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Let G be a unital group with a finite unit interval E, let n be the number of atoms in
E, and let k be the number of extreme points of the state space Q(G). We introduce
canonical order-preserving group homomorphisms & : 7 — G and p : G — 7Z¥
linking G with the simplicial groups Z" and ZX. We show that & is a surjection and
p is an injection if and only if G is torsion-free. We give an explicit construction
of the universal group (unigroup) for E using the canonical surjection &. If G is
torsion-free, then the canonical injection p is used to show that G is Archimedean
if and only if its positive cone is determined by a finite number of homogeneous
linear inequalities with integer coefficients.

2000 Mathematics Subject Classification: 06F20.

1. Introduction and basic definitions. In this paper, we continue the study
of unital groups with finite unit intervals begun in [2, 3]. Motivation for this
study can be found in [2]. Although we will attempt to keep this paper some-
what self-contained, we make free use of the notation, nomenclature, and re-
sults of [2, 3].

We begin by setting forth notation and recalling some basic definitions. We
write a partially ordered abelian group G additively, and denote the positive
conein Gby GT:={geG|0<g} [7]. If G" generates G as an abelian group,
thatis,if G = G* -G, then G is said to be directed. A subset F of G* is cone gen-
erating if and only if every element of G* is a sum of a finite sequence of (not
necessarily distinct) elements of F. Various definitions of “Archimedean” can
be found in the literature. We use the following [7, page 20]: G is Archimedean
if and only if, for a,b € G, the condition na < b for every positive integer n
implies that a < 0.

If G is a partially ordered abelian group and u € G*, we define the interval
E:=G"[0,u]l:={ge G|0<g <u}.Thus E forms a bounded partially ordered
set under the restriction of the partial order < on G to E. The interval E can be
organized into an effect algebra under the partial binary operation & obtained
by restriction of + to E. For the details see [1, 5].

An element u € G* is called an order unit if and only if each element of G is
dominated by a positive integer multiple of u [7, page 4]. A unital group [2] is a
partially ordered abelian group G with a specified order unit u, called the unit,
such that the interval E := G*[0,u], called the unit interval, is cone generating.
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If G is a unital group with unit u, then G is directed, and G # {0} @ u #0.If G
is directed, u € G*, and G*[0,u] is cone generating, then G is a unital group
with unit u.

If G is a unital group with unit interval E, and if K is an abelian group,
then a mapping ¢ : E — K is called a K-valued measure on E if and only if
.4, p+q€E=¢p+q) =d(p)+¢p(q). For instance, if ® : G — K is a group
homomorphism, then the restriction ¢ := ®|¢ of ® to E is a K-valued measure
on E. If every K-valued measure on E is the restriction to E of a group ho-
momorphism from G to K, then G is called a K-unital group. A unigroup is a
unital group that is K-unital for every abelian group K [5, 6].

Let G and H be unital groups with unit intervals E and L, respectively, and
units u and v, respectively. A mapping ¢ : E — L is an effect-algebra morphism
[5, Definition 6.1] if and only if ¢(1) = v and, regarded as a mapping ¢ : E —
H, it is an H-valued measure. Let ¢ : E — L be an effect-algebra morphism.
If p; € E, k; are nonnegative integers for i = 1,2,...,n, and >, k;p; € E,
then ¢ (X1 kipi) = > kidp(pi) € L. If ¢ : E — L is a bijective effect-algebra
morphism and ¢! : L — E is also an effect-algebra morphism, then ¢ : E — L
is an effect-algebra isomorphism.

We use the usual notation R, Q, and Z for the ordered field of real num-
bers, the ordered field of rational numbers, and the ordered ring of integers,
respectively. Thus, the standard positive cone in R is R* := {x? | x € R} and
the standard positive cones in Q and Z are Q*:=QnNR" and Z" :=ZnQ™*. We
often disregard the multiplicative structures of R, Q, and Z and regard them
as partially ordered additive abelian groups. As such, and with 1 as the unit,
R, Q, and Z provide examples of unigroups.

Let G # {0} be a unital group with unit u and unit interval E. Then a state for
G is a group homomorphism w : G — R such that w(G*) < R* and w(u) = 1.
The set of all states for G, called the state space of G, is denoted by Q(G). By [7,
Corollary 4.4, Proposition 6.2], Q(G) is a nonempty compact convex subset of
the locally convex Hausdorff linear topological space R with the topology of
pointwise convergence. If w € Q(G) and w(G) < Q, then w is called a Q-valued
state. Evidently, w € Q(G) is Q-valued if and only if w(E) < Q™. A probability
measure on E is an R-valued measure 1t on E such that r(E) < [0,1] < R and
1 (u) = 1. The restriction to E of a state w € Q(G) is a probability measure on
E. If G is R-unital, then each probability measure 7t on E is the restriction to
E of a uniquely determined state w € Q(G).

Let A € Q(G). Then A is said to be strictly positive if and only if, for each
0 # p € G*, there exists w € A with 0 < w(p). If w € Q(G), and {w} is
strictly positive, we say that w is a strictly positive state. If G* = {p € G |
0 < w(p) for all w € A}, then A is said to be cone determining. By [7, Theorem
4.14], G is Archimedean if and only if Q(G) is cone determining. By defini-
tion, A is separating if and only if, for all g # 0 € G, there exists w € A with
w(g) #0.
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If » is a positive integer, we understand that R, Q", and Z" are organized
into additive abelian groups with coordinatewise operations. The standard par-
tial order for each of these groups is the coordinatewise partial order deter-
mined by the standard total orders on R, Q, and Z, and the corresponding
standard positive cones are (R*)", (Q*)", and (Z*)".

With the standard partial order, Z" forms the so-called simplicial group
[7, page 47]. As a simplicial group, Z" is an Archimedean lattice-ordered
group with the smallest order unit, namely (1,1,...,1). An element v € (Z*)"
is an order unit if and only if all of its coordinates are strictly positive. If v
is an order unit in the simplicial group Z", then the unit interval (Z*)"[0,V]
forms a finite MV-algebra [4]. Conversely, every finite MV-algebra has this
form. If v = (1,1,...,1), then (Z*)"[0,v] is isomorphic to the finite Boolean
algebra 2".

This paper is focused on the study of a unital group G with a finite unit
interval E and on the question of just when G is Archimedean (i.e., carries a
cone-determining set of states). If G carries a cone-determining set of states,
then it is clear that G is torsion-free, that is, 0 is the only element of finite
order in G, so in Sections 4 and 5 we will be paying special attention to the
torsion-free case. If G # {0} is a unital group with a finite unit interval E, then
there are atoms (minimal nonzero elements) in E, and every nonzero element
in E dominates at least one atom. Thus, we will be working with the following
data.

1.1. Standing assumptions and notation. For the remainder of this paper,
G is a unital group with unit u # 0 and with a finite unit interval E = G*[0,u].
The distinct atoms in E are denoted by a,a»,...,an.

By [2, Lemma 5.1], the finite set {a,a>,...,a,} € E < G* is cone generating,
and since G is directed, {a;,a»,...,a,} is a finite set of generators for the
abelian group G. By the fundamental theorem for finitely generated abelian
groups, the torsion subgroup G+ of G is finite and G is a direct sum of G, and
a torsion-free subgroup H < G of finite rank v > 0. If n: G — H is the natural
projection homomorphism with ker(n) = G+, then by [2, Theorem 4.1] H can be
organized into a unital group with unit n(u), with positive cone H* = n(G™"),
and with a finite unit interval L. Moreover, there is an affine isomorphism w ~
@ from Q(G) onto Q(H) such that w = won for all w € Q(G). As H is a
torsion-free group of finite rank 7, there is a group isomorphism ¢ : H — 7"
and, by [3, Lemma 3.2], ¢b can be chosen in such a way that p(H") < (Z*)". By
[2, Lemma 3.5], the set of Q-valued states on H is separating.

2. The canonical surjection £. In this section, we introduce a surjective
order-preserving group homomorphism & from the simplicial group Z" onto
the unital group G. Recall that if Z is a free abelian group, B C Z is a free basis
for Z, K is an abelian group, and f : B — K is a function, then there is a unique
group homomorphism ¢ : Z — K that agrees with f on B.
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DEFINITION 2.1. Let d; = (1,0,...,0),d> = (0,1,...,0),...,d,, = (0,0,...,1)
be the standard free basis for the additive abelian group Z". Define the canoni-
cal surjection € : 7' — G to be the uniquely determined group homomorphism
E:7" - G such that £E(d;) =a; fori=1,2,...,n.

LEMMA 2.2. (i) Ifx = (Xx1,X2,...,Xn) €Z", then E(x) = X1 | X;d;.

(ii) The mapping € : 7" — G satisfies G* = E((Z*)").

(iii) The mapping & : 7" — G satisfies G = E(Z").

(iv) The mapping & : 7" — G is a surjective order-preserving group homomor-
phism and its kernel satisfies the condition ker(&) N (Z*)" = {0}.

PROOF. Part (i) follows immediately from Definition 2.1. Part (ii) follows
from (i) and the fact that {a,a»,...,a,} is a cone-generating set. Part (iii)
follows from (ii) and the fact that G is directed. To prove (iv), we begin by
observing that the group homomorphism & : Z" — G is order preserving by
(ii) and surjective by (iii). Suppose x = (x1,X2,...,X5) € ker(&) n (Z*)™. Then
Z,”:lxiai =0and 0 <x; fori=1,2,...,n. Since x;ja; € G" fori=1,2,...,n, it
follows that x;a; = 0 for i = 1,2,...,n. Therefore, since 0 # a; € G*, we have
x;=0fori=1,2,...,n. O

DEFINITION 2.3. Define T:= £ 1(u)n (Z*)". Vectors t € T are called multi-
plicity vectors for G (cf. [2, Definition 5.2]). Define D to be the subgroup of 7"
generated by the set of all differences t—s for t,s € T, let G* be the quotient
group Z"/D, and let &* : Z" — G* be the natural surjective group homomor-
phism with ker(&*) = D.

LEMMA 2.4. (i) Ifs,teT,thens<t=s=t.
(ii) The set T is finite and nonempty.
(iii) If x € (Z*)", then §(x) e E < dte T, x <t.

PROOF. (i) If s,te T and s < t, then t—s € ker(§) n (Z*)", so s =t by
Lemma 2.2(@iv).

(ii) By (i), T forms an antichain in the positive cone (Z*)" of the simplicial
group Z", hence T is a finite set [8].

(iii) Letx e (Z")". IfteTandx<t, then 0 < &(x) < &(t) =u, so E(x) € E.
Conversely, suppose £(x) € E. Then u—&(x) € G', so there exists y € (Z+)"
with §(y) = u—&(x). Therefore, x+y € (Z*)" with §&(x+Yy) = u, and it follows
thatt:=x+yeTwithx<t O

DEFINITION 2.5. Let T = {tj,ty,...,tn}. Then the m X n matrix [¢;;] with
t,t,..., 4, as its successive row vectors is called the multiplicity matrix for
G. The m X (n + 1) matrix M obtained by appending a final column to the
matrix [¢;;] consisting entirely of —1’s is called the relation matrix for G (cf.
[2, Definition 5.3]).

The relation matrix M encodes m fundamental relations > 7_; tjja; —u =0
for i = 1,2,...,m satisfied by the generators a; for G and the unit u (see [2,
Theorem 5.4]).



ARCHIMEDEAN UNITAL GROUPS WITH FINITE UNIT INTERVALS 2791

THEOREM 2.6. (i) rank(T) = rank(M).

(ii) rank (G) +rank(T) < n+ 1.

(iii) If G is torsion-free, then G is R-unital if and only if rank(G) + rank(T) =
n+1.

PROOF. We will prove that the last column of M is a rational linear com-
bination of its first n columns, from which (i) follows. There is a Q-valued

state w € Q(G). Let g := —w(a;) for j = 1,2,...,n. As X" tija; = u for
i=1,2,...,m, we have 2?:1 tijaj = —w(u) = -1 for i = 1,2,...,m. Parts (ii)
and (iii) now follow from [2, Theorem 5.6]. O

THEOREM 2.7. The abelian group G* can be organized into a unigroup with
unit u* := £*(t), independent of the choice of t € T, and with positive cone
(G*)*:=&*((Z*)™). Then there is an effect-algebra isomorphism p — p* from
E onto the unit interval E* := (G*)*[0,u*], and &* is the canonical surjection
for G*. Moreover, there is a surjective order-preserving group homomorphism
B:G* — G such that B((G*)*) =G*, B(p*)=p forallp €E, and & = Bo E*.

PROOF. Evidently, D c ker(&), whence DN (Z*)" = {0} by Lemma 2.2(iv), so
G* can be organized into a partially ordered abelian group with positive cone
(G*)*:=&*((Z")™M). Since the simplicial group 7" is directed and &* : 72"* — G*
is a surjective order-preserving group homomorphism, it follows that G* is
directed. Clearly, u* := £*(t) is independent of the choice of t € T, whence
u* e (G*)*.

We claim that if x € (Z*)", then

£(x) € E < E*(x) € E*. (2.1)

To prove (2.1), suppose x € (Z*)". If £(x) € E, then by Lemma 2.4(iii) there ex-
istste Twithx <t,whence0 < &*(x) < &*(t) =u*,so&*(x) € (G*)"[0,u*] =
E*. Conversely, if £€*(x) € E*, there exists y € (Z*)" such that u* — £*(x) =
E*(y), whence &* (x+y) = £*(t) for any choice of te T, x+y—-t e D < ker(&),
and &(x) +&(y) = E(t) = u. Therefore, £(x) € E, and (2.1) follows.

For each i = 1,2,...,n, we have d; € (Z*)" with &(d;) = a; € E, whence by
(2.1), £*(d;) € E*. Since (Z*)™" is the set of all linear combinations of d;,do, ...,
d,, with nonnegative integer coefficients, it follows that {E*(d;) | i = 1,2,...,n}
is a finite cone-generating subset of E* in G*. Therefore, u* is an order unit
in (G*)* and G* is a unital group with unit u* and unit interval E*.

We claim that if x,y € (Z")", then

E(x)=&(y) €E = &"(x) = &*(y) € E*. (2.2)
To prove (2.2), suppose X,y € (Z")". If £(x) = E(y) € E, then there exists z €

(Z*)™ such that u — &(x) = &£(z), whence x+z € T and likewise y+z € T,
SOX-y=(Xx+2z)—(y+2z) € D=Kker(*), and £*(x) = E*(y) € E* by (2.1).
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Conversely, if £*(x) = E*(y) € E*, thenx—y € ker(&*) = D c kerg, so &(x) =
&(y) € E by (2.1), proving (2.2).

If p € E, we define p* € E* as follows: choose x € (Z*)" with p = £(x) and
let p* := £*(x). By (2.2), p* is well defined and the mapping * : E — E* given
by p — p* is a bijection. Evidently, this notation is consistent with u* = &*(t),
t € T, as defined previously. Because ker(&*) = D < ker (&), there is a uniquely
determined surjective group homomorphism S : G* — G such that fo&* = E.
Clearly, B((G*)") = E((Z*)") = G*, so B is order preserving. If h € E*, there
exists x € (Z*)" with h = £*(x), whence B(h) = B(§*(x)) = E(x) € E by (2.1)
and (B(h))* = &*(x) = h. If p € E, there exists x € (Z")" with p = E(x) € E,
whence p* = £*(x) € E* with B(p*) = B(E*(x)) = &(x) = p. Therefore, the
restriction f|g+ of B to E* is a bijective effect-algebra morphism of E* onto E
with * : E — E* as its inverse.

Suppose p,q,p +q € E and choose x,y € (Z")" with p = £E(x) and q = E(y).
Then x+y € (Z7)" with E(x+vVy) = p +q € E. Therefore, (p+q)* = E*(x+
y) = &*(x)+E*(y) = p*+qg*, so * : E — E* is an effect-algebra morphism.
Consequently, both * : E — E* and its inverse B|g+ : E* — E are effect-algebra
isomorphisms.

Because * : E — E* is an effect-algebra isomorphism, the atoms in E* are a
fori=1,2,...,n. Also, §*(d;) = a} for i = 1,2,...,n, and it follows that &* is
the canonical surjection for G*.

To prove that G* is a unigroup, suppose that K is an abelian group and ¢ :
E* — K is a K-valued measure. Define ® : 7" — K to be the unique group homo-
morphism such that ®(d;) = ¢p(a)) fori=1,2,...,n.Suppose t = (t,t2,...,tn)
€ T. Thus, u = >.[' | t;a;, whence u* = > | t;a¥, and since ¢ is a K-valued
measure, p(u*) = XL tip(aF) = X 5P (d) = (X1 tid;) = &(t). There-
fore, if t,s € T, we have ®(t—s) = p(u*)—-¢p(u*) =0, soker(&*) = D < ker(d),
and it follows that there exists a group homomorphism ¢* : G* — K such
that ¢* o £* = ®. Consequently, ¢p*(a)) = ¢*(E*(d;)) = ®(d;) = ¢p(af) for
i=1,2,...,n. Since every element in E* is a linear combination of the atoms
a; with nonnegative integer coefficients and ¢ is a K-valued measure, it fol-
lows that the group homomorphism ¢* agrees with ¢ on E*. 0O

COROLLARY 2.8. The unital group G is a unigroup if and only if ker(&) < D.

The unigroup G* in Theorem 2.7 is uniquely determined (up to an isomor-
phism of unital groups) by the structure of the effect algebra E, and it is called
the unigroup for the effect algebra E [1]. As can be seen from the proof of
Theorem 2.7, the structure of G* is encoded in the set T of multiplicity vec-
tors, hence it is implicit in the canonical surjection &.

3. Q-valued states. We maintain the assumptions and notation of Section
1.1 and Definition 2.3. In this section, we establish a bijective correspondence
w < @ between Q-valued states w € Q(G) and surjective order-preserving



ARCHIMEDEAN UNITAL GROUPS WITH FINITE UNIT INTERVALS 2793

group homomorphisms @ : G — Z, and we use the mapping w — @ to define
an order-preserving group homomorphism p from G into a simplicial group
VAR

By [3, Theorem 5.3], the state space Q(G) is a polytope and its set of extreme
points 0, (Q(G)) is a finite set of Q-valued states. A state w € Q(G) is said to
be dispersion free if and only if it takes on only the values 0 and 1 on the
unit interval E = G*[0,u]. Every dispersion-free state w € Q(G) belongs to
0:(Q(G)).

NOTATION 3.1. Let {w1,w2,...,w«} := 0.(Q(G)) be the set of extreme
points of the polytope Q(G).

LEMMA 3.2. Let ¢ : G — Q be a group homomorphism and assume that
d(G*) = QT (ie., ¢ is order preserving). Then
(i) 0 < ¢p(u) if and only if there is at least one i € {1,2,...,n} with 0 <
P(ai);
(ii)) ¢p(u) =0 if and only if ¢ is the zero homomorphism;
(iii) if p(u) # 0, then w : G — Q defined by w := (1/Pp(u))p is a Q-valued
state.

PROOF. (i) If 0 < ¢(a;), then the fact that a; < u implies 0 < ¢(a;) <
¢ (u). Conversely, suppose 0 < ¢p(u) and let t = (t1,tp,...,t,) € T. Then u =
>, tiai, whence 0 < ¢p(u) = >, tip(a;), and it follows that at least one
¢ (a;) must be strictly positive.

(ii) Suppose ¢p(u) = 0. Then ¢p(a;) = 0 for i = 1,2,...,n by (i) and, since
{ay,ay,...,a,} is a set of generators for G, it follows that ¢ is the zero homo-
morphism. The converse is obvious.

(iii) Suppose ¢ (1) # 0. Then w = (1/¢p(u))¢ is a group homomorphism
from G to Q, w(G*T) € Q*, and w(u) = 1. |

LEMMA 3.3. Let C : G — Z be a group homomorphism. Then the following
conditions are mutually equivalent:
i) CG)=12;
(i) T°1(1) #2;
(iii) the nonzero integers in the list C(a,),C(az),...,C(ay,) are relatively
prime.

PROOF. (i)« (ii). Obviously (i)=(ii). Conversely, if (ii) holds, there exists g, €
G with €(g1) =1, whence C(kg,) = kC(g:1) =k and C(G) = Z.

(ii) < (iii). Suppose (ii) holds, so there exists g; € G with C(g;) = 1. Because
{ay,a»,...,a,} is a set of generators for G, there are integers x1,x,...,X;, such
that g1 = 3L, x;a;, whence 1 = >, x;C(a;), and (iii) follows. Conversely,
if (iii) holds, there are integers xi,x2,...,Xx;, such that 1 = Zf’zlxiC(ai) and
g1:i=20mxia; €T, O

DEFINITION 3.4. Suppose that ¢ : G — Q is a nonzero group homomor-
phism such that ¢(G*) € Q*. We define the group homomorphism ¢ : G — Q
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as follows: 0 < ¢p(a;) for i = 1,2,...,mn and 0 < ¢(a;) for at least one i by
Lemma 3.2. Write the strictly positive rational numbers in the list ¢ (a1 ), P (az),
...,¢(ay) as reduced fractions, let g > 0 be the least common multiple of the
denominators of the positive fractions in the list, and let p > 0 be the greatest
common divisor of the positive integers in the list g¢p(a;),qd (az),...,qp(an).
Define ¢: G — Q by ¢(g) := (q/p)P(g) for all g € G.

LEMMA 3.5. Let ¢ : G — Q be a nonzero group homomorphism such that
d(GT) = Q. Then
(i) ¢ :G — Z is a surjective group homomorphism, ¢(G*) < Z*+, and 0 <
P(u);
(i) w:=(1/Pu)) is a Q-valued state for G;
(iii) if w = (1/Pp(u))P, then @ = P;
(iv) ¢ = ¢ if and only if p(G) = Z.

PROOF. (i) By our choices of q and p in Definition 3.4, P(a;) eZ" fori=
1,2,...,m, at least one of these integers is positive, and the positive integers
are relatively prime. Because {ai,a»,...,a,} is a cone-generating set in G and
¢(a;) €eZ* fori=1,2,...,n, we have ¢(G*) < Z*, whence, since G is directed,
¢(G) € Z. By Lemma 3.3, ¢(G) = Z, and by Lemma 3.2, 0 < ¢ (u).

(ii) That w = (1/¢(u)) ¢ is a Q-valued state follows from Lemma 3.2(iii).

(iii) We have w(a;) = ¢p(a;)/Pp(u) for i = 1,2,...,n, and the nonzero nu-
merators of these fractions are relatively prime, whence G := ¢(u) is the
least common multiple of denominators of the positive fractions in the list
w(ap),w(az),...,w(ay), and p := 1 is the greatest common divisor of the
positive integers in the list gw(a,),gw(az),...,gw(a,). Therefore, w(a;) =
(G/p)wl(a;) = ¢p(a;) fori=1,2,...,n and, since {a,a,...,an} is a set of gen-
erators for the group G, it follows that @ = ¢.

(iv) If ¢ = ¢, then ¢(G) = ¢(G) = Z by (i). Conversely, suppose ¢(G) = Z.
Then ¢(a;) € Z* for i = 1,2,...,n and by Lemma 3.3 the positive integers
in the list ¢p(a;),p(az),...,p(a,) are relatively prime. Hence, p =g =1 in
Definition 3.4, and we have ¢ = ¢. a

THEOREM 3.6. The mapping w — @ is a bijection from the set of all Q-valued
states on G onto the set of all surjective order-preserving group homomorphisms
C:G-17.

PROOF. If w € Q(G) and w(G) < Q, then @ : G — Z is a surjective order-
preserving group homomorphism by Lemma 3.5(1). Let € : G — Z be a sur-
jective order-preserving group homomorphism. By Lemma 3.2, 0 < (u) and
w = (1/C(u))C is a Q-valued state on G. By Lemma 3.5(v), £ = T, so by
Lemma 3.5(iii), ®o = €. We have only to prove that the mapping w ~ @ is
injective on the set of Q-valued states. Thus, suppose w is a Q-valued state
on G and € = @. Then, by Definition 3.4, there is a positive rational number
A such that € = Aw, and it follows that (1) = Aw(u) = A -1 = A, whence
w = (1/C(u))T is uniquely determined by C. O
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Evidently, a state w € Q(G) is dispersion free if and only if w(G) € Z. Thus,
in Theorem 3.6, the dispersion-free states (if any) on G are exactly the Q-valued
states w € Q(G) such that @ = w.

DEFINITION 3.7. Since the extreme points wi,wo,...,w, of Q(G) are Q-
valued states, we can define ; := w; fori =1,2,...,k. The mapping p : G — 7Z*
is defined by p(g) := (@1(g),w2(g),...,w«(g)) for all g € G. We also define
v:=p(u) € 7.

THEOREM 3.8. (i) The mapping p : G — Z*¥ is a group homomorphism and
p(G*) = (Z%)~.

(ii) The element v = (01 (u), 02 (u),..., 0 (1)) € (Z*)* is an order unit in
the simplicial group Z¥.

(iii) With the standard positive cone (Z*)* and with v as unit, the simplicial
group Z* is a unigroup with unit interval (Z*)*[0,v].

(iv) ker(p) ={ge Glw(g) =0 forall w € Q(G)}.

(V) As an abelian group, G is torsion-free if and only if p : G — Z* is an injec-
tion.

PRrROOF. (i) Clearly p is a group homomorphism and, since each @; maps
G* into Z7, it follows that p(G*) < (ZT)*.

(ii) We have 0 < w7 (1), @2 (u),..., 0, (u), so all coordinates of the vector v
are strictly positive, and it follows that v is an order unit in (Z*)*.

(iii) The standard free basis vectors

(1,9,09,...,0),(0,1,0,...,0),(0,0,1,...,0),...,(0,0,0,...,1) (3.1)

belong to (Z*)*[0,v] and they form a set of generators for the positive cone
(z*)*. Therefore, Z* is a unital group with unit v. Since the simplicial group
Z* is lattice ordered and v is an order unit, Z* is a unigroup with unit v.

(iv) Let g € G. Then p(g) = 0 if and only if @w;(g) =0 for i = 1,2,...,k if
and only if w;(g) =0 fori=1,2,...,k. But, since every w € Q(G) is a convex
combination of w1, wa,...,w,, it follows that w;(g) =0 fori=1,2,...,k if and
only if w(g) =0 for all w € Q.

(v) Suppose G is torsion-free and let 0 # g € G. By [3, Lemma 3.2], there is a
group isomorphism ¢ : G — 7" such that ¢(G*) < (Z*)", hence by [2, Lemma
3.5] there is a Q-valued state w € Q(G) with w(g) # 0, so g & kerp by (iv).
Therefore, if G is torsion-free, then p is injective. Conversely, suppose p is
injective, k is a positive integer, g € G, and kg = 0. Then kp(g) = 0 € Z¥, so
p(g) =0, and therefore g = 0. Consequently, G is torsion-free. |

In Theorem 3.8, the unit interval (Z*)¥[0,v] is an MV-algebra and the re-
striction p|g of p to E is an effect-algebra morphism of E into (Z*)*[0,Vv].

4. The canonical injection p. We now begin to focus on the question of
just when G is Archimedean. If G is Archimedean, then G is torsion-free, so
in this section and the next one we will adopt as a standing hypothesis the
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assumption that G is torsion-free. Thus, by [3, Lemma 3.3], we can cast our
standing hypothesis as follows.

STANDING ASSUMPTIONS AND NOTATION. In this section and the next one,
we assume that 7 is a positive integer, G = 7" as an additive abelian group, G is
a unital group with unit u = (u,uz,...,uy), G* < (Z*)", and the unit interval
E = G*[0,u] is finite. The atoms in E are denoted by aj,ap,...,a,.

All of the previous results are applicable to the unital group G, and now
we have the advantage of a representation of the elements of G as vectors
in Z" in such a way that all vectors in G* have nonnegative coordinates. By
Theorem 3.8(v), p : G — Z¥ is an order-preserving injective group homomor-
phism from G into the simplicial group Z*, whence p(G) is a subgroup of 7
that is isomorphic (as a group) to G. Also, Z¥ is a lattice-ordered unigroup
with unit v = p(u) and the restriction p|g of p to E = G*[0,u] is an injective
effect-algebra morphism of E into the MV-algebra (Z*)¥[0,Vv].

DEFINITION 4.1. (i) The mapping p : G — Z¥ is called the canonical injection.

(ii) The n x » matrix over Z* with ap,ay,...,a, as its successive row vectors
is denoted by Ag = [a;;].

(iii) Let e; = (1,0,...,0),e> = (0,1,...,0),...,e, = (0,0,...,1) be the standard
free basis vectors for the abelian group Z".

(iv) Because aj,ay,...,a, generate the group G, there are (not necessarily
uniquely determined) integers ¢;; for i = 1,2,...,7 and j = 1,2,...,n such that
e; = X, cija;. Let C be the ¥ xn matrix C := [ci;].

(v) For j = 1,2,...,7,let 7rj : Z" — Z be the projection homomorphism onto
the jth coordinate.

The rows of the matrix Ag are the n atoms in the unit interval E = G*[0,u].
The canonical surjection & : Z" — G = 7" is given by the formula &(x,x>,...,
Xn) = (X1,X2,...,Xn)Ap, and (t1,t2,...,t,) € (Z*)™ is a multiplicity vector if
and only if (t1,t,...,tn)A¢ = (U1,u2,...,u,). The ¥ x n matrix C over Z is a
left inverse for Ag, that is, CAg = 1,, = the ¥ X7 identity matrix. Therefore, for
each j=1,2,...,7,we have Z?zl cjiaij = 1, whence the nonzero integers in the
jth row of the matrix C are relatively prime, as are the positive integers in the
jth column of Aj.

If 1 < j <7, the projection homomorphism 1, : G — Z is surjective and, ow-
ing to the fact that G* < (Z*)", we have 11;(G*) < Z*. Therefore, by Lemma 3.2,
there exists i with 1 < i < n such that m;(a;) = a;; > 0, that is, there is at
least one strictly positive integer in the jth column of Ay. Also, by Lemma 3.2,
m;(u) = u; > 0 and, by Theorem 3.6, there is a uniquely determined Q-valued
state y;j € Q(G) such that y; = ;. Evidently, y; = (1/u;)m;. The Q-valued
states y1,¥2,...,Yr, which correspond to the columns of the matrix Ag, form a
separating set of states for G.

LEMMA 4.2. Every state w € Q(G) is a unique affine linear combination of
the states yj:= (1/uj)m; for j =1,2,...,7.
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PROOF. For i,j = 1,2,...,7, we have yj(e;) = (1/u;)m;(e;) = (1/u;)dij,
where §;; is the Kronecker delta. Let w € Q(G) and let s; := u;w(e;) = w(u;e;)
for i = 1,2,...,7. Then ¥{_;s; = w(u) = 1. Also ¢ := >7_s;y; is a group
homomorphism ¢ : G — R, and ¢(e;) = i ,(s;/u;j)8ij = si/u; = w(e;) for
i=1,2,...,7.Since the group homomorphisms ¢ and w agree on the free basis
e}, ey,...,e, for G, it follows that w = ¢, and w is an affine linear combination
of the states y; for j = 1,2,...,7. To prove that the coefficients are uniquely
determined by w, suppose w = Z?Zl hjy;jwith hj € R for j =1,2,...,7. Then
w(e;) =7 1 hj(1/uj)dij = hi/u;, whence h; =s; fori =1,2,...,7. O

Since {a; | i = 1,2,...,n} is a finite set of generators for G, it follows that
{p(a;) |i=1,2,...,n} is a finite set of generators for p(G) < Z*. This observa-
tion brings us to our next definition.

DEFINITION 4.3. (i) Let w; := p(a;) = (@1(a;), @2 (a;),...,0(a;)) € Z¥ for
i=1,2,....,.n

(i) Let W := [w;;] be the n X k matrix with the vectors wi,wp,...,w, as its
successive rows.

(iii) Let P = [p;;] be the X k matrix over Z given by the product P := CW.

Since 0 <a; <ufori=1,2,...,n, it follows that 0 < p(a;) < p(u), whence
wi € (Z1)¥[0,v] for i =1,2,...,n. By Definition 4.3(ii),

Wij = (Dj(ai) fori= 1,2,...,11, j: 1,2,...,K. 4.1)

The columns of the matrix W correspond to the extreme points w1, wo,..., W
of Q(G) and its row vectors wy, i = 1,2,...,n, generate the subgroup p(G) of
ZX. By part (ii) of Theorem 4.4, the canonical injection p corresponds to right
multiplication of vectors in G = 7" by the ¥ X k matrix P. By part (v) of the
theorem, the columns of the matrix P = CW are coefficients of homogeneous
linear inequalities over Z that must be satisfied by vectors in the positive cone
G*.
THEOREM 4.4. Lety = (y1,V2,...,Vr) €G=17". Then
(i) wjly) = Zleyipij forj=1,2,...,k
(i) p(y) =yP
(iii) p(y) € (ZN)* <0< 1 pijyiforj=1,2,...,K;
iv) p(y) € (ZT)*  0<w(y) forall w € Q(G);
V) YEG =>0=<i pijyiforj=1,2,...,K
PROOE. (i) We have y = >7_, vie; = >7_, v; >/, cix@x, whence, for j = 1,
2,0 0K,

v n

.
wjly) = Z Z yicik@;(ax) Z Z CikWij = . YiPij- (4.2)
k=1 i=1

i=1k=1 i=1

Parts (ii) and (iii) follow from (i) and the definition of p.
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(iv) Suppose p(y) € (Z*)¥. Then 0 < w;(y), so 0 < w;(y) fori=1,2,...,k.
If w e Q(G), then w is a convex combination of w1, wo,...,w,, and it follows
that 0 < w(y). Conversely, if 0 < w(y) for all w € Q(G), then 0 < w;(y), so
0 < wi(y) fori=1,2,...k, whence p(y) € (Z*)*.

(v) It follows from (iii) and the fact that p(G*) < (Z")*. O

5. The Archimedean property. We maintain the hypotheses and notation
of Section 4. The canonical surjection & and the canonical injection p are order-
preserving group homomorphisms

mE gL gx (5.1)

that link the torsion-free unital group G with the simplicial groups 7" and 7*
and that satisfy

diiaii»wi fori=1,2,....,n (5.2)
as well as
Gr=%((Z""), p(G") =) npG). (5.3)

As attractive as the setup in (5.1), (5.2), and (5.3) may be, there is an obvious
asymmetry in (5.3). Indeed, although & determines the positive cone in G via
Gt =&((Z*)"), p does not necessarily determine G*. For symmetry, one would
like to have

G*=pt((z")"). (5.4)

Evidently, (5.4) holds if and only if the inclusion in (5.3) is an equality, that is,
if and only if

p(G*) =(2") np(G), (5.5)
and condition (5.5) is equivalent to the requirement that, for a,b € G,
a<bin G < p(a) < p(b) in the simplicial group Z*. (5.6)

The image p(G) of G under p is the subgroup of Z¥ generated by the vectors
W1,W2,...,Wy, and it can be organized into a partially ordered abelian group
in either of the following two natural ways.

(i) Use the restriction to p(G) of the partial order on the simplicial group
Z*.In this case, the positive cone for p (G) is the induced positive cone (p(G))*
=p(G)n(Z*)" .

(ii) Partially order p(G) with the subcone (p(G))* = p(G*) of the induced
positive cone p(G) N (Z*)* as its positive cone. In this case, p(G) is a unital
group with unit v = p(u) and is isomorphic as a unital group to G under p :
G - p(G).
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The equivalent conditions (5.4), (5.5), and (5.6) are themselves equivalent
to the requirement that these two partial orders are the same. By the follow-
ing theorem, all of these conditions are equivalent to the condition that G is
Archimedean, or equivalently, that Q(G) is cone determining.

THEOREM 5.1. The following conditions are mutually equivalent:
(i) G*=p t((Z*)");
(ii) G is Archimedean;
(iii) Q(G) is cone determining, that is, G" = {y € G| 0 < w(y) forall w €
Q(G)};
(iv) G* = {(V1,Y2,--, ) ET" 10 <Y1 pijyi forj=1,2,...,k};
(V) the positive cone G is determined by a finite system of homogeneous
linear inequalities over Z, that is, there exists an v X s matrix [b;;] over Z
such that G* = {(¥1,¥2,--,r) €27 |0 < X1 bijyi for j=1,2,...,s}.

PROOF. (i)=(ii). Assume that (i) holds. The abelian group G is isomorphic
under p : G — p(G) to the subgroup p(G) of Z*. Organize p(G) into a partially
ordered abelian group under the restriction to p(G) of the standard partial
order on Z¥. Then p(G) inherits the Archimedean property from the simplicial
group Z*. Also, condition (i) is equivalent to the requirement that the isomor-
phism p : G — p(G) is an isomorphism of partially ordered abelian groups,
whence G acquires the Archimedean property.

(ii) < (iii). Follows from [7, Theorem 4.14].

(iii) = (iv). Follows from parts (iii) and (iv) of Theorem 4.4.

(iv)=(i). Follows from Theorem 4.4(iv).

(iv)=(v). This is obvious.

(v)=(iii). Assume (v) and for j = 1,2,...,s define the group homomorphism
¢;:G—Zby P;(y):= Zlebijyi fory = (v1,¥2,...,¥r) € G =7". By (v), we
have ¢;(G*) = 7" for j =1,2,...,s. By dropping all occurrences (if any) of the
zero homomorphism from the list ¢, ¢o2,..., Ps, we can and do assume that
¢j#0for j=1,2,...,s.For j =1,2,...,s, define ¢, := ¢; as in Definition 3.4.
By Lemma 3.53), ¢ j 1 G — Z is a surjective order-preserving group homomor-
phism for j = 1,2,...,s. Furthermore, by (i), G" = {y e G |0 < d_)j(y) for j =
1,2,...,s}. By Lemma 3.5(ii), v; := (]./(]BJ'(u))qBj is a Q-valued state in Q(G) for
Jj=1,2,...,s. Therefore, by (i), G* = {y e G |0 =< v;(y) for j =1,2,...,s}, from
which (iii) follows. ]

COROLLARY 5.2. If G is Archimedean, then the restriction p|g of p to E em-
beds the effect algebra E into the MV-algebra (Z*)*[0,v] as a subeffect algebra
p(E).

To help fix ideas, we present a very simple example with n = 3, r = 2, and
k = 2 to illustrate some of the ideas developed in this paper.

EXAMPLE 5.3. Let G = 72 as an additive abelian group and define a; € G for
i=1,2,3bya; = (1,0),a2:= (1,1),and a3 := (1,2).Let £ : Z* — G be defined by
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E(x1,x2,x3) = Xilxiai, and let G*:= E((Z7)3) = {(x1 +x2 + x3,X2 + 2x3) |
X1,X2,x3 € Z'}. Then Gt + G* € Gt and —-G" nG™ = {0}, so G can be or-
ganized into a partially ordered abelian group with positive cone G*. Define
u:= (3,2) € G. Suppose (y1,¥2) € G, choose a positive integer k larger than
both y; —y, and y»/2, and let x; := k+ y»> — y1, X2 := 2k —y», and x3 = 0. Then
(x1,X2,x3) € (Z*)® and &(x1,x2,x3) = 3k — 1,2k — ¥2) = k(3,2) — (¥1,)2),
whence (y1,»») < ku. Therefore, u is an order unit in G. By direct computa-
tion, E := G*T[0,u] consists of the eight elements 0, u, a;, a», a3, u—a;, u—ay,
and u —as. Also, aj, ay, as are the atoms in E, G is a unital group with unit u,
E is the unit interval in G, and & : Z3 — G is the canonical surjection.

There are exactly two multiplicity vectorsin T = €1 (u) N (Z*)3, namely, t; :=
(2,0,1) and t := (1,2,0). Also ker(&) = {x(1,-2,1) | x € Z}, so D = ker(&),
and it follows from Corollary 2.8 that G is a unigroup.

We have

1
Ag=|1 (5.7)
1

N o= O

and C = [Jl ?8] is a left inverse over Z for Ao. The state space Q(G) is one-
dimensional and has two extreme points w; and w», where w;(y1,y?2) =
(1/4)(2y1 —y2) and w2 (y1,¥2) = ¥2/2 for (v1,)2) € G. Hence,

2 0
w=[1 1], p:cw:[_z1 ﬂ (5.8)
0 2

Thus, the canonical injection p : G — Z? is given by p(y1,y2) = (¥1,72)P =
(2y1 — v2,y2) for (y1,y2) € 7> = G. The two columns of P encode two ho-
mogeneous linear inequalities that must be satisfied by all (y1,y2) € G,
namely, 0 < 2y, — > and 0 < y», that is, 0 < y, < 2y,. Computation reveals
that, conversely, 0 < y» < 2y; = (¥1,)2) € G*, whence G is Archimedean by
Theorem 5.1.

The order unit v = p(u) in the simplicial group 7?2 is v = (4,2), and the MV-
algebra (Z*)2[(0,0),(4,2)] = {(z1,22) €7?° |0 <z <4and 0 < z, < 2} with
coordinatewise partial order. The effect-algebra morphism p|r embeds E into
the MV-algebra (Z*+)2[(0,0), (4,2)] in such a way that a; — (2,0), a» — (1,1),
and as — (0,2).
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