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We study discrete isospectral symmetries for the classical acoustic spectral prob-
lem in spatial dimensions one and two by developing a Darboux (Moutard) trans-
formation formalism for this problem. The procedure follows steps similar to
those for the Schrodinger operator. However, there is no one-to-one correspon-
dence between the two problems. The technique developed enables one to con-
struct new families of integrable potentials for the acoustic problem, in addition
to those already known. The acoustic problem produces a nonlinear Harry Dym
PDE. Using the technique, we reproduce a pair of simple soliton solutions of this
equation. These solutions are further used to construct a new positon solution
for this PDE. Furthermore, using the dressing-chain approach, we build a modi-
fied Harry Dym equation together with its LA pair. As an application, we construct
some singular and nonsingular integrable potentials (dielectric permitivity) for the
Maxwell equations in a 2D inhomogeneous medium.

2000 Mathematics Subject Classification: 35Q51, 35Q53, 35Q55, 35Q58, 35Q60,
37K10, 37K35, 37K40.

1. Introduction. This paper develops the Darboux transformation and
dressing-chain formalism for the classical acoustic spectral problem (referred
to below just as the “acoustic problem”) and the related Harry Dym (HD) equa-
tion. It treats the problem in the same vein as it is done for the Schrodinger
operator and the related KdV (mKdV) hierarchies. The acoustic problem and
the Schrodinger operator are closely connected. This connection constituted a
base for the approach to the acoustic problem and the HD equation in a variety
of works, see, for example, Heremah et al. [8] and Dmitrieva [5, 6]. However, as
discussed below, the relation between the problems is far from being straight-
forward. This makes the acoustic problem interesting in its own right, and the
systematic exposition of the algebraic approach to it (despite the fact that the
main idea is well known and can be tracked back, for example, to Jacobi [9])
undertaken below appears to be without precedent.

The acoustic problem describes wave propagation in inhomogeneous me-
dia and, just like the Schroédinger equation, is nonintegrable for an arbitrary
potential. For applications, it is important to be able to construct integrable po-
tentials which result in solutions with given properties or asymptotic behavior.
For instance, for the purposes of transmission of information, reflexionless or
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transparent potentials are of interest. These potentials are such that the prob-
lem admits solutions which asymptote to e"??* as x — —oco and T(p)e'* as
x — oo, with the passage coefficient T(p) € C being one in absolute value.
Reflexionless potentials for the acoustic problem were recently reported in a
work by Novikov [13] which has drawn our attention to the problem.

The acoustic problem on the real line is described by the following ODE:

A

Wxx:mWEAG(X)Wy (1.1)
where, say the almost everywhere positive function € € L} .(R). Here is one
way how this equation arises in physics. Consider the Maxwell equations in a
medium without external sources with the standard notations (E,H) for the
electromagnetic field, as well as D = €E and B = kH. Suppose the medium is
isotropic but inhomogeneous, that is, €, k are scalar quantities; suppose k = 1
and € = €(x,y,z). Then
13D 108

[V,B] = c ot [V,E]=*E§, (V,D) =(V,B) =0, (1.2)
where [-,-] and (-, -) denote the vector and dot product in R3, respectively.
As usual, exclusion of the quantity B from (1.2) leads to an equation con-

necting the quantities E and D:

1 9°D

[V.IV.E=-5%5.

(1.3)
For the electric field E, one seeks E(t;x,y,z) = ei“ty(x,v,z); and taking into
account the last equation of (1.2), one obtains

(@, Ve _ w?
v( : )+Aw_ v, (1.4)

where A is a three-dimensional Laplacian.

Equation (1.1) follows if one lets € = €(x), ¢ = (0,0, y(x)), A = —w?/c?, and
u2(x) = e(x). The dielectric permitivity e(x) will be henceforth referred to
as a potential.

Alternatively, one can choose € = €(x,y) as well as ¢ = (0,0,y(x,y)). If
this is the case, (1.4) is reduced to a linear PDE:

AP = Aey, (1.5)

where A is a two-dimensional Laplacian.

Hence, studying equations (1.1) and (1.5) is of interest for continuous media
electrodynamics. A similar case can be made in acoustics, whence comes the
original name of equation (1.1). Both equations describe the transmission of
signals and are quite relevant for applications.
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For the Schrodinger operator, one of the most efficient ways of building
potentials allowing exact solutions is the powerful and at the same time sim-
ple formal method of factorization, or the Darboux transformation, alias the
dressing technique. Developing a systematic treatment in this vein for equation
(1.1) appears a natural thing to do. At the outset, we present an argument illus-
trating the lack of one-to-one correspondence between our problem and the
well-known technique for the Schrodinger equation, described, for instance,
by Matveev and Salle [11], see also Shabat [14] and Svinolupov and Yamilov
[15]. The basics are presented in Sections 2 and 3 of this paper. We focus
primarily on various algebraic aspects of the technique, such as the related
generalized Crum formulae and chains of discrete symmetries and their clos-
ing, which enable one to produce a variety of integrable potentials with desired
properties.

Novikov [13] constructs a family of so-called B-potentials for the acoustic
problem via a semiclassical solution ansatz. We show that these potentials
naturally come up as a result of a one-step dressing on “vacuum background.”
B-potentials in question possess integrable point singularities, which may raise
some scepticism regarding their genericity for continuous media electrody-
namics. However, the dressing technique enables one to construct all sorts of
potentials, including those which are neither B-potentials nor singular. We il-
lustrate it by a single act of dressing-chain closing (in dimensions one and two)
which yields regular integrable potentials (dielectric permitivity).

The acoustic problem (1.1) is also interesting from the integrable systems
viewpoint. (The references quoted to this effect represent just a tiny fraction
of the vast body of literature on the subject. In particular, we do not ad-
dress the methods for solving the initial value problems, such as the Riemann-
Hilbert and d-problem techniques.) Apart from its close connection with the
Schrodinger operator and the corresponding KdV (mKdV) hierarchy, inves-
tigated in detail by Dmitrieva [5, 6], it comes as a particular case of a di-
mensional reduction of the modified Kadomtsev-Petviashvili (mKP) equation,
see Konopel’chenko and Dubrovsky [10]. It is also known to represent the L-
equation of the Lax pair (or the LA pair) for the nonlinear HD PDE [5, 6, 8].
Despite apparent similarities, the algebraic relations between the equations in
question are quite delicate, which often results in the impossibility of finding
brute force correspondence between the solution classes of one and another.
On the other hand, the dressing-chain technique appears to reveal some of
the more subtle connections, see, for example Section 5 as well as the (brief)
discussion around (6.7) at the end of this paper.

To this effect, we illustrate the Darboux transformation technique for ODE
(1.1) by constructing an apparently new positon solution of the HD equation
from a pair of its simple soliton solutions, which appears to be unaccessible
within the above-mentioned techniques exploiting the connections between
the HD equation and the KdV (mKdV) or KP (mKP) hierarchies.
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The above-mentioned aspect of the Darboux transformation formalism,
namely, the dressing-chain closing technique, not only provides a way of find-
ing exact solutions of nonlinear equations, but also becomes a resource for
proliferation of these equations (see, e.g., Borisov and Zykov [1] or Yurov [18]),
that is, building new integrable PDEs together with their LA pairs by means of
the dressing-chain technique. This way of building PDE hierarchies appears to
be more systematic than the technique based on the Miura transformation. As
an illustration, we construct a modified Harry Dym (mHD) equation (and its
LA pair) which we have not been able to find in the literature, although it has
a remarkably simple form.

In Section 6 we turn to (1.5). The Moutard transformations for this equation
provide a simple method for the construction of exact solutions of the Maxwell
equations (1.2) with a dielectric permitivity € = €(x,y ), which in general has
a complicated singularity structure. However, a simple periodic closing of a
dressing chain, generated by the Moutard transformations, results in a regular
integrable 2D dielectric permitivity.

REMARK ON EXPOSITION. In this paper, we adhere to a somewhat infor-
mal “physical” exposition style. In particular, we avoid analyzing the issue as
for to which particular class one or another integrable potential or exact so-
lution found belongs, rather emphasizing on the consequences of the purely
algebraic or discrete symmetry structure of the method. For a state-of-the-art
rigorous mathematical exposition of the Darboux transformation technique
for general Sturm-Liouville operators, see, for example, Gesztesy and Teschl
[7]. The discrete symmetry is essentially based on a single formula (2.9); simple
as it may be, it has remarkable consequences.

2. Discrete symmetries of the one-dimensional acoustic problem. The
Darboux transformation, namely, the so-called single commutation technique,
was set forth in Darboux [4] and considerably developed by Crum [3]. It is
based on an observation which makes use of the existence of specific discrete
isospectral symmetries of the equation underlying the Sturm-Liouville opera-
tor and is standard in the theory of integrable PDEs, see, for instance, [11, 14]
and the references therein.

Dealing with (1.1), one starts out with a well-known nonlinear substitution
owing to which the solutions of (1.1) are usually obtained in the parametric
form [5, 6]. Let

u(x)=v,(), x=v(y). (2.1)

This reduces equation (1.1) to

Yyy =Up, +Ay, (2.2)
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with U = vy, /v,. The above quantity U(y) will be referred to as a potential as
well as the dielectric permitivity function €(x) = 1/u2(x) mentioned earlier.

To this effect, we would like to emphasize the following two important is-
sues.

(1) In spite of the fact that (2.2) is easily reducible to the Shrédinger operator,
from the point of view of finding integrable potentials, this connection is not
trivial. We address it in more detail.

A formal substitution

Y — JUp (2.3)

transforms (2.2) into the stationary Schrodinger equation

Yyy = (A+V(¥)y, (2.4)

where the potential V() is related to the potential U(y) of the acoustic prob-
lem (2.2) via

U?-2U,

V="

(2.5)
Linearizing (2.5) with a substitution U = —2p,,/p, one sees that p(y) in turn
satisfies (2.4) with A = 0.

The Darboux transformation for (2.4) is well known, and, at the first sight, it
may appear that developing an independent technique for the acoustic prob-
lem (2.2) is superfluous, as one can generate integrable potentials V for the
Schrodinger operator. However, integration of the Ricatti equation (2.5) pres-
ents a problem of its own, and the following argument shows that there is
no one-to-one correspondence between problems (2.2) and (2.4), as far as the
potentials are concerned.

Indeed, let U(y) be a specific potential for the acoustic problem (2.2) not
depending on any free parameters. From (2.5), one can (uniquely) get the
Shrodinger potential V() and further substitute it into (2.4). In order to re-
construct the initial potential U(y), (2.4) should be solved with A = 0. Let the
solution be p = p(y,C1,C2) depending on a pair of constants C;,C>. One of
these constants, say Cp, plays the normalizing role corresponding to scaling
p — C1p and can be omitted. However, the restored potential U = U (y, () will
inevitably depend not only on 7, but on the free parameter C, as well. Hence,
a single potential in the Shrodinger operator generates the whole family of po-
tentials for the acoustic problem, and in order to single out a specific potential
for the latter, one would have to subsequently develop some selection mecha-
nism by studying the sequence of maps U(y) — V(y) - U(y,C2) — U(y).Itis
not clear how to do it; on the other hand, such a necessity gets bypassed if one
develops the Darboux transform formalism directly apropos of the operator
(2.2) without using (2.4). The simple procedure is exposed below in the form
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suitable for exposing the main results of this paper, which are various new
families of integrable potentials.

(2) On the other hand, (2.2) arises as a result of dimensional reduction of
the L-equation for the 2 + 1 mKP equation, that is, by substituting ¢ (z,y) —
e~ @A/9zy(y) into

TW.+Wyy +Vipy =0, (2.6)

The mKP equation was studied in depth by Konopel’chenko and Dubrovsky
[10] as an initial-value problem within the nonlocal Riemann-Hilbert and o-
dressing techniques and the Miura transformation between the equations mKP
and KP. A variety of integrable potentials, including the transparent ones, was
constructed in [10]. However, these potentials do not appear amenable to the
dimensional reduction in question, namely, the present work gives a consider-
ably more general way to integrate the acoustic problem and HD equation (in
the same fashion the solutions of the mKP equation obtained in [10] do not
generate the solutions for the HD equation in a tangible way). On the other
hand, the results of this paper can certainly be interpreted as plane solutions
of (2.6).

Following Shabat [14], we seek elementary discrete symmetries of (2.2) ef-
fecting the change

v — V= fy,+gy, (2.7)

for some A-independent functions f and g of y.
One easily verifies that there are three formal distinct discrete symmetries
of the type (2.7) for (2.2). They are

w— v =¥ v— -1
v v (2 8)
p—yo =P o [ '
y Vy
. (1)_W1Wy_
Y W W1y W,
2
v, — v =vp (ﬁ) , (2.9)
Yy b4 y Wl,y
U—UD=U+2DIn-2-
Wl,y

In the latter equation, ¢/; = @1 (y,A1) is a particular solution of (2.2) with the
spectral parameter value Ay, further referred to as a prop solution D = 0, and
W1,y = Dy;. We assume, following the above remark on exposition, that all
the necessary positivity or monotonicity properties of the quantities u,v, 1,
and so forth are satisfied in order that the final expressions not be ill defined,
as it is the case in the series of ensuing examples.
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The former two symmetries (2.8) define the new quantity UV = v{) /v{" in
a way independent of any solution ¢ (y,A) of (2.2). These symmetries arise as
a particular case of (2.7) as the result of gauging corresponding to the choice of
f or g alternatively zero. These symmetries have a trivial kernel in the solution
space of (2.2). According to the terminology of [14], we call the symmetries (2.8)
T-symmetries, sometimes referred to as Schlesinger transforms. (In the con-
text of soliton solutions, the T-symmetries play the part of explicitly invertible
Béacklund transforms, see, e.g., [15].) On the other hand, the transformation
(2.9) alias the Darboux transformation, which [14] calls an S-symmetry, does
have a nontrivial kernel on the solution space of (2.2) (one can let ¢ = ; in
the first equation of (2.9) and get zero). This property thereof is essential.

We use the common term dressing for the application of transformation
(2.9) to a triple (y,v,U), with the resulting triple (¢, v® UWD) being re-
ferred to as the dressed one. Despite a nearly trivial countenance, the Darboux
transform (2.9) in principle enables one to engineer potentials with arbitrary
discrete spectra ad hoc. Indeed, suppose it is possible to solve (2.2) formally
(namely, obtaining among others some “nonphysical” solutions unbounded as
|y| — o) for some potential U and all A € R. Suppose ;(y,A;) is such a
solution. We denote its linearly independent counterpart as (7, (y,A1), that is,

W = qjljdyv—yz. (2.10)
'

Dressing (1 according to (2.9), we find

~(1) _ Vy
= . 2.11
Y, Wiy ( )

Therefore, if one comes up with a nonphysical prop solution y; by requir-
ing that its derivative ¢/ , be strictly positive and rapidly growing as [y | — o,
then, in the spectrum of the dressed potential UV, there will appear a level A,
not present in the original spectrum for U. Since the principle for the choice
of the value of A; is such that this value is not to be present in the physical
spectrum for U, repeating the dressing procedure n times will result in a po-
tential U™ possessing n new prechosen levels Aj, j=1,...,n. See (3.6), (3.7),
and (3.8) in the sequel.

Conversely, the function (I/ﬁ” generates an inverse transformation (undress-
ing) to (2.9). Thus, one can as well remove some prechosen levels from the
spectrum of a potential.

3. Crum formulae and dressing chains for the classical acoustic spectral
problem. Below we present the formulae describing an n-step dressing proce-
dure for any n € N, whose analogues are known for the Schrodinger equation
as the Crum formulae [3]. We derive the target formulae (3.6), (3.7), and (3.8)
for (2.2) following the procedure exposed in [17].
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A single act of dressing (2.9) can be iterated n times to yield a triple (@™,

v™ UM), One starts out by dressing a triple (¢, v,U) = (¢, v©, U(0 ) cor-
responding to a spectral parameter A with a prop function y; = llJ1 , which
is a formal solution of (2.2) with a spectral parameter A; and a potential U©.
The resulting solution ¢V solves (2.2) with the dressed potential U (and
the same spectral parameter A). On the jth step, j = 1,...,1n, one uses some
prop solution (,Ul(,-j Y which solves (2.2) with a predressed potential UY~1 and
a spectral parameter value A; to produce the j times dressed solution ¢ and
the potential U (as well as the function v/ with UV = <’ ) > vy )). Note that
the spectral parameter A in the dressed equations for L,U(J) is the same for all
j=1,...,n

It is easy to see that the n times dressed solution ™ will have the form

™= a;Dly+(=D"y, (3.1)
j=1

with the functions coefficients a; to be found, which of course will depend on
the choice of the prop solutions L/l(J Y It follows from (2.9) that

U™ =U+2Dnay, (3.2)
for
n -1
@™ =] L D" @+ -+ (1)@,
Jj= IDWJ v
3.3)
n (IJJ 1)
(n) _ 17(0) J
u™=uU +2Dh’ln ﬁ’
Jj=1 WJ

where the ellipses in the first formula stand for the terms containing the deriva-
tives of ¢© of orders from 1 through n —1.

So far, the choice of the prop solutions wﬁi_” has been quite arbitrary. But
suppose now that the original equation (2.2) possesses n distinct formal so-
lutions y; corresponding to spectral parameter values A;, j = 1,...,n. Let
Y= (//;0) and consider the following dressing procedure (which will be further
used for the dressing chain construction):

p© @ @ e e U@
p® 0 g i el U

: : (3.4)
w0 0o ... 0 g yn-y

(/J(") 0 0 . 0 0 Um.
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Namely, for j = 1,...,n on the above diagram (3.4), every new line j + 1 is
obtained by dressing the functions from the preceding line j by (2.9) with a
prop solution tpjfjfl) marked in bold.

Zeroes, proliferating as one moves down the diagram, stem from the nontriv-
ial kernel property of the S-symmetry, and it is this property that now enables
one to find the unknown functions a;. Indeed, substitution of any y; = w}o)
for ¢ in the right-hand side of (3.1) will yield zero. Hence, the coefficients a;
satisfy a system of n independent linear algebraic equations, namely,

n
> arDfy;+ (- =0, j=1,...,n. (3.5)
k=1

Solving it by the Kramer rule and substituting the result into (3.1) and (3.2), we
end up having

~

um = U+2Dln%, (3.6)
n
that is,
~ 2 ~
A A
(n) _ Sn (n) _ Bn+l
vy vy (An> ’ (I/ An ) (37)

where A, and A,, are determinants of square n X n matrices, whereas A, 1 of
an n+ 1 xXn+ 1 matrix as follows:

Dy, --- D"yn
An: ’
Dyyn --- D"y
w1 .- D"y,
z — . .
n . .1 , (3.8)
W -0 D"y
Y D"q}
~ wi -+ D"
An+1— : :
Yn --- D"y

Note that the linearity of (2.2) makes the choice of the sign before g™
irrelevant. The obtained formulae (3.6), (3.7), and (3.8) make it possible to find
rich families of exact solutions of (1.1).

EXAMPLE 3.1 (reflexionless potentials). The easiest case is dressing from
the birthday suit, or on the vacuum background, assuming U = 0 (hence, x =
c1y +c2, u(x) = c1, where c; and ¢, are arbitrary constants). Such a natural
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rigging yields gratis all the B-potentials reported by Novikov [13]. Moreover,
the formulae for their computation derived therein turn out to be particular
cases of (3.6), (3.7), and (3.8) with merely v, = 1. For instance, y; = sinh&;
and @, = cosh&, (here n = 2, y; are constants, §; = k;(y —y;), and j = 1,2)
yield a reflexionless B-potential with a power 2/3 singularity: €® = 1/[u®]?,
where

) . 2
u® (kz sinh &, sinh & — k; cosh & cosh &, ) _ (3.9)

kq sinh & sinh & — k> cosh & cosh &,

The same (/1 and > = sinh &, yield another potential with a power 4/5 singu-
larity:

. , 2
L (kz sinh & cosh& — k; sinh &, Cosh§1> _ (3.10)

ki sinh & cosh &, — kp sinh & cosh &,

(Note that the expressions for u(? are parametric. In order to interpret the
formulae correctly, the reader is referred back to (1.1), (2.1), and (2.2). The
orders of the singularities pertain to the potential €(x), which is a zero of the
function u(x) and a singularity of the potential U(y) = vy, /v,, where the
function v (y) solves the equation u[v(y)] = v, (y).) By construction, these
potentials have only two levels A .

In addition, all the regular reflexionless potentials can be also built by for-
mulae (3.6), (3.7), and (3.8) once again by dressing U = 0. Indeed, the passage
coefficient for a regular n-level reflexionless potential can be expressed by a
well-known formula

n

Tn(p) = 1_[

j=1

ki-tv (3.11)
ki+ip

with A = ki. As has been pointed out earlier, the levels A; can be successively
removed from the spectrum by means of the inverse of the Darboux transfor-
mation (still having the form (2.9)), each application of which will kill a term
in the product. Successively applying this procedure n times for the passage
coefficients, we have

Tnp) — Tha(p) — -+ — To(p) = 1. (3.12)

This proves our assertion because the case R(p) = 0 and T(p) = 1 for the
reflection and the passage coefficient for all p is feasible with U = 0 only. It
is worth reiterating the point that the above argument owes itself to the fact
that the S-symmetry possesses a nontrivial kernel in the space of solutions of
(2.2).

Matveev and Salle [11] find super-reflexionless potentials for the KdV equa-
tion, alias positons. In the same vein, one can operate on (1.1) and (2.2). In order
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to do so, one should use formulae (3.6), (3.7), and (3.8) with n = 2 choosing
the prop solutions ; 2, respectively, as @1 (y,A;) and @1 (y,A; + ), and then
letting 6 — 0. If U = 0 and ¢; generates a single soliton potential, then (3.6)
and (3.7) define a single positon potential. Section 4 describing the positon
solutions of the HD equation contains the aforementioned computation.

In addition to B-potentials, various other interesting ones can be produced.
For instance, one can construct soluble potentials with a finite equidistant
spectrum. (The same statement applies to the (stationary) Schrédinger equa-
tion.)

One can also investigate potentials which change in a specific simple way
under the Darboux transform, for example, such that U — U + const or U —
constU. For the Schrodinger equation, the former transformation is shape in-
variant and for n = 1, it results in the harmonic oscillator potential. We develop
an analogue for the model (1.1) and (2.2) under investigation.

EXAMPLE 3.2 (shape-invariant potential). Let

2

vV =U+—
w?’

(3.13)

for a constant w. Then we can parametrically obtain the function u(x) from
(1.1) as follows:

K2 K?
u(x) = azexp<w222>, x :xof(xwzjdzexp (w222>,

(3.14)

where, k, x¢, and « are real constants and z = exp(—y/w?). The prop function
1 rendering the potential UM from U has the countenance y; = exp(—w?z)
and solves (2.2) with an eigenvalue A; = b?/w?. It is easy to verify that the
dielectric permitivity €(x) = 1/u?(x) has a second-order pole at x = xo.

The theory of the Darboux transformation for the Schrodinger equation uti-
lizes the concept of dressing chains of discrete symmetries and their closing.
The work of Veselov and Shabat [16] elucidates how the dressing-chain clos-
ing method can be used in order to obtain various potentials with meaningful
mathematical physics. Namely, a simple closing procedure leads one to the
harmonic oscillator potential (resulting also in a shape-invariant change of po-
tential). A more complicated closing scheme results in finite-gap potentials as
well as the fourth and the fifth Peinleve equations, see [16].

Dressing chains can be written out for (2.2) as well. We introduce a sequence
{fn}n=1 of functions as follows:

fau=Dlng{" Y, (3.15)

with the quantity (,U,({“” as it has been introduced in diagram (3.4) (where it

appeared in bold). In particular, it corresponds to the pre-chosen value A, of
the spectral parameter.
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One can verify by hand, starting from n = 1, that
n
U™ =U-2DIn[[f;. (3.16)
j=1

Besides, direct substitution shows that f), satisfies the equation
fa+fa=U" fr = Ay, (3.17)

where f' = D f. The two latter relations imply the recursion connecting f, and
fn+1 as follows:

(fnfn+l)l = fnfn+l(fn _fn+l) +)\n+1fn_2\nfn+l- (3-18)

Equation (3.18) represents a dressing chain for the acoustic problem.

In a way analogous to the theory of dressing chains for the Schrodinger
equation [16], we are interested in T-periodic chain closing, namely, imposing
the condition fy,,+1 = f,, for an integer T > 1. We will consider here the easiest
case T =1.

EXAMPLE 3.3 (regular potential). Given the spectral parameter values A,
one obtains a one-parameter family of potentials indexed by a constant c:

(A1 =A2)° Y2 +2c(Aa— A1)y +6A1 — 22 — 2
2[(A1=2A2)y +c] '

If A, =3A; > 0 and ¢ = 0, we can express the function u(x) parametrically:

U= " (3.19)

x(y) = g}irf((xy), u(y) =exp(-a?y), (3.20)

where 2 = —A/2 > 0.

It is known that for the Schrédinger equation, a nontrivial chain closing op-
eration with T > 1 results in finite gap potentials [16]. Such potentials for the
HD equation are due to Dmitrieva [5]. A close analogy between the Schrodinger
equation and the acoustic problem (see [2, 6, 8]) suggests that one can expect
results similar to those of [16] apropos of the analysis of higher-order chain
closing for T > 1. We expect that potentials built in such a way can have in-
teresting physical applications, such as a model of wave propagation in media
whose dielectric permitivity is a periodic function of a single spatial variable.

4. HD equation. The 1+ 1 HD equation
Ut :usuxxx+3um (4.1)

with some real constant 8, has been studied quite extensively since the late sev-
enties, see, for example, [5, 6, 8] and the references therein. It arises in the study
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of evolution equations solvable via the spectral transforms method based on
the string rather than the Schrodinger equation. The principal approach to it
has been based on its relation to the KdV, mKdV, and other more classical
hierarchies of integrable PDEs [5, 6]. However, as was mentioned above, this
relation is not straightforward, and the direct approach developed herein in
principle enables one to produce a wider range of solutions of the HD equation.
As an example, we construct a simple positon solution below.

The acoustic problem (1.1) is the first equation in the LA pair for the HD
equation (4.1), with the full pair being

A
Wxx = ﬁ‘p; Y= (4Au+B)Px —2Aux . 4.2)

The coordinate change (2.1) in the presence of time dependence becomes

t—t, x—uvyt), (4.3)
thus
1 4
Oy — an, 0 — Or— an. (4.4)

After this change, (4.2) becomes

v v+ 2Av
Wyy = 2Py +AY, Y= (t—B+4A)wy——”w, (4.5)
Vy Vy Vy
and the HD equation (4.1) transforms to
Uy (Vi Vyy = Uyt Vy) + 305, + Uy (Vay Uy — 4035 Vs y + BUy) =0, (4.6)

with the notations vs, and v4, for the partial derivatives in y of order 3 and
4, respectively.

The goal now is to extend the Darboux transformation (2.9) for (2.2) alias the
first equation in (4.5) so that it agrees with the second equation in the LA pair.
One just includes the t-dependencies in (2.9). At this point, it only provides
the value of the partial derivative

2
m_ (Y1) 2
vl —(Wl’y) = A, D) 4.7)

rather than the dressed quantity vV (y,t) of interest.
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LEMMA 4.1. The Darboux transformation (2.9), (4.9) is an S-symmetry for
the LA-pair (4.5), and therefore for the HD equation (4.6).

PROOF. Let vé” = B(y,t) be unknown and we assume that v (! satisfies the

second equation of the pair (4.5) with the function ¢! dressed according to
(2.9), where the quantities (A, ) remain the same. One can express the un-
known quantity B as follows:

2

4

B=( d ) (B+4pvy + v —20yUy) + V2 4y g (4.8)
(Ijl,y W],y

and verify that B, = A;. It follows that
v (y,t) = JAdy +Bdt, 4.9)

with a closed one-form under the integral. O
This enables one to construct exact solutions for this equation.

EXAMPLE 4.2 (single soliton solution and positon solution). Letv =y, A; =
k2, and @1 (v,t,k) = sinh[¢p(y,t,k)] with ¢p = k(v + (4k%+ B)t). Then, by (4.9),
one has

v = %(¢—tanh¢)—(4+ﬁ)t. (4.10)

The function v! (y,t,k) determines a single soliton B-potential

v
v = =%, (4.11)
v
y
mentioned in Section 3.
The single positon potential is obtained from two distinct soliton solutions
W1 (y,t,k) and @, (y,t,k+06), used as the prop functions ¢, in formulae

(3.6), (3.7), and (3.8) with n = 2, taking the limit as 6 — 0; namely,

_ 2
v}(/z) :vy((pl,yyk(l/l,y ‘l/l,yy(lll,yk) ’ (4.12)
YiykP1 =Py Pk

where the subscript k means differentiation by k. Taking ¢/, explicitly as the

hyperbolic sine in the previous example results in

. 7\ 2
L@ _ k4(smh(2¢)+2¢> , 4.13)

Y sinh(2¢p) —2¢

with ¢ = k(y + (12k% + B)t).
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5. Modified HD equation. It is well known that the dressing formalism en-
ables one to produce hierarchies of integrable PDEs. Borisov and Zykov [1]
proposed a technique for proliferation of integrable equations which they ap-
plied to the KdV and the Sine-Gordon (SG) equations. The technique is based
on the discrete symmetries dressing-chain closing. The main idea of the ap-
proach is as follows. The equation (for illustration purposes we take the KdV
equation) is written as a compatibility condition of a pair of equations, further
denoted as L; and A;. Each of these equations is quadratic in the auxiliary
field. Using invariance of the pair with respect to the Darboux transformation
(which is viewed as a discrete symmetry), a second pair L, and A, of equations
is built. Excluding the potentials from L, and L., and A; and A5, it is possible
to obtain two equations, which Borisov and Zykov [1] call an x and a t chain,
respectively. (We further use the notations Cy and C; instead.) If a potential is
excluded from L; and A, one ends up with an mKdV equation. The equations
Cx and C; can be converted into the LA pair for the mKdV equation in two
ways, with the Darboux transformation being already known.

This procedure can be repeated, producing new equations with their LA
pairs. In this vein, the m? KdV and m?® KdV equations were obtained. The for-
mer becomes the exponential Calogero-Degasperis equation [2] after an expo-
nential change, the latter contains an elliptic equation of the same authors.

In spite of its simplicity, the technique described is very powerful. This can
be illustrated by the following examples. First it was claimed in Mikhailov et al.
[12] that the m"N KdV equations with N =0, ..., 3, together with the Krichever-
Novikov equation, exhaust (modulo a contact transformation) all the integrable
equations of the form u; + Uxxx + f(Uxx,Ux,u) = 0. Second, applying their
approach to the SG equation, Borisov and Zykov [1] have succeeded in coming
up with a new nonlinear equation already on the second step. This equation
has a nontrivial Backlund transform, admitting an interesting 2rr-kink-shelf
solution.

The same technique was shown to be applicable to the study of considerably
more difficult (1+2)-dimensional nonlinear PDEs. For instance, in [18], the pro-
liferation procedure was successfully adapted to the Kadomtsev-Petviashvili
and Boiti-Leon-Pempinelli equations.

We apply this formalism to the HD equation. First note that the LA pair for
(4.6) can be written as a system of two Ricatti equations:

gy =-Ag*-Ug+1,

v+ B

VitB g, oD

gt=A<2ny 74/\)g27<2ﬂ+42\U)g+
¥

Vy

The second summand in the right-hand side of the second equation has a term,
denoted as v, representing a fairly long expression which can be derived
from (4.6). The function g = g(y,t) is connected with the solution ¢ of (4.5)
as g = Y, /. Excluding the function v from (5.1) and returning to the old
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variables via x = g and u = g,, we obtain an mHD equation:

U = U U3y + 33U UL U — 3AZx U2

Bu? (uuax +ud)  6uluy  3u?(l-u?) (5.2)
- + + .
X X2 x3

(By analogy with the mKdV equation in [1], we call (5.2) the mHD equation.) As
one can see, this equation has a different countenance than the HD equation.
However, omission of all the summands but the first one in the right-hand side
of (5.2) yields the HD equation (4.1) with § = 0. Note that (5.2) can be rewritten
quite nicely in new variables x = 1/z, u(x,t) =0(z,t):

1

-1/2 3)\2 3 3 9 2
(9 )t: 74‘2 EZ 93z+§Z 922+9292+39—3 . (53)

The formula (5.3) can be simplified even further by changing
0=e%nE)+1, y=logz. (5.4)

As the result, it becomes
B _ _ 1
[(e 2n+1) ”2]t =3A% §+§e§(n3§—n§). (5.5)

However, we will be considering the mHD equation in the form (5.3). Note that
in the stationary 0; = 0 case, it reduces to a linear ODE!

The dressing chain method produces not only (5.3), but also its LA pair. It is
constructed as follows. Return to the chain (3.18) and let f,, =1/g, fu+1 =Y,
Ay = A, and A, 1 = u. Considering u as a spectral parameter, one can see that
(3.18) can be viewed as an L-equation of the LA pair for (5.3). One should also
define the second, nonstationary chain C; for the functions g, (in terms of the
dynamical equation in (4.5)) and build the A-equation. Omitting the lengthy
but straightforward computation, we present the LA pair for (5.3), written in
the variables t and z:

u > 1 1 u 1
\YZ=22\/§\Y +<E+z\/§_z3\/?)\y_22\/§’ (5.6)
¥; = ua¥?+b¥ +c,

where
A® 2 3 14
a:—4u+2/\—22 —2AVO0+(0-1)zc+2z 92+§z 02,

h=4(27272\/5)u+525922+22492+ (97392271)23
(5.7)

2 3
30220, +30(1-0)z - 2N 4 (5> ,
zZ z

2
l24922 -32%0.+ (1 —39—2\/5)22 —2A+ (%) .

c=4u—2
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Note that the spectral parameter in (5.6) is u, whereas A enters the nonlinear
equation (5.3). As one can see, the LA pair for (5.3) also has the form of a pair of
Ricatti equations. These equations can be simultaneously linearized in order
to represent (5.3) as a compatibility condition for two linear equations, as it is
done in the theory of solitons.

We will not proceed further with the mHD equation. To conclude this section,
we would like to repeat the statement that the exact solutions of (5.3) can easily
be found via the dressing technique, and this procedure can be extended in
order to produce the mHD equation and its LA pair. It is worth emphasizing
that equations HD and (5.3) are members of different hierarchies. Discrete
symmetries enable one to establish connections between different integrable
equation hierarchies in a way apparently more systematic than trying to guess
the Miura transformation.

6. Moutard transformations. We devote this last section to (1.5) which has
been obtained from the Maxwell equations (1.2) in the case of an isotropic but
inhomogeneous in two directions (x,y) medium.

Clearly, a PDE (1.5) is harder to investigate than an ODE (1.1). Nevertheless,
its analysis in terms of the Darboux transform (2.9), known also as the Moutard
transformation [11], is quite similar to its ODE cousin. Below, we present the
relevant formulae without the derivation details.

LEMMA 6.1. Lety = @ (x,y) and ¢ = ¢p(x,y) be two particular solutions of
(1.5), that is,

AP —Aey = Ad —Aep = 0. (6.1)

The following transformations represent an analogue of (2.9):

Oly, ¢]

b € — e =€—-2AAIn¢, (6.2)

w - w(l) —
where
oLy, ] = deueuvwavw—wam). (6.3)

with the following tensor notations: p € {1,2}, x, € {x,y}, 0y = 0/0xy, &uv IS a
fully antisymmetric tensor with €1, = 1, and summation is implied over repeated
indices.

PROOF. The proofis a direct computation. Choose the function ¢ as a prop
solution. Note that a one-form, which is being integrated in the formula (6.3)
is closed in the case when ¢ and ¢ are solutions of (6.2). Hence, the shape of
the contour of integration I' in (6.3) is irrelevant.
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Then one can verify by direct substitution of (6.2) and (6.3) into the formulae
(6.4) below that the dressed function V) satisfies the dressed equation (6.1)
(with the potential ¢V (x,y) and the same spectral parameter value A). O

The Moutard transformation (6.2) can be iterated several times and the result
can be expressed via Pfaffian forms [11]. Instead, we direct our interest to the
Maxwell equations (1.2). A straightforward computation (recall, A = —c?/w?)
yields the expressions for the dressed electric and magnetic fields E(V and BV:

ED = piwt (0,0,(]j(l)),

c .
BY = e (=i, wit),0), (6.4)
DD = eMWED,

On the basis of (6.4), one can build a variety of exact solutions of the Maxwell
equations.

EXAMPLE 6.2 (singular potentials). As asimple example, we dress € = 0. This
is not quite a medium, but one can easily proceed with formal calculations (6.2),
(6.3), and (6.4) which result in a new “medium” whose dielectric permitivity
€W (x,y) and the stationary component of the field ¢/} are as follows:

e — 78702 a'(z)b'(2)
C w? (a(z) +b(2)?’
(6.5)
P = a(z)B(z) —a(z)b(2) +&(z,2)
a(z)+b(z) ’
where
§(2,2) = [dz(a(2)a'(2)~a ()« (2)) + [ d2(B (2)b(2) b (2)B(2)),
(6.6)

a(z), x(z), b(z), and B(z) are arbitrary functions of z = x +iy, Z = x —iy.
Note that the function ¢V from (6.2) and (6.4) provides in fact a general so-
Iution of the dressed equation, for it is described in terms of two arbitrary
functions «(z) and B(Z). To ensure that the quantities found correspond to
a physical nonabsorbing medium, one should require that the dressed dielec-
tric permitivity function € be real. This imposes an extra restriction to the
quantities a(z) and b(Z), namely, b(Z2) = a(z). Generally speaking, the func-
tions €'V and ¢! from (6.5) will have singularities along certain curves in the
(x,y)-plane.

The reflexionless B-potentials for the one-dimensional problem (1.1) (see

Example 3.1) possess point singularities on the real line (corresponding to ze-
roes of the function u(x)). Clearly, their 2D-analogues, such as (6.5) for (1.5),
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allow a much more diverse structure of singularities on the real plane. On the
other hand, not requiring that the quantity €'’ be real, one obtains an absorb-
ing medium which may not be devoid of interest for physical applications.

In conclusion, we study a dressing chain generated by the Moutard trans-
formations (6.2). A simple periodic closing of the dressing chain results in a
regular dielectric permitivity similar to the 1D case studied above.

Denote f, =In¢ and f,;1 = InyV. Then, after a straightforward computa-
tion,

A(fn"’fnﬂ)=||vfn||2_||vfn+1”2, (6.7)

where || - || is the Euclidean norm.
The chain (6.7) is closely related to that of Veselov and Shabat [16] for the
Schrodinger equation. Choosing f, specifically as

Sn = \/Ey+fdxgn(x), (6.8)

and substituting it into (6.7) (with A,, being constant), we obtain for the quan-
tities g, (x) the following expression:

(gn +gn+1), =g,21*g,24+1 +An = Ang, (6.9)

matching the corresponding formula of [16].

EXAMPLE 6.3 (regular dielectric permitivity). The simplest periodic closing
of the dressing chain (6.7) is fy,+1 = fn = F(x,y), which implies that the latter
function F is harmonic, and that the regular dielectric permitivity function in
the corresponding medium is given by the formula

o,
ex,y) =5 (Fe+Fy). (6.10)
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