

FUZZY SUPER IRRESOLUTE FUNCTIONS

S. E. ABBAS

Received 26 December 2002

The concept of fuzzy super irresolute function was considered and studied by Šostak's (1985). A comparison between this type and other existing ones is established. Several characterizations, properties, and their effect on some fuzzy topological spaces are studied. Also, a new class of fuzzy topological spaces under the terminology fuzzy S^* -closed spaces is introduced and investigated.

2000 Mathematics Subject Classification: 54A40.

1. Introduction and preliminaries. Šostak [10], introduced the fundamental concept of a fuzzy topological structure, as an extension of both crisp topology and Chang fuzzy topology [1], in the sense that not only the objects are fuzzified, but also the axiomatics. In [11, 12], Šostak gave some rules and showed how such an extension can be realized. Chattopadhyay et al. [2, 3] have redefined the same concept. In [8], Ramadan gave a similar definition, namely "smooth topological space." It has been developed in many directions [4, 5, 6, 7, 13].

In the present note, some counterexamples and characterizations of fuzzy super irresolute functions are examined. It is seen that fuzzy super irresolute function implies each of fuzzy irresolute [9] and fuzzy continuity [10], but not conversely. Also, properties preserved by fuzzy super irresolute functions are examined. Finally, we define a fuzzy S^* -closed space in fuzzy topological spaces in Šostak sense and characterize such a space from different angles. Our aim is to compare the introduced type of fuzzy covering property with the existing ones.

Throughout this note, let X be a nonempty set, $I = [0, 1]$, and $I_0 = (0, 1]$. For $\alpha \in I$, $\alpha(x) = \alpha$ for all $x \in X$. The following definition and results which will be needed.

DEFINITION 1.1 [10]. A function $\tau : I^X \rightarrow I$ is called a *fuzzy topology* on X if it satisfies the following conditions:

- (1) $\tau(\underline{0}) = \tau(\underline{1}) = 1$,
- (2) $\tau(\mu_1 \wedge \mu_2) \geq \tau(\mu_1) \wedge \tau(\mu_2)$ for any $\mu_1, \mu_2 \in I^X$,
- (3) $\tau(\bigvee_{i \in \Gamma} \mu_i) \geq \bigwedge_{i \in \Gamma} \tau(\mu_i)$ for any $\{\mu\}_{i \in \Gamma} \subset I^X$.

The pair (X, τ) is called a *fuzzy topological space* (FTS).

REMARK 1.2. Let (X, τ) be an FTS. Then, for each $\alpha \in I$, $\tau_\alpha = \{\mu \in I^X : \tau(\mu) \geq r\}$ is a Chang's fuzzy topology on X .

THEOREM 1.3 [3]. Let (X, τ) be an FTS. Then, for each $r \in I_0$ and $\lambda \in I^X$, an operator $C_\tau : I^X \times I_0 \rightarrow I^X$ is defined as follows:

$$C_\tau(\lambda, r) = \bigwedge \{\mu \in I^X : \lambda \leq \mu, \tau(\underline{1} - \mu) \geq r\}. \quad (1.1)$$

For $\lambda, \mu \in I^X$ and $r, s \in I_0$, the operator C_τ satisfies the following conditions:

- (1) $C_\tau(\underline{0}, r) = \underline{0}$, $\lambda \leq C_\tau(\lambda, r)$,
- (2) $C_\tau(\lambda, r) \vee C_\tau(\mu, r) = C_\tau(\lambda \vee \mu, r)$,
- (3) $C_\tau(\lambda, r) \leq C_\tau(\lambda, s)$ if $r \leq s$,
- (4) $C_\tau(C_\tau(\lambda, r), r) = C_\tau(\lambda, r)$.

THEOREM 1.4 [9]. Let (X, τ) be an FTS. Then, for each $r \in I_0$ and $\lambda \in I^X$, an operator $I_\tau : I^X \times I_0 \rightarrow I^X$ is defined as follows:

$$I_\tau(\lambda, r) = \bigvee \{\mu \in I^X : \lambda \geq \mu, \tau(\mu) \geq r\}. \quad (1.2)$$

For $\lambda, \mu \in I^X$ and $r, s \in I_0$, the operator I_τ satisfies the following conditions:

- (1) $I_\tau(\underline{1} - \lambda, r) = \underline{1} - C_\tau(\lambda, r)$,
- (2) $I_\tau(\underline{1}, r) = \underline{1}$, $\lambda \geq I_\tau(\lambda, r)$,
- (3) $I_\tau(\lambda, r) \wedge I_\tau(\mu, r) = I_\tau(\lambda \wedge \mu, r)$,
- (4) $I_\tau(\lambda, r) \geq I_\tau(\lambda, s)$ if $r \leq s$,
- (5) $I_\tau(I_\tau(\lambda, r), r) = I_\tau(\lambda, r)$.

DEFINITION 1.5 [9]. Let (X, τ) be an FTS. Then, for each $r \in I_0$ and $\lambda \in I^X$, the following statements hold:

- (1) λ is called r -fuzzy semi-open (r -FSO) if there exists $\nu \in I^X$ with $\tau(\nu) \geq r$ such that $\nu \leq \lambda \leq C_\tau(\nu, r)$; equivalently, $\lambda \leq C_\tau(I_\tau(\lambda, r), r)$;
- (2) λ is called r -fuzzy semiclosed (r -FSC) if there exists $\nu \in I^X$ with $\tau(\underline{1} - \nu) \geq r$ such that $I_\tau(\nu, r) \leq \lambda \leq \nu$; equivalently, $I_\tau(C_\tau(\lambda, r), r) \leq \lambda$;
- (3) λ is called r -fuzzy semiclopen (r -FSCO) if λ is r -FSO and r -FSC;
- (4) λ is called r -fuzzy regular open (r -FRO) if $\lambda = I_\tau(C_\tau(\lambda, r), r)$;
- (5) the r -fuzzy semi-interior of λ , denoted $SI_\tau(\lambda, r)$, is defined by $SI_\tau(\lambda, r) = \bigvee \{\nu \in I^X : \nu \leq \lambda, \nu \text{ is } r\text{-FSO}\}$;
- (6) the r -fuzzy semiclosure of λ , denoted $SC_\tau(\lambda, r)$, is defined by $SC_\tau(\lambda, r) = \bigwedge \{\nu \in I^X : \nu \geq \lambda, \nu \text{ is } r\text{-FSC}\}$.

THEOREM 1.6 [9]. Let (X, τ) be an FTS. For $\lambda \in I^X$ and $r \in I_0$, the following statements are valid:

- (1) λ is r -FSO if and only if $\lambda = SI_\tau(\lambda, r)$, and λ is r -FSC if and only if $\lambda = SC_\tau(\lambda, r)$;
- (2) $I_\tau(\lambda, r) \leq SI_\tau(\lambda, r) \leq \lambda \leq SC_\tau(\lambda, r) \leq C_\tau(\lambda, r)$;

- (3) $SC_{\tau}(SC_{\tau}(\lambda, r), r) = SC_{\tau}(\lambda, r);$
- (4) $C_{\tau}(SC_{\tau}(\lambda, r), r) = SC_{\tau}(C_{\tau}(\lambda, r), r) = C_{\tau}(\lambda, r);$
- (5) $SI_{\tau}(\underline{1} - \lambda, r) = \underline{1} - SC_{\tau}(\lambda, r).$

LEMMA 1.7. *For any fuzzy set λ in an FTS (X, τ) and $r \in I_{\circ}$, if $\tau(\lambda) \geq r$, then $I_{\tau}(C_{\tau}(\lambda, r), r) = SC_{\tau}(\lambda, r)$.*

PROOF. Since $SC_{\tau}(\lambda, r)$ is r -FSC, $I_{\tau}(C_{\tau}(SC_{\tau}(\lambda, r), r), r) \leq SC_{\tau}(\lambda, r)$ and hence, by [Theorem 1.6\(4\)](#), $I_{\tau}(C_{\tau}(\lambda, r), r) \leq SC_{\tau}(\lambda, r)$. To prove the opposite inclusion, since $\tau(\lambda) \geq r$, $r \in I_{\circ}$, we have $\lambda \leq I_{\tau}(C_{\tau}(\lambda, r), r)$ so that $\underline{1} - \lambda \geq \underline{1} - I_{\tau}(C_{\tau}(\lambda, r), r) = C_{\tau}(I_{\tau}(\underline{1} - \lambda, r), r)$. But $C_{\tau}(I_{\tau}(\underline{1} - \lambda, r), r)$ is r -FSO. Hence $C_{\tau}(I_{\tau}(\underline{1} - \lambda, r), r) \leq SI_{\tau}(\underline{1} - \lambda, r)$ and so $SC_{\tau}(\lambda, r) \leq I_{\tau}(C_{\tau}(\lambda, r), r)$. \square

DEFINITION 1.8. Let (X, τ) and (Y, η) be FTSs and let $f : X \rightarrow Y$ be a function which is called

- (1) fuzzy continuous (FC) if and only if $\eta(\mu) \leq \tau(f^{-1}(\mu))$ for each $\mu \in I^Y$ [10],
- (2) fuzzy open if and only if $\tau(\lambda) \leq \eta(f(\lambda))$ for each $\lambda \in I^X$ [10],
- (3) fuzzy semicontinuous (FSC) if and only if $f^{-1}(\mu)$ is r -FSO set of X for each $\eta(\mu) \geq r$, $r \in I_{\circ}$ [9],
- (4) fuzzy irresolute (FI) if and only if $f^{-1}(\mu)$ is r -FSO set of X for each μ is r -FSO set of Y , $r \in I_{\circ}$ [9].

2. Fuzzy super irresolute functions

DEFINITION 2.1. Let (X, τ) and (Y, η) be FTSs and let $f : X \rightarrow Y$ be a function which is called

- (1) fuzzy super irresolute (F-super I) if and only if $\tau(f^{-1}(\mu)) \geq r$ for each μ is r -FSO set of Y , $r \in I_{\circ}$,
- (2) fuzzy completely continuous (FCC) if and only if $f^{-1}(\mu)$ is r -FRO set of X for each $\mu \in I^Y$ and $\eta(\mu) \geq r$, $r \in I_{\circ}$,
- (3) fuzzy completely irresolute (FCI) if and only if $f^{-1}(\mu)$ is r -FRO set of X for each r -FSO set $\mu \in I^Y$ and $r \in I_{\circ}$.

REMARK 2.2. One can show the connection between these types and other existing ones by the following diagram:

$$\begin{array}{ccccc}
 \text{FCI} & \longrightarrow & \text{F-super I} & \longrightarrow & \text{FI} \\
 \downarrow & & \downarrow & & \downarrow \\
 \text{FCC} & \longrightarrow & \text{FC} & \longrightarrow & \text{FSC}.
 \end{array} \tag{2.1}$$

The converse of the previous implications need not be true in general as shown in the following counterexample.

COUNTEREXAMPLE 2.3. Let μ_1 , μ_2 , and μ_3 be fuzzy subsets of $X = \{a, b, c\}$ defined as follows:

$$\begin{aligned}\mu_1(a) &= 0.9, & \mu_1(b) &= 0.0, & \mu_1(c) &= 0.1, \\ \mu_2(a) &= 0.9, & \mu_2(b) &= 0.7, & \mu_2(c) &= 0.2, \\ \mu_3(a) &= 0.9, & \mu_3(b) &= 0.3, & \mu_3(c) &= 0.2.\end{aligned}\quad (2.2)$$

Then $\tau, \eta : I^X \rightarrow I$, defined as

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \underline{0,1}, \\ \frac{1}{2}, & \text{if } \lambda = \mu_1, \\ \frac{1}{3}, & \text{if } \lambda = \mu_2, \\ 0, & \text{otherwise,} \end{cases} \quad \eta(\lambda) = \begin{cases} 1, & \text{if } \lambda = \underline{0,1}, \\ \frac{1}{3}, & \text{if } \lambda = \mu_1, \mu_2, \\ \frac{1}{2}, & \text{if } \lambda = \mu_3, \\ 0, & \text{otherwise,} \end{cases} \quad (2.3)$$

are fuzzy topologies on X . Then,

- (1) the identity function $\text{id}_X : (X, \tau) \rightarrow (X, \eta)$ is FI but not F-super I because μ_3 is 1/3-FSO in (X, η) and $\tau(f^{-1}(\mu_3)) = \tau(\mu_3) = 0$;
- (2) the identity function $\text{id}_X : (X, \tau) \rightarrow (X, \tau)$ is FC but not F-super I function.

DEFINITION 2.4. An FTS (X, τ) is said to be fuzzy extremely disconnected if and only if $\tau(C_\tau(\lambda, r)) \geq r$ for every $\tau(\lambda) \geq r$ for each $\lambda \in I^X$ and $r \in I_\circ$.

THEOREM 2.5. For a function $f : X \rightarrow Y$, the following statements are true:

- (1) if X is fuzzy extremely disconnected and f is FI, then f is F-super I;
- (2) if Y is fuzzy extremely disconnected and f is FCI (resp., FC), then f is F-super I;
- (3) if both X and Y are fuzzy extremely disconnected, then the concepts F-super I, FCI, FI, FCC, FSC, and FC are equivalent.

PROOF. The proof is obvious. □

THEOREM 2.6. Let (X, τ_1) and (Y, τ_2) be FTSs. Let $f : X \rightarrow Y$ be a function. The following statements are equivalent:

- (1) a map f is F-super I;
- (2) for each r -FSC $\mu \in I^Y$, $\tau(\underline{1} - f^{-1}(\mu)) \geq r$, $r \in I_\circ$;
- (3) for each $\lambda \in I^X$ and $r \in I_\circ$, $f(C_{\tau_1}(\lambda, r)) \leq \text{SC}_{\tau_2}(f(\lambda), r)$;
- (4) for each $\mu \in I^Y$ and $r \in I_\circ$, $C_{\tau_1}(f^{-1}(\mu), r) \leq f^{-1}(\text{SC}_{\tau_2}(\mu, r))$;
- (5) for each $\mu \in I^Y$ and $r \in I_\circ$, $f^{-1}(\text{SI}_{\tau_2}(\mu, r)) \leq I_{\tau_1}(f^{-1}(\mu), r)$.

PROOF. (1) \Leftrightarrow (2). It is easily proved from [Theorem 1.4](#) and from $f^{-1}(\underline{1} - \mu) = \underline{1} - f^{-1}(\mu)$.

(2) \Rightarrow (3). Suppose there exist $\lambda \in I^X$ and $r \in I_\circ$ such that

$$f(C_{\tau_1}(\lambda, r)) \not\leq \text{SC}_{\tau_2}(f(\lambda), r). \quad (2.4)$$

There exist $y \in Y$ and $t \in I_\circ$ such that

$$f(C_{\tau_1}(\lambda, r))(y) > t > SC_{\tau_2}(f(\lambda), r)(y). \quad (2.5)$$

If $f^{-1}(\{y\}) = \emptyset$, it is a contradiction because $f(C_{\tau_1}(\lambda, r))(y) = 0$.

If $f^{-1}(\{y\}) \neq \emptyset$, there exists $x \in f^{-1}(\{y\})$ such that

$$f(C_{\tau_1}(\lambda, r))(y) \geq C_{\tau_1}(\lambda, r)(x) > t > SC_{\tau_2}(f(\lambda), r)(f(x)). \quad (2.6)$$

Since $SC_{\tau_2}(f(\lambda), r)(f(x)) < t$, there exists r -FSC $\mu \in I^Y$ with $f(\lambda) \leq \mu$ such that

$$SC_{\tau_2}(f(\lambda), r)(f(x)) \leq \mu(f(x)) < t. \quad (2.7)$$

Moreover, $f(\lambda) \leq \mu$ implies $\lambda \leq f^{-1}(\mu)$. From (2), $\tau(\underline{1} - f^{-1}(\mu)) \geq r$. Thus, $C_{\tau_1}(\lambda, r)(x) \leq f^{-1}(\mu)(x) = \mu(f(x)) < t$, which is a contradiction to (2.6).

(3) \Rightarrow (4). For all $\mu \in I^Y$, $r \in I_\circ$, put $\lambda = f^{-1}(\mu)$. From (3), we have

$$f(C_{\tau_1}(f^{-1}(\mu), r)) \leq SC_{\tau_2}(f(f^{-1}(\mu)), r) \leq SC_{\tau_2}(\mu, r), \quad (2.8)$$

which implies that

$$C_{\tau_1}(f^{-1}(\mu), r) \leq f^{-1}(f(C_{\tau_1}(f^{-1}(\mu), r))) \leq f^{-1}(SC_{\tau_2}(\mu, r)). \quad (2.9)$$

(4) \Rightarrow (5). It is easily proved from [Theorem 1.4\(1\)](#).

(5) \Rightarrow (1). Let μ be r -FSO set of Y . From [Theorem 1.6\(1\)](#), $\mu = SI_{\tau_2}(\mu, r)$. By (5),

$$f^{-1}(\mu) \leq I_{\tau_1}(f^{-1}(\mu), r). \quad (2.10)$$

On the other hand, by [Theorem 1.4\(2\)](#),

$$f^{-1}(\mu) \geq I_{\tau_1}(f^{-1}(\mu), r). \quad (2.11)$$

Thus, $f^{-1}(\mu) = I_{\tau_1}(f^{-1}(\mu), r)$, that is, $\tau(f^{-1}(\mu)) \geq r$. \square

3. Properties preserved by F-super I functions

DEFINITION 3.1. Let (X, τ) be an FTS and $r \in I_\circ$. Then

- (1) X is called r -fuzzy compact (resp., r -fuzzy almost compact and r -fuzzy nearly compact) if and only if for each family $\{\lambda_i \in I^X : \tau(\lambda_i) \geq r, i \in \Gamma\}$ such that $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$, there exists a finite index set $\Gamma_\circ \subset \Gamma$ such that $\bigvee_{i \in \Gamma_\circ} \lambda_i = \underline{1}$ (resp., $\bigvee_{i \in \Gamma_\circ} C_\tau(\lambda_i, r) = \underline{1}$ and $\bigvee_{i \in \Gamma_\circ} I_\tau(C_\tau(\lambda_i, r), r) = \underline{1}$);
- (2) X is called r -fuzzy semicompact (resp., r -fuzzy S -closed) if and only if for each family $\{\lambda_i \in I^X : \lambda_i \leq C_\tau(I_\tau(\lambda_i, r), r), i \in \Gamma\}$ such that $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$, there exists a finite index set $\Gamma_\circ \subset \Gamma$ such that $\bigvee_{i \in \Gamma_\circ} \lambda_i = \underline{1}$ (resp., $\bigvee_{i \in \Gamma_\circ} C_\tau(\lambda_i, r) = \underline{1}$).

THEOREM 3.2. *Every surjective F-super I image of r -fuzzy compact space is r -fuzzy semicompact, $r \in I_0$.*

PROOF. Let (X, τ) be r -fuzzy compact, $r \in I_0$, and let $f : (X, \tau) \rightarrow (Y, \eta)$ be F-super I surjective function. If $\{\lambda_i \in I^Y : \lambda_i \leq C_\eta(I_\eta(\lambda_i, r), r), i \in \Gamma\}$ with $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$, then $\bigvee_{i \in \Gamma} f^{-1}(\lambda_i) = \underline{1}$. Since f is F-super I, $\tau(f^{-1}(\lambda_i)) \geq r$. Since X is r -fuzzy compact, there exists a finite subset $\Gamma_0 \subset \Gamma$ with $\bigvee_{i \in \Gamma_0} f^{-1}(\lambda_i) = \underline{1}$. From the surjectivity of f , we deduce

$$\underline{1} = f(\underline{1}) = f\left(\bigvee_{i \in \Gamma_0} f^{-1}(\lambda_i)\right) = \bigvee_{i \in \Gamma_0} f f^{-1}(\lambda_i) = \bigvee_{i \in \Gamma_0} \lambda_i. \quad (3.1)$$

So, Y is r -fuzzy semicompact. \square

COROLLARY 3.3. *Every surjective F-super I image of r -fuzzy compact space is r -fuzzy S-closed, $r \in I_0$.*

THEOREM 3.4. *Every surjective F-super I image of r -fuzzy almost compact space is r -fuzzy S-closed, $r \in I_0$.*

PROOF. The proof is similar to that of [Theorem 3.2](#). \square

COROLLARY 3.5. *r -fuzzy semicompactness and r -fuzzy S-closedness are preserved under an F-super I surjection function, $r \in I_0$.*

PROOF. The Corollary is a direct consequence of Theorems [3.2](#) and [3.4](#). \square

THEOREM 3.6. *Let $f : X \rightarrow Y$ be FSC and F-super I surjective function. If X is r -fuzzy nearly compact, then Y is r -fuzzy S-closed, $r \in I_0$.*

PROOF. Let (X, τ) be r -fuzzy nearly compact, and let $r \in I_0$, $f : (X, \tau) \rightarrow (Y, \eta)$ be FSC and F-super I surjective function. If $\{\lambda_i \in I^Y : \lambda_i \leq C_\eta(I_\eta(\lambda_i, r), r), i \in \Gamma\}$ with $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$, then $\bigvee_{i \in \Gamma} f^{-1}(\lambda_i) = \underline{1}$. Since f is F-super I, $\tau(f^{-1}(\lambda_i)) \geq r$. Since X is r -fuzzy nearly compact, there exists a finite subset $\Gamma_0 \subset \Gamma$ with $\bigvee_{i \in \Gamma_0} I_\tau(C_\tau(f^{-1}(\lambda_i), r), r) = \underline{1}$. From the surjectivity of f , we deduce

$$\begin{aligned} \underline{1} &= f(\underline{1}) = f\left(\bigvee_{i \in \Gamma_0} I_\tau(C_\tau(f^{-1}(\lambda_i), r), r)\right) \\ &= \bigvee_{i \in \Gamma_0} f(I_\tau(C_\tau(f^{-1}(\lambda_i), r), r)) \\ &\leq \bigvee_{i \in \Gamma_0} f(f^{-1}(C_\eta(\lambda_i, r))) \quad (\text{since } f \text{ is FSC [9]}). \end{aligned} \quad (3.2)$$

Thus $\bigvee_{i \in \Gamma_0} C_\eta(\lambda_i, r) = \underline{1}$. Hence Y is r -fuzzy S-closed. \square

4. Fuzzy S^* -closed spaces: characterizations and comparisons

DEFINITION 4.1. Let (X, τ) be an FTS and $r \in I_0$. Then X is called r -fuzzy S^* -closed if and only if for each family $\{\lambda_i \in I^X : \lambda_i \leq C_\tau(I_\tau(\lambda_i, r), r), i \in \Gamma\}$ such that $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$, there exists a finite index set $\Gamma_0 \subset \Gamma$ such that

$$\bigvee_{i \in \Gamma_0} SC_\tau(\lambda_i, r) = \underline{1}. \quad (4.1)$$

THEOREM 4.2. For an FTS (X, τ) , $r \in I_0$, the following statements are equivalent:

- (1) X is r -fuzzy S^* -closed;
- (2) for every family $\{\lambda_i \in I^X : \lambda_i$ is r -FSCO, $i \in \Gamma\}$ such that $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$, there exists a finite index set $\Gamma_0 \subset \Gamma$ such that $\bigvee_{i \in \Gamma_0} \lambda_i = \underline{1}$;
- (3) every family of r -FSCO sets having the finite intersection property has nonnull intersection;
- (4) for every family $\{\lambda_i \in I^X : \lambda_i$ is r -FSC, $i \in \Gamma\}$ such that $\bigwedge_{i \in \Gamma} \lambda_i = \underline{1}$, there exists a finite index set $\Gamma_0 \subset \Gamma$ such that $\bigwedge_{i \in \Gamma_0} SI_\tau(\lambda_i, r) = \underline{1}$.

PROOF. (1) \Rightarrow (2). The proof is obvious.

(2) \Rightarrow (3). Let $\{\lambda_i\}_{i \in \Gamma}$ be a family of r -FSCO sets having the finite intersection property. If possible, let $\bigwedge_{i \in \Gamma} \lambda_i = \underline{0}$. Then $\bigvee_{i \in \Gamma} (\underline{1} - \lambda_i) = \underline{1}$, where each $(\underline{1} - \lambda_i)$ is r -FSCO. By (2), there exists a finite subset Γ_0 of Γ such that $\bigvee_{i \in \Gamma_0} \underline{1} - \lambda_i = \underline{1}$, that is, $\bigwedge_{i \in \Gamma_0} \lambda_i = \underline{0}$, which is a contradiction.

(3) \Rightarrow (1). Suppose that $\{\lambda_i : i \in \Gamma\}$ is a family of r -FSO sets of X with $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$, and it has no finite subfamily $\{\lambda_{i_1}, \dots, \lambda_{i_n}\}$ such that $\bigvee_{j=1}^n SC_\tau(\lambda_{i_j}, r) = \underline{1}$. Then $\bigwedge_{i=1}^n (\underline{1} - SC_\tau(\lambda_{i_j}, r)) \neq \underline{0}$. Thus, $\{\underline{1} - SC_\tau(\lambda_i, r) : i \in \Gamma\}$ is a family of r -FSCO sets having the finite intersection property. By (3), $\bigwedge_{i \in \Gamma} (\underline{1} - SC_\tau(\lambda_i, r)) \neq \underline{0}$, and hence, $\bigvee_{i \in \Gamma} \lambda_i \neq \underline{1}$, which is a contradiction.

(1) \Rightarrow (4). If $\{\lambda_i : i \in \Gamma\}$ is a family of nonnull r -FSC sets in X , $r \in I_0$ with $\bigwedge_{i \in \Gamma} \lambda_i = \underline{0}$, then $\{\underline{1} - \lambda_i : i \in \Gamma\}$ is r -FSO sets in X with $\bigvee_{i \in \Gamma} \underline{1} - \lambda_i = \underline{1}$. By (1), there is a finite subset $\Gamma_0 \subset \Gamma$ such that

$$\underline{1} = \bigvee_{i \in \Gamma_0} SC_\tau(\underline{1} - \lambda_i, r) = \underline{1} - \bigwedge_{i \in \Gamma_0} SI_\tau(\lambda_i, r), \quad (4.2)$$

that is, $\bigwedge_{i \in \Gamma_0} SI_\tau(\lambda_i, r) = \underline{0}$.

(4) \Rightarrow (1). For any $\{\lambda_i \in I^X : \lambda_i$ is r -FSO, $i \in \Gamma\}$ such that $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$, $\{\underline{1} - \lambda_i, i \in \Gamma\}$ is a family of r -FSC sets such that $\bigwedge_{i \in \Gamma} \underline{1} - \lambda_i = \underline{0}$. We can assume, without loss of generality, that each $\underline{1} - \lambda_i \neq \underline{0}$. By (4), there is a finite subset $\Gamma_0 \subset \Gamma$ such that $\bigwedge_{i \in \Gamma_0} SI_\tau(\underline{1} - \lambda_i, r) = \underline{0}$, that is, $\bigvee_{i \in \Gamma_0} SC_\tau(\lambda_i, r) = \underline{1}$, which proves the r -fuzzy S^* -closedness of X . \square

THEOREM 4.3. Let (X, τ) be an FTS and $r \in I_0$. If X is r -fuzzy semicomplete, then X is r -fuzzy S^* -closed as well.

PROOF. Since for every $\lambda \in I^X$ and $r \in I_\circ$ we have $\lambda \leq \text{SC}_\tau(\lambda, r)$, this immediately follows from the definitions. \square

THEOREM 4.4. *Let (X, τ) be an FTS and $r \in I_\circ$. If X is r -fuzzy S^* -closed, then X is r -fuzzy S -closed as well.*

PROOF. Since for every $\lambda \in I^X$ and $r \in I_\circ$ we have $\text{SC}_\tau(\lambda, r) \leq C_\tau(\lambda, r)$, this immediately follows from the definitions. \square

That the converse is false is evident from the following counterexample.

COUNTEREXAMPLE 4.5. Let \mathbb{N} denote the set of natural numbers with the fuzzy topology $\tau : I^{\mathbb{N}} \rightarrow I$ defined as

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \underline{0}, \underline{1}, \\ \frac{1}{3}, & \text{if } \lambda = \mu, \nu, \\ \frac{1}{2}, & \text{if } \lambda = \mu \vee \nu, \\ 0, & \text{otherwise,} \end{cases} \quad (4.3)$$

where $\mu(1) = 1$, $\mu(i) = 0$ (for $i = 2, 3, 4, \dots$), and $\nu(2) = 1$, $\mu(j) = 0$ (for $j = 1, 3, 4, \dots$). Let ρ_i^1 and ρ_i^2 (for $i = 3, 4, 5, \dots$) be the fuzzy sets in $I^{\mathbb{N}}$ given by

$$\begin{aligned} \rho_i^1(x) &= \begin{cases} 1, & \text{for } x = 1 \text{ and } i, \\ 0, & \text{otherwise,} \end{cases} \\ \rho_i^2(x) &= \begin{cases} 1, & \text{for } x = 2 \text{ and } i, \\ 0, & \text{otherwise.} \end{cases} \end{aligned} \quad (4.4)$$

Then $\mathcal{U} = \{\rho_i^1, \rho_i^2 : i = 3, 4, 5, \dots\}$ are $1/3$ -FSCO sets with $\bigvee_{\rho \in \mathcal{U}} \rho = \underline{1}$ having no finite subcover. Hence (\mathbb{N}, τ) is not $1/3$ -fuzzy S^* -closed, but it is easily seen that (\mathbb{N}, τ) is $1/3$ -fuzzy S -closed.

THEOREM 4.6. *For any fuzzy extremally disconnected FTS (X, τ) and $r \in I_\circ$, X is r -fuzzy S^* -closed if and only if X is r -fuzzy S -closed.*

PROOF

NECESSITY. It follows from the proof of [Theorem 4.4](#).

SUFFICIENCY. We are going to prove that if (X, τ) is any fuzzy extremally disconnected FTS, then $C_\tau(\lambda, r) = \text{SC}_\tau(\lambda, r)$ for every r -FSO set λ in (X, τ) and $r \in I_\circ$. Then our result follows from Definitions [3.1\(2\)](#) and [4.1](#).

We always have $\text{SC}_\tau(\lambda, r) \leq C_\tau(\lambda, r)$ for every $\lambda \in I^X$ and $r \in I_\circ$. So, we have to prove that with our hypothesis we have $C_\tau(\lambda, r) \leq \text{SC}_\tau(\lambda, r)$ for every $\lambda \in I^X$ and $r \in I_\circ$.

If λ is r -FSO in (X, τ) , then there exists $\nu \in I^X$ with $\tau(\nu) \geq r$ such that $\nu \leq \lambda \leq C_\tau(\nu, r)$. So, $C_\tau(\lambda, r) = C_\tau(\nu, r)$, where $\tau(\nu) \geq r$. Because (X, τ) is

fuzzy extremally disconnected, we have that

$$C_\tau(\lambda, r) = C_\tau(\nu, r) = I_\tau(C_\tau(\nu, r), r) = I_\tau(C_\tau(\lambda, r), r). \quad (4.5)$$

By [Lemma 1.7](#), we have $C_\tau(\lambda, r) = I_\tau(C_\tau(\lambda, r), r) \leq SC_\tau(\lambda, r)$. \square

REMARK 4.7. From [Theorems 4.3](#) and [4.4](#), we have that r -fuzzy semicom-pactness implies r -fuzzy S -closedness, $r \in I_\circ$.

REMARK 4.8. Obviously, for $r \in I_\circ$, r -fuzzy S -closed space is r -fuzzy almost compact. Hence r -fuzzy compact space need not be r -fuzzy S^* -closed. That an r -fuzzy S^* -closed space is not necessarily r -fuzzy compact is shown by the following counterexample.

COUNTEREXAMPLE 4.9. Let X be any nonempty set and let $\tau : I^X \rightarrow I$ be defined as

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \underline{0}, \underline{1}, \\ \frac{1}{2}, & \text{if } \lambda = \underline{\alpha}, \text{ for } \frac{1}{2} < \alpha < 1, \\ 0, & \text{otherwise.} \end{cases} \quad (4.6)$$

Then (X, τ) is an FTS which is not $1/2$ -fuzzy compact. Now for any $\underline{\alpha} \in I^X$ with $\tau(\underline{\alpha}) \geq 1/2$, $C_\tau(\underline{\alpha}, 1/2) = \underline{1}$ and hence $I_\tau(C_\tau(\underline{\alpha}, 1/2), 1/2) = \underline{1}$, for all $\alpha \in (1/2, 1]$. Since, by [Lemma 1.7](#), $SC_\tau(\underline{\alpha}, 1/2) = I_\tau(C_\tau(\underline{\alpha}, 1/2), 1/2) = \underline{1}$, we have for any r -FSO set λ , $SC_\tau(\lambda, 1/2) = \underline{1}$. Hence X is r -fuzzy S^* -closed.

However, we have the following theorem.

THEOREM 4.10. For $r \in I_\circ$, every r -fuzzy S^* -closed space is r -fuzzy nearly compact, $r \in I_\circ$.

PROOF. If X is not r -fuzzy nearly compact, then there exists $\{\lambda_i \in I^X, i \in \Gamma\}$ with $\tau(\lambda_i) \geq r$ and $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$ such that for any finite subset $\Gamma_\circ \subset \Gamma$,

$$\bigvee_{i \in \Gamma_\circ} I_\tau(C_\tau(\lambda_i, r), r) \neq \underline{1}, \quad (4.7)$$

that is,

$$\bigvee_{i \in \Gamma_\circ} SC_\tau(\lambda_i, r) \neq \underline{1} \quad (4.8)$$

(by [Lemma 1.7](#)). Thus, X is not r -fuzzy S^* -closed. \square

In order to investigate for the condition under which r -fuzzy S^* -closed space is r -fuzzy compact, we set the following definition.

DEFINITION 4.11. An FTS (X, τ) is called r -fuzzy S -regular if and only if for each r -FSO set $\mu \in I^X$, $r \in I_0$,

$$\mu = \bigvee \{\rho \in I^X \mid \rho \text{ is } r\text{-FSO, } \text{SC}_\tau(\rho, r) \leq \mu\}. \quad (4.9)$$

An FTS (X, τ) is called fuzzy S -regular if and only if it is r -fuzzy S -regular for each $r \in I_0$.

THEOREM 4.12. *If an FTS (X, τ) is r -fuzzy S -regular and r -fuzzy S^* -closed, $r \in I_0$, then it is r -fuzzy compact.*

PROOF. Let $\{\lambda_i \in I^X \mid \tau(\lambda_i) \geq r, i \in \Gamma\}$ be a family such that $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$. Since (X, τ) is r -fuzzy S -regular, for each $\tau(\lambda_i) \geq r$, λ_i is r -FSO,

$$\lambda_i = \bigvee_{i_k \in K_i} \{\lambda_{i_k} \mid \lambda_{i_k} \text{ is } r\text{-FSO, } \text{SC}_\tau(\lambda_{i_k}, r) \leq \lambda_i\}. \quad (4.10)$$

Hence $\bigvee_{i \in \Gamma} (\bigvee_{i_k \in K_i} \lambda_{i_k}) = \underline{1}$. Since (X, τ) is r -fuzzy S^* -closed, there exists a finite index $J \times K_J$ such that

$$\underline{1} = \bigvee_{j \in J} \left(\bigvee_{j_k \in K_j} \text{SC}_\tau(\lambda_{j_k}, r) \right). \quad (4.11)$$

For each $j \in J$, since

$$\bigvee_{j_k \in K_j} \text{SC}_\tau(\lambda_{j_k}, r) \leq \lambda_j, \quad (4.12)$$

we have $\bigvee_{j \in J} \lambda_j = \underline{1}$. Hence (X, τ) is r -fuzzy compact. \square

It is evident that every FI function is FSC. That the converse is not always true is shown in [9]. Again, it is proved in [9] that $f : X \rightarrow Y$ is FI if and only if $f^{-1}(\mu)$ is r -FSC for every r -FSC set μ in Y and $r \in I_0$. Now we have the following theorem.

THEOREM 4.13. *The FI image of r -fuzzy S^* -closed space is r -fuzzy S^* -closed, $r \in I_0$.*

THEOREM 4.14. *If $f : (X, \tau) \rightarrow (Y, \eta)$ is FI surjective and X is r -fuzzy S^* -closed, then Y is r -fuzzy S -closed, $r \in I_0$.*

PROOF. If $\{\lambda_i \in I^Y : \lambda_i \text{ is } r\text{-FSO, } i \in \Gamma\}$ is a family such that $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$, then $\bigvee_{i \in \Gamma} f^{-1}(\lambda_i) = \underline{1}$. Since f is FI, then, for each $i \in \Gamma$, $f^{-1}(\lambda_i)$ is r -FSO set of X . By r -fuzzy S^* -closedness of X , there is a finite subset $\Gamma_0 \subset \Gamma$ such that

$\bigvee_{i \in \Gamma_0} \text{SC}_\tau(f^{-1}(\lambda_i, r)) = \underline{1}$. Now,

$$\begin{aligned} \underline{1} &= f(\underline{1}) = f\left(\bigvee_{i \in \Gamma_0} \text{SC}_\tau(f^{-1}(\lambda_i, r))\right) \\ &\leq f\left(\bigvee_{i \in \Gamma_0} C_\tau(f^{-1}(\lambda_i, r))\right) \\ &\leq \bigvee_{i \in \Gamma_0} C_\eta(\lambda_i, r), \end{aligned} \quad (4.13)$$

which implies that Y is r -fuzzy S -closed. \square

THEOREM 4.15. *If $f : (X, \tau) \rightarrow (Y, \eta)$ is CI surjective and X is r -fuzzy nearly compact, then Y is r -fuzzy semicompact, $r \in I_0$.*

PROOF. The proof is similar to that of [Theorem 4.14](#). \square

DEFINITION 4.16. Let (X, τ) and (Y, η) be FTSSs. A function $f : (X, \tau) \rightarrow (Y, \eta)$ is called semiweakly continuous if and only if

$$f^{-1}(\lambda) \leq \text{SI}_\tau(f^{-1}(\text{SC}_\eta(\lambda, r)), r), \quad (4.14)$$

for each r -FSO set λ in (Y, η) , $r \in I_0$.

THEOREM 4.17. *Let (X, τ) and (Y, η) be FTSSs and let $f : (X, \tau) \rightarrow (Y, \eta)$ be a semiweakly continuous function. If X is r -fuzzy semicompact, then Y is r -fuzzy S^* -closed, $r \in I_0$.*

PROOF. If $\{\lambda_i \in I^Y : \lambda_i \text{ is } r\text{-FSO, } i \in \Gamma\}$ is a family such that $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$. From the semiweak continuity of f , we have $f^{-1}(\lambda_i) \leq \text{SI}_\tau(f^{-1}(\text{SC}_\eta(\lambda_i, r)), r)$. So, $\text{SI}_\tau(f^{-1}(\text{SC}_\eta(\lambda_i, r)), r)$ is a family of r -FSO sets in (X, τ) with

$$\bigvee_{i \in \Gamma} \text{SI}_\tau(f^{-1}(\text{SC}_\eta(\lambda_i, r)), r) = \underline{1}. \quad (4.15)$$

By the semicompactness of X , there exists a finite subset $\Gamma_0 \subset \Gamma$ such that $\bigvee_{i \in \Gamma_0} \text{SI}_\tau(f^{-1}(\text{SC}_\eta(\lambda_i, r)), r) = \underline{1}$. So,

$$\begin{aligned} \underline{1} &= f(\underline{1}) = f\left(\bigvee_{i \in \Gamma_0} \text{SI}_\tau(f^{-1}(\text{SC}_\eta(\lambda_i, r)), r)\right) \\ &\leq \bigvee_{i \in \Gamma_0} f f^{-1}(\text{SC}_\eta(\lambda_i, r), r) \\ &\leq \bigvee_{i \in \Gamma_0} \text{SC}_\eta(\lambda_i, r). \end{aligned} \quad (4.16)$$

Hence, $\bigvee_{i \in \Gamma_0} \text{SC}_\eta(\lambda_i, r) = \underline{1}$ and Y is r -fuzzy S^* -closed. \square

ACKNOWLEDGMENT. The author is very grateful to the referees.

REFERENCES

- [1] C. L. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl. **24** (1968), 182–190.
- [2] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, *Gradation of openness: fuzzy topology*, Fuzzy Sets and Systems **49** (1992), no. 2, 237–242.
- [3] K. C. Chattopadhyay and S. K. Samanta, *Fuzzy topology: fuzzy closure operator, fuzzy compactness and fuzzy connectedness*, Fuzzy Sets and Systems **54** (1993), no. 2, 207–212.
- [4] U. Höhle, *Upper semicontinuous fuzzy sets and applications*, J. Math. Anal. Appl. **78** (1980), no. 2, 659–673.
- [5] U. Höhle and A. P. Šostak, *A general theory of fuzzy topological spaces*, Fuzzy Sets and Systems **73** (1995), no. 1, 131–149.
- [6] ———, *Axiomatic foundations of fixed-basis fuzzy topology*, Mathematics of Fuzzy Sets, Handb. Fuzzy Sets Ser., vol. 3, Kluwer Academic Publishers, Massachusetts, 1999, pp. 123–272.
- [7] T. Kubiak and A. P. Šostak, *Lower set-valued fuzzy topologies*, Quaestiones Math. **20** (1997), no. 3, 423–429.
- [8] A. A. Ramadan, *Smooth topological spaces*, Fuzzy Sets and Systems **48** (1992), no. 3, 371–375.
- [9] A. A. Ramadan, S. E. Abbas, and Y. C. Kim, *Fuzzy irresolute mappings in smooth fuzzy topological spaces*, J. Fuzzy Math. **9** (2001), no. 4, 865–877.
- [10] A. P. Šostak, *On a fuzzy topological structure*, Rend. Circ. Mat. Palermo (2) Suppl. (1985), no. 11, 89–103.
- [11] ———, *On the neighborhood structure of fuzzy topological spaces*, Zb. Rad. (1990), no. 4, 7–14.
- [12] ———, *Basic structures of fuzzy topology*, J. Math. Sci. **78** (1996), no. 6, 662–701.
- [13] D. Zhang, *On the relationship between several basic categories in fuzzy topology*, Quaestiones Math. **25** (2002), no. 3, 289–301.

S. E. Abbas: Department of Mathematics, Faculty of Science, South Valley University, Sohag 82524, Egypt

E-mail address: sabbas73@yahoo.com

Special Issue on Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/bvp/guidelines.html>. Authors should follow the Boundary Value Problems manuscript format described at the journal site <http://www.hindawi.com/journals/bvp/>. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	May 1, 2009
First Round of Reviews	August 1, 2009
Publication Date	November 1, 2009

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático,
Facultad de Matemáticas, Universidad de Santiago de

Compostela, Santiago de Compostela 15782, Spain;
juanjose.nieto.roig@usc.es

Guest Editor

Donal O'Regan, Department of Mathematics, National
University of Ireland, Galway, Ireland;
donal.oregan@nuigalway.ie