,...,an}
and J = {aio,ail,...,aij}, then Aj = co{eio,...,eij}. When D = X, we will write
(X;T) in place of (X, X;T). If (X,D;T) is a G-convex space, D < X, and K C X,
then K is G-convex if for each A € (D), A C K impliesT'(A) C K. The G-convex
hull of K denoted by G-coK is the set (\{B C X : B is a G-convex subset of X
containing K}.

Notice that G-convex spaces contain most of the well-know spaces such as
topological vector spaces, convex spaces, generalized H-spaces, L-spaces, C-
spaces, and hyperconvex metric spaces (see [10, 11, 12, 13] and the references
therein).

Let (X,D;T) be a G-convex space, then the multivalued mapping F : D — 2Xis
called a KKM map if, for each finite subset A of D, we haveI'(A) < F(A); see Park
and Lee [13]. If x — clF(x) is a KKM map, then we say that clF is a KKM mabp.

2. Main results. The KKM theorem is a very important tool in the study of
the equilibrium problem. To solve problem (1.1) on G-convex spaces, we first
give some refined versions of the KKM theorem. The following KKM theorem,
due to Park and Lee [13, Theorem 1], is essential for obtaining our main results.

THEOREM 2.1. Let (X,D;T) be a G-convex space and let F : D — 2X be a
multimap such that

(1) F has closed (resp., open) values,

(2) F is a KKM map.
Then {F(z) : z € D} has the finite intersection property. More precisely, for each
N e %F(D), [ (N)N(Nzen F(2) # @). Further, if

(3) NzemCclF(z) is compact for some M € (D), then (\,cpClF(z) = @.

As a consequence of the above theorem, we obtain the following result which
is a refinement of [3, Theorem 1.1] and [7, Theorem 3.3].

THEOREM 2.2. Let (X,D;I') be a G-convex space such that, for each A,B €
F (D) with A < B, T(A) c I'(B). Suppose that F : D — 2X\ {®} and G : D —
2X\ {@} are two multivalued maps such that

(1) F(x) = G(x) forall x € D,
(2) F is a KKM map,
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(3) for some M € F (D), (\yeym CLF(x) is compact,
(4) foreach A€ F(D) withM € A, G : A — 2'@ s transfer closed-valued,
(5) foreach A€ % (D) withM c A,

cl( N G(x)) =) G(x). (2.1)

xX€A X€EA
Then \yep G(x) = D.

PROOF. Let A € (D) with M < A. Consider a multivalued map F4 : A —
2N\ {@} defined by F4(x) := clr(a) (F(x) NT(A)) for all x € A. Then F4(x) is
closed in T'(A). Also F4 is a KKM map. In fact, if B € ¥(A), then I'(B) = T'(A)
and I'(B) € UyepF(x), thus T(B) € (UxepF(x)) NT(A) < UxegFa(x). So, by
Theorem 2.1, we have

() Falx) # @. (2.2)

xX€A

Let {A; :i €I} be the family of all finite subsets of D containing the set M,
partially ordered by <. Now, for each i € I, let X; =T (A;). By (2.2),

M cly, (F(x) mXi) + @, foreachiel. (2.3)

XEA;

Take any x; € ﬂxeAi cy,(F(x)nX;).Foreachie I, letY; = {x;:j=>1, jell.
Clearly, we have that {Y; : i € I} has finite intersection property, and Y; <
Nxem ClF(x), for all i € I. Hence, by condition (3), clY; is compact. Therefore
NicrclY; = . Choose any X € ;¢ clY;. Also, for any i,j € I with j > i, we
have

Xj € ﬂ chj (F(x)ﬂXj) c ﬂ ClXj (G(x)ﬁXj)

XEA;j XEA;j
=N (G(X)OXJ')E N (G(x)ﬁXj) (2.4)
xeAj XEA;
c () Gx).
XEA;

Therefore, Y; ﬂxeAi G(x). Now, for any x € D, there exists iy € I such that
x € Aj,. It follows that

xedY,cd| () G2 |= () Gz <Gx). (2.5)

ZEAiO ZGAiO
Then X € G(x) for all x € X, and the proof is completed. O
By Theorem 2.1 and the fact that(\cp G(x) = \xep clG(x),when G is trans-

fer closed-valued, we can obtain the followmg result.
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THEOREM 2.3. Let (X,D;T) be a G-convex space. Suppose thatF : D — 2%\ {}
and G : D — 2X\ {@} are two multivalued maps such that

(1) F(x) = G(x) forall x € D,

(2) clF is a KKM map,

(3) for some M € F(D), (yem ClF(x) is compact,

(4) G is transfer closed-valued.
Then Nyep G(x) = @.

The following examples show that Theorems 2.2 and 2.3 are different.

EXAMPLE 2.4. Assume that X=R and D =N. If we defineI'(A) =co(A+1) for
every A € (D), then (X,D;T) is a G-convex space and I'(A) + G-co A. Suppose
that F : D — 2¥X is defined as

{1,2} U ((—,00nQ) ifx =1,
F(x) =14(1,+0) if x =2, (2.6)
R if x #1,2.

By taking M = {1,2} and F = G, all the conditions of Theorem 2.2 are satisfied
and (Nyep F(x) = {2}, but N,epclF(x) = {1,2}. Therefore, F is not transfer
closed-valued and so we cannot apply Theorem 2.3.

The following example is a modified form of [14, Example 1].

EXAMPLE 2.5. If X =[0,1], D =QnX,andI'(A) = [minA, 1], for every A €
% (D), then (X,D;TI') is a G-convex space. Suppose that F : D — 2% is defined by
F(x) =[x,1]nQ.If F = G, then all the conditions of Theorem 2.3 are satisfied.
But F is not KKM map and moreover for A = {0,0.5}, conditions (4) and (5) are
not satisfied.

By a method similar to that of the proof of Theorem 2.2, we can obtain the
following result which is an improvement of [2, Lemma 2] and [6, Lemma 3.1]
on G-convex spaces.

THEOREM 2.6. Let (X;I') be a G-convex space and let G-coA be closed for
each A € % (X). Suppose that F : X — 2X\{@} and G : X — 2X\ {@} are two
multivalued maps such that

(1) F(x) = G(x) forall x € X,

(2) F is a KKM map,

(3) for some M € F(X), Nxem CLF(x) is compact,

(4) foreach A € F(X) with M < A, G is transfer closed-valued on G-co A,
(5) foreachA e %F(X) withM c A,

cl( N G(x))mG-coA=< N G(x))mG-coA. (2.7)

xeG-c0A x€G-c0A

Then \yex G(x) = <.
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REMARK 2.7. (a) If, in Theorem 2.3, X is Hausdorff and X = D, then condi-
tion (3) can be replaced by the following condition:

(3") there exists a compact subset K of X such that, for each N € F(X),
there exists a nonempty compact G-convex subset Ly of X such that
Nxery CIF(x) € K.

(b) If, in Theorem 2.6, for each A € #(X), G-coA is compact, then, instead

of conditions (3) and (4) we can assume that

(3’) there exists M € %(X) such that cl((ycp F(x)) is compact,

(4") for each A € #(X) with M c A, F is transfer closed-valued on G-co A.
Then the conclusion of Theorem 2.6 holds. In this case, we obtain a refinement
of Lemma 2.3 of Ding and Tarafdar [4]. Also condition (3) of Theorem 2.6 can
be replaced by the following condition:

(3") there exists M € #(X) such that cl((yep G(x)) is compact.

(c) Example 2.4 shows that, in general, I'(A) = G-co A. Therefore, Theorem 2.6
has its own applications.

Now, by Theorem 2.2, we obtain the following result, which gives an answer
to problem (1.1).

THEOREM 2.8. Let (X,D;T') be a G-convex space such that for each A,B €
F(D) with A < B, T(A) < T'(B). Suppose that f and g are two real bifunctions
defined on X x D such that

(1) foreach (x,y)e XxD,ifx< f(x,y) <B,thenx <g(x,y)<B;
(2) foreach A€ %(D) and B < A with @ + B = A, either
() o <infyeraymaxyep f(x,y) or
(ii) Supyera)Minyeas f(x,y) <B.
For B = A, condition (i) holds, and for B = &, condition (ii) is satisfied;
(3) there exist a compact subset K of X and M € % (D) such that, for every
x € X \K, there are a point y € M and a neighborhood U (x) of x such
that for any z € U(x), f(z,v) <x or f(z,y) > B;

(4) foreach A e F(D) withM c A, g:T(A) XA — R is x-transfer u.s.c. and
B-transfer Ls.c. on the first variable onT(A);

(5) for each A € (D) with M < A, x € X and for each net (x,) in X con-
verging to x, if x < g(xx,y) < B forall y € A, then x < g(x,y) < B.

Then there exists X € X such that x < g(x,y) < forall y € D.

PROOF. Assume that F, G: D — 2% are defined by

F(y)={xeX:x<f(x,y) <B},

(2.8)

Gy)={xeX:a<g(x,y)<B}
By condition (1), F(y) < G(y) for all v € D. Condition (2) implies that F is a
KKM map, because if there exists A € (D) such thatT'(A) & UyeAF(y), then
there is a point X € I'(A) such that f(x,y) < «x or f(x,y) > B, for all y € A.
LetB={y e A: f(x,y) <a},then B=Aor &, or @ + B + A. In the case when
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B = A or B= @, we have max, ca f(X,y) < &« or minyecu f(X,y) > . If & =
B + A, then max, < f(X,y) < « and min, ea\p f(X,y) > B which contradicts
condition (2). Also, by condition (3) we have ﬂyeM clF(y) < K. Now, we show
that condition (4) implies that G : A — 2F'4) s transfer closed-valued for each
A€ F(D) with M < A. Let (x,y) be apointin '(A) XA and x € T'(A) N G(y).
Then g(x,y) < xor g(x,y) > B.1f g(x,y) < «, then there exist ' € A and a
neighborhood U(x) of x inT(A) such that g(z,y’) < «for all z € U(x). Thus,
X ¢ clya) (T(A) nG(y’)). Similarly, we can prove the case when g(x,y) > B.
Moreover if x € cl([,e4 G(¥)), then there exists anet (x;) in(,e4 G()) such
that x, — x. Therefore, x < g(x,,y) < B for all y € A, and by condition (5), we
have x < g(x,y) < B. Hence x € ﬂyeA G () and so, by Theorem 2.2, we have
Nyep G() + @. -

REMARK 2.9. (a) If in Theorem 2.8 instead of condition (4) we assume the
following condition:

(4") g is o-transfer u.s.c. and B-transfer l.s.c. on the first variable on X,
then, by Theorem 2.3 and without condition (5), we can obtain another answer
for problem (1.1). In the above case, if X = D and X is Hausdorff, then by
Remark 2.7(a), condition (3) can be replaced by the following condition:

(3") there exists a compact subset K of X such that, for every N € F(X)
there is a nonempty compact G-convex subset Ly of X such that for
every x € X \ K, there are a point y € Ly and a neighborhood U (x) of
x such that for any z € U(x) we have f(z,y) < xor f(z,y) > B.

(b) If in Theorem 2.8 X = D and G-co A is compact for any A € F(X), then
we can conclude Theorem 2.8 by replacing conditions (3), (4), and (5) by the
following conditions:

(3") there exist a compact subset K of X and M € %(X) such that, for every

x € X \K, there is a point v € M such that f(x,y) < x or f(x,y) > B;

(4") for each A € F(X) with M € A, f: G-coAX G-coA — R is x-transfer
u.s.c. and B-transfer L.s.c. on the first variable on G-coA;

(5") for each A € F(X) with M c A, x,y € G-coA, and for each net (x,)
in X converging to x, if « < g(xa,z) < B for all z € T'({x,y}), then
x<g(x,y)<B.

(c) In part (a), if X is a nonempty convex subset of a Hausdorff topologi-

cal vector space, then we can obtain a refinement of [1, Theorem 2.3] and [8,
Theorem 3.1].

THEOREM 2.10. Let (X;I') be a Hausdorff G-convex space, for any finite sub-
set A of X, and let G-coA be compact. Suppose that f, g1, and g» are real
bifunctions on X X X satisfying the following conditions:

(1) g1(x,x) =z xand g»(x,x) < B, forall x € X;

(2) for every x € X and for every A € F(X) if Ac {y € X: f(x,y) <
aor f(x,y)> B} T(A) c{yeX:igilx,y) <xorga(x,y) > B};

(3) there exist compact subset K of X and M € %(X) such that the set {y €
M: f(x,y)<xor f(x,y)> B} is nonempty for each x € X \K;
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(4) for each A € F(X) with M € A, f : G-cOA X G-COA — R is x-transfer
u.s.c. and B-transfer Ls.c. on the first variable on G-co A;
(5) for each A € F(X) with M < A, x,y € G-coA, and for each net (x})
in X converging to x, if & < f(xx,z) < B for all z € T({x,y}), then
x < f(x,y) <B.
Then there exists x € X such that x < f(x,y) < B for each y € X.

PROOF. Let F:X — 2X be defined by
F(y)={xeX:ax<f(x,y) < B} (2.9)

First, we show that F is a KKM map. Assume that there exists A € %(X) such
thatT'(A) ¢ UyeAF(y). Therefore, I'(A) contains a point x¢ which is not in
Uyea F (). Hence, by condition (2), we have gi(xo,x0) < & or g2(x0,X0) > B-
This contradicts condition (1). Condition (3) implies that ),y F(y) € K. Asin
the proof of Theorem 2.8, condition (4) implies condition (4’) of Remark 2.7,
and condition (5) implies condition (5) of Theorem 2.6. Therefore, by Theorem
2.6 and part (b) of Remark 2.7, we have ﬂyexF(y) + . O

REMARK 2.11. If,in Theorem 2.10, instead of conditions (3) and (4), we have
the following conditions:

(3") there exists a compact subset K of X such that for every N € %(X)

there is a nonempty compact G-convex subset Ly of X such that for
every x € X\ K there are a point v € Ly and a neighborhood U (x) of x
such that for any z € U(x), we have f(z,y) < xor f(z,v) > B;

(4") fis o-transfer u.s.c. and B-transfer L.s.c. on the first variable on X.
Then, by Remark 2.7(a) and without condition (5) we can obtain a refinement
of [1, Theorem 2.2]. Also if g; and g, are identical and equal to f, then we
obtain an improvement of [8, Theorem 3.1].

3. Some applications. In this section, we give some applications of Theorem
2.8 and Remark 2.9.

THEOREM 3.1. Let (X,D;T') be a G-convex space such that for each A,B €
F(D) with A € B,T(A) =T (B). Suppose that f; and g, are two real bifunctions
defined on D x X such that

(1) foreach (y,x)eDxX, if fi(y,x) <c, then g,(y,x) <c,

(2) foreach A € (D), supycrxMinyea f1(y,x) <c,

(3) there exist a compact subset K of X and M € % (D) such that, for every
x € X\ K, there exist a point v € M and a neighborhood U (x) of x such
that for any z € U(x), fi1(y,z)>c,

(4) for each A € (D) with M < A, g1 : AXT(A) — R is c-transfer Ls.c. on

the second variable onT(A),

(5) foreach A € F(D) with M < A and each net (x,) in X converging to x,

ifg1(y,xx) <c forall y € A, then g,(y,x) <c.
Then there exists x € X such that g,(y,x) <c forall y € D.
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PROOF. Define f, g: XxD — Rby f(x,y) = /1% and g(x,y) = e91 ),
If « =0 and B = e, then it is easy to see that all of the conditions of Theorem
2.8 are satisfied. Therefore, there is a point X € X such that 0 < g(x,y) < e®
for all y € D, thatis, g,(y,x) <c forall y € D. 0

COROLLARY 3.2. Let (X,D;I') be a G-convex space such that for each A,B €
F(D) with A < B,T(A) <T(B). Suppose that @ and @ are two real bifunctions
defined on X x D such that

(1) foreach (x,y) e XxD, if p(x,y) =0, then y(x,y) =0,

(2) foreach A€ & (D), infyera)ymaxyea @(x,¥y) =0,

(3) there exist a compact subset K of X and M € % (D) such that for every
x € X\K there exist a point v € M and a neighborhood U (x) of x such
that for any z € U(x), @(z,v) <0,

(4) for each A € (D) withM < A, ¢ :T(A) XA — R is O-transfer u.s.c. on
the first variable onT(A),

(5) foreach A € F(D) with M < A and each net (x,) in X converging to x,
ify(xar,y) =0 forall y € A, then y(x,y)=0.

Then there exists X € X such that y(x,y) =0 forall y € D.

PROOF. It is enough in Theorem 3.1 to set ¢ =0, f1(y,x) = —@(x,y), and
g1(y,x)=-y(x,y). 0

If (X,T) is a G-convex space, then g : X — R is G-quasiconvex if {x € X :
g(x) <A} is G-convex for each A € R.

REMARK 3.3. If in Corollary 3.2 X = D, for each x € X, y —» @(x,y) is G-
quasiconvex, and @ (x,x) = 0, then condition (2) of Corollary 3.2 is satisfied.
So Corollary 3.2 improves [9, Corollary 2].

If X = D, X is Hausdorff space and G-coA is compact for any A € F(X),
then instead of conditions (3), (4), and (5) of Theorem 3.1 we can suppose that

(3") there exist a compact subset K of X and M € %(X) such that, for every

x € X \K, there exists a point v € M such that f;(y,x) > c;
(4") for each A € F(X) with M c A, f is c-transfer Ls.c. on the second
variable on G-co A,
(5") for each A € #(X) with M € A, x,y € G-coA, and each net (x,) in X
converging to x, if g1 (z,x,) <c forall z eT'({x,y}), then g, (y,x) <c.
In the above case we obtain a refinement of [2, Theorem 2], [6, Theorem 3.2],
and [15, Theorems 2.2 and 2.3].

The following corollary improves [9, Corollary 3].

COROLLARY 3.4. Let (X;I') be a Hausdorf{f G-convex space and let G-co A be
compact for all A € F(X). Suppose that Y is a topological space, T : X — 2V is a
multivalued mapping having a continuous selection f, and ¢ : X XY x X — R is
a function such that
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(1) ¢(x,v,z) is G-quasiconvex in z,

(2) Pp(x,f(x),z) =0 forall x € X,

(3) there exist a compact subset K of X and M € %(X) such that, for every
x € X\K and y €Y there exists a point z € M such that ¢p(x,y,z) <0,

(4) foreach A€ F(X) withM c A, ¢(x,y,z) is O-transfer u.s.c. in (x,y) on
G-COA,

(5) for each A € F(X) with M < A, x,z € G-coA, and for each net (x},)
in X converging to x, if ¢(xa, f(xr),2') =0 forall z’ € T({x,z}), then
b(x,f(x),z) =0.

Then there exist an X € X and y € T(x) such that ¢(x,y,z) >0 for all z € X.

PROOF. Let ¢(z,x) = @(z,x) = —¢p(x,f(x),z) for (x,z) € X x X. Then ¢
satisfies all of the requirements of Remark 3.3. Therefore, by Theorem 3.1, we
have the conclusion. O
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