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We show that the complexification (Ã, τ̃) of a real locally pseudoconvex (locally
absorbingly pseudoconvex, locally multiplicatively pseudoconvex, and exponen-
tially galbed) algebra (A,τ) is a complex locally pseudoconvex (resp., locally ab-
sorbingly pseudoconvex, locally multiplicatively pseudoconvex, and exponentially
galbed) algebra and all elements in the complexification (Ã, τ̃) of a commutative
real exponentially galbed algebra (A,τ)with bounded elements are bounded if the
multiplication in (A,τ) is jointly continuous. We give conditions for a commutative
strictly real topological division algebra to be a commutative real Gel’fand-Mazur
division algebra.
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1. Introduction. Let K be one of the fields R of real numbers or C of com-

plex numbers. A topological algebra A is a topological vector space over K in

which the multiplication is separately continuous. Herewith, A is called a real

topological algebra if K = R and a complex topological algebra if K = C. We

classify topological algebras in a similar way as topological vector spaces. For

example, a topological algebra A is

(a) a Fréchet algebra if it is complete and metrizable;

(b) an exponentially galbed algebra (see [3, 13]) if its underlying topological

vector space is exponentially galbed, that is, for each neighborhood O
of zero in A, there exists another neighborhood U of zero such that




n∑
k=0

ak
2k

: a0, . . . ,an ∈U

⊂O (1.1)

for each n∈N;

(c) a locally pseudoconvex algebra (see [5, 7]) if its underlying topological

vector space is locally pseudoconvex, that is, A has a base {Uα, α∈�} of

neighborhoods of zero in which every set Uα is balanced (i.e., λUα ∈Uα
whenever |λ| � 1) and pseudoconvex (i.e., Uα+Uα ⊂ 21/kαUα for some

kα ∈ (0,1]). Herewith, every locally pseudoconvex algebra is an expo-

nentially galbed algebra.

In particular, when kα = k (kα = 1) for each α ∈ �, then a locally pseu-

doconvex algebra A is called a locally k-convex algebra (resp., locally convex
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algebra). It is well known (see [14, page 4]) that the topology of a locally pseu-

doconvex algebra A can be given by means of a family � = {pα : α ∈ A} of

kα-homogeneous seminorms, where kα ∈ (0,1] for each α∈A. A locally pseu-

doconvex algebra is called a locally absorbingly pseudoconvex (shortly, locally

A-pseudoconvex) algebra (see [5]) if every seminorm p ∈� is A-multiplicative,

that is, for each a∈A there are positive numbersMp(a) and Np(a) such that

p(ab) �Mp(a)p(b), p(ba) �Np(a)p(b), (1.2)

for each b ∈A. In particular, when Mp(a)=Np(a)= p(a) for each a∈A and

p ∈�, then A is called a locally multiplicatively pseudoconvex (shortly, locally

m-pseudoconvex) algebra.

Moreover, a topological algebra A over K with a unit element is a Q-algebra

(see [10, 15, 16]) if the set of all invertible elements of A is open in A and a

Q-algebra A is a Waelbroeck algebra (see [4, 10]) or a topological algebra with

continuous inverse (see [9, 11]) if the inversion a→ a−1 in A is continuous.

An element a of a topological algebra A is said to be bounded (see [6]) if for

some nonzero complex number λa, the set

{(
a
λa

)n
:n∈N

}
(1.3)

is bounded in A. A topological algebra, in which all elements are bounded, will

be called a topological algebra with bounded elements.

Let now A be a topological algebra over K and m(A) the set of all closed

regular two-sided ideals of A, which are maximal as left or right ideals. In

case when the quotient algebra A/M (in the quotient topology) is topologically

isomorphic toK for eachM ∈m(A), then A is called a Gel’fand-Mazur algebra

(see [1, 4, 2]). Herewith, A is a real Gel’fand-Mazur algebra if K=R and a

complex Gel’fand-Mazur algebra if K=C. Main classes of complex Gel’fand-

Mazur algebras have been given in [4, 2, 5]. Several classes of real Gel’fand-

Mazur division algebras are described in the present paper.

2. Complexification of real algebras. Let A be a (not necessarily topologi-

cal) real algebra and let Ã = A+ iA be the complexification of A. Then every

element ã of Ã is representable in the form ã = a+ ib, where a,b ∈ A and

i2 =−1. If the addition, scalar multiplication, and multiplication in Ã are to be

defined by

(a+ib)+(c+id)= (a+c)+i(b+d),
(α+iβ)(a+ib)= (αa−βb)+i(αb+βa),
(a+ib)(c+id)= (ac−bd)+i(ad+bc),

(2.1)

for all a,b,c,d∈A and α,β∈R, then Ã is a complex algebra with zero element

θÃ = θA+ iθA (here and later on θA denotes the zero element of A). In case
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when A has the unit element eA, then eÃ = eA+ iθA is the unit element of Ã.

Herewith, Ã is an associative (commutative) algebra ifA is an associative (resp.,

commutative) algebra. Therefore, we can consider A as a real subalgebra of Ã
under the imbedding ν fromA into Ã defined by ν(a)= a+iθA for each a∈A.

A real (not necessarily topological) algebraA is called a formally real algebra

if from a,b ∈ A and a2+b2 = θA that follows that a = b = θA and is called a

strictly real algebra if spÃ(a+iθA)⊂R (here spA(a) denotes the spectrum of

a ∈ A in A). It is known (see, e.g., [7, Proposition 1.9.14]) that every formally

real division algebra is strictly real and every commutative strictly real division

algebra is formally real.

Let now (A,τ) be a real topological algebra and {Uα : α ∈ �} a base of

neighborhoods of zero of (A,τ). As usual (see [7, 17]), we endow Ã with the

topology τ̃ in which {Uα+iUα :α∈�} is a base of neighborhoods of zero. It is

easy to see that (Ã, τ̃) is a topological algebra and the multiplication in (Ã, τ̃)
is jointly continuous if the multiplication in (A,τ) is jointly continuous (see

[7, Proposition 2.2.10]). Moreover, the underlying topological space of (Ã, τ̃) is

a Hausdorff space if the underlying topological space of (A,τ) is a Hausdorff

space.

3. Complexification of real locally pseudoconvex algebras. Let (A,τ) be a

real locally pseudoconvex algebra and {pα :α∈�} a family of kα-homogeneous

seminorms on A (where kα ∈ (0,1] for each α∈�), which defines the topology

τ on A and Ã, the complexification of A,

Γkα
(
Uα+iθA

)

=


n∑
k=1

λk
(
uk+iθA

)
:n∈N,u1, . . . ,un∈Uα,λ1, . . . ,λn∈C and

n∑
k=1

∣∣λk∣∣kα �1


,

qα(a+ib)= inf
{|λ|kα : (a+ib)∈ λΓkα

(
Uα+iθA

)}
(3.1)

for each a+ ib ∈ Ã. Then Γkα(Uα + iθA) is the absolutely kα-convex hull of

Uα+iθA for each α∈� and qα is a kα-homogeneous Minkowski functional of

Γkα(Uα+iθA). (For real normed algebras the following result has been proved

in [8, pages 68–69] (see also [12, page 8]) and for k-seminormed algebras with

k∈ (0,1] in [7, pages 183–184]).

Theorem 3.1. Let (A,τ)be a real locally pseudoconvex algebra, let {pα, α∈
�} be a family of kα-homogeneous seminorms on A (with kα ∈ (0,1] for each

α∈�), which defines the topology τ on A, and let Uα = {a∈A : pα(a) < 1}.
Then the following statements are true for each α∈�:

(a) qα is a kα-homogeneous seminorm on Ã;

(b) max{pα(a),pα(b)}�qα(a+ib)�2max{pα(a),pα(b)} for eacha,b∈A;
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(c) qα(a+iθA)= pα(a) for each a∈A;

(d) Γkα(Uα+iθA)= {a+ib ∈ Ã : qα(a+ib) < 1}.
Proof. (a) Let α ∈ �, (a+ ib) ∈ Ã \ {θÃ}, and µkαα > max{pα(a),pα(b)}.

Then a/µα,b/µα ∈Uα. Since

2−1/kα
(
a
µα
+i b
µα

)
= 2−1/kα

(
a
µα
+iθA

)
+i2−1/kα

(
b
µα
+iθA

)
,

∣∣2−1/kα
∣∣kα+∣∣i2−1/kα

∣∣kα = 1,
(3.2)

then

(a+ib)∈ 21/kαµαΓkα
(
Uα+iθA

)
. (3.3)

Hence (a+ib)∈ λαΓkα(Uα+iθA) for eachα∈� if |λα|� 21/kαµα. It means that

the set Γkα(Uα+ iθA) is absorbing. Consequently (see [7, Proposition 4.1.10]),

qα is a kα-homogeneous seminorm on Ã.

(b) Let again (a+ib)∈ Ã\{θÃ}. Then from (3.3), it follows that qα(a+ib) �
2µkαα . Since this inequality is valid for each µkαα >max{pα(a),pα(b)}, then

qα(a+ib) � 2max
{
pα(a),pα(b)

}
. (3.4)

Let now a+ib ∈ Γkα(Uα+iθA). Then

a+ib =
n∑
k=1

(
λk+iµk

)(
ak+iθA

)= n∑
k=1

λkak+i
n∑
k=1

µkak (3.5)

for some a1, . . . ,an ∈Uα and real numbers λ1, . . . ,λn and µ1, . . . ,µn such that

n∑
k=1

∣∣λk+iµk∣∣kα � 1. (3.6)

Since |λk|� |λk+iµk| and |µk|� |λk+iµk| for each k∈ {1, . . . ,n}, then

a=
n∑
k=1

λkak, b =
n∑
k=1

µkak (3.7)

belong to Γkα(Uα)=Uα.

Let now ε > 0 and

µα >
(

1
qα(a+ib)+ε

)1/kα

. (3.8)

Then from µα(a+ib)∈ Γkα(Uα+iθA) follows that µαa,µαb∈Uα orpα(µαa)<1

and pα(µαb) < 1. Therefore

max
{
pα(a),pα(b)

}
< µ−kαα < qα(+ib)+ε. (3.9)
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Since ε is arbitrary, then from (3.9) follows that max{pα(a),pα(b)}�qα(a+ib)
for each a,b ∈A. Taking this and inequality (3.4) into account, it is clear that

statement (b) holds.

(c) Let a∈A, α∈�, and ρkα > qα(a+iθA). Then from

(
a
ρ
+iθA

)
∈ Γkα

(
Uα+iθA

)
, (3.10)

it follows that a ∈ ρUα or pα(a) < ρkα . It means that the set of numbers ρkα

for which ρkα > qα(a+ iθA) is bounded below by pα(a). Therefore pα(a) �
qα(a+iθA).

Let now ρkα > pα(a). Then a∈ ρUα and from

(
a
ρ
+iθA

)
∈ Γkα

(
Uα+iθA

)
, (3.11)

it follows that qα(a+ iθA) < ρkα . Hence qα(a+ iθA) � pα(a). Thus qα(a+
iθA)= pα(a) for each a∈A and α∈�.

(d) It is clear that the set {a+ ib ∈ Ã : qα(a+ ib) < 1} ⊂ Γkα(Uα+ iθA). Let

now a+ib ∈ Γkα(Uα+iθA). Then

a+ib =
n∑
k=1

(
λk+iµk

)(
ak+iθA

)
(3.12)

for some a1, . . . ,an ∈Uα and real numbers λ1, . . . ,λn and µ1, . . . ,µn such that

n∑
k=1

∣∣λk+iµk∣∣kα � 1. (3.13)

Since pα(ak) < 1 for each k∈ {1, . . . ,n}, we can choose εα > 0 so that

max
{
pα
(
a1
)
, . . . ,pα

(
an
)}
< εkαα < 1. (3.14)

Then ak ∈ εαUα for each α∈� and each k∈ {1, . . . ,n}. Therefore

a+ib
εα

∈
n∑
k=1

(
λk+iµk

)(ak
εα
+iθA

)
∈ Γkα

(
Uα+iθA

)
. (3.15)

Hence

(a+ib)∈ εαΓkα
(
Uα+iθA

)
(3.16)

or qα(a+ib) � εkαα < 1. It means that statement (d) holds.

Corollary 3.2. If (A,τ) is a real locally pseudoconvex Fréchet algebra, then

(Ã, τ̃) is a complex locally pseudoconvex Fréchet algebra.
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Proof. Let (A,τ) be a real locally pseudoconvex Fréchet algebra and let

{pn,n∈N} be a countable family of kn-homogeneous seminorms (with kn ∈
(0,1] for each n ∈ N), which defines the topology τ on A. Then {qn : n ∈ N}
defines on Ã a metrizable locally pseudoconvex topology τ̃ (see Theorem 3.1).

If (an+ ibn) is a Cauchy sequence in (Ã, τ̃), then (an) and (bn) are Cauchy

sequences in (A,τ) by Theorem 3.1(b). Because (A,τ) is complete, then (an)
converges to a0 ∈A and (bn) converges to b0 ∈A. Hence (an+ibn) converges

in (Ã, τ̃) to a0+ ib0 ∈ Ã by the same inequality (b). Thus (Ã, τ̃) is a complex

locally pseudoconvex Fréchet algebra.

Theorem 3.3. Let (A,τ) be a real locally A-pseudoconvex (locally m-

pseudoconvex) algebra and {pα, α ∈ �} a family of kα-homogeneous A-

multiplicative (resp., submultiplicative) seminorms on A (with kα ∈ (0,1] for

each α∈�), which defines the topology τ on A. Then (Ã, τ̃) is a complex locally

A-pseudoconvex (resp., locally m-pseudoconvex) algebra. (Here τ̃ denotes the

topology on Ã defined by the system {qα :α∈�}.)
Proof. Let pα be an A-multiplicative seminorm on A. Then for each fixed

element a0 ∈A, there are numbers Mα(a0) > 0 and Nα(a0) > 0 such that

pα
(
a0a

)
�Mα

(
a0
)
pα(a), pα

(
aa0

)
�Nα

(
a0
)
pα(a), (3.17)

for each a∈A. If a0+ib0 is a fixed element and a+ib an arbitrary element of

Ã, then

qα
((
a0+ib0

)
(a+ib))= qα((a0a−b0b

)+i(a0b+b0a
))

� 2max
{
pα
(
a0a−b0b

)
,pα

(
a0b+b0a

)} (3.18)

by Theorem 3.1(b). If now pα(a0a−b0b) � pα(a0b+b0a), then

max
{
pα
(
a0a−b0b

)
,pα

(
a0b+b0a

)}
= pα

(
a0a−b0b

)
�Mα

(
a0
)
pα(a)+Mα

(
b0
)
pα(b)

�max
{
pα(a),pα(b)

}(
Mα

(
a0
)+Mα(b0

))
�

1
2
Mα

(
a0,b0

)
qα(a+ib)

(3.19)

by Theorem 3.1(b) (here Mα(a0,b0)= 2(Mα(a0)+Mα(b0))). Hence

qα
((
a0+ib0

)
(a+ib))�Mα(a0,b0

)
qα(a+ib) (3.20)

for each a+ib ∈ Ã.

The proof for the case when pα(a0a−b0b) < pα(a0b+b0a) is similar. Thus

inequality (3.20) holds for both cases. In the same way, it is easy to show that

the inequality

qα
(
(a+ib)(a0+ib0

))
�Nα

(
a0,b0

)
qα(a+ib) (3.21)
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holds for each a+ib ∈ Ã. Consequently, (Ã, τ̃) is a complex locally A-pseudo-

convex algebra.

Let nowpα be a submultiplicative seminorm onA. Thenpα(ab)�pα(a)pα(b)
for each a,b ∈A. If a+ib,a′ +ib′ ∈ Ã, then

qα
(
(a+ib)(a′ +ib′))� 2max

{
pα(aa′ −bb′),pα(ab′ +ba′)

}
(3.22)

by Theorem 3.1(b). If now pα(aa′ −bb′) � pα(ab′ +ba′), then

max
{
pα(aa′ −bb′),pα(ab′ +ba′)

}
= pα(aa′ −bb′) � pα(a)pα(a′)+pα(b)pα(b′)
� 2max

{
pα(a),pα(b)

}
max

{
pα(a′),pα(b′)

}
� 2qα(a+ib)qα(a′ +ib′)

(3.23)

by Theorem 3.1(b). Hence

qα
(
(a+ib)(a′ +ib′))� 4qα(a+ib)qα(a′ +ib′). (3.24)

Putting rα = 4qα for each α∈�, we see that

rα
(
(a+ib)(a′ +ib′))� rα(a+ib)rα(a′ +ib′) (3.25)

for each a+ib,a′ +ib′ ∈ Ã.

The proof for the case when pα(aa′−bb′) < pα(ab′+ba′) is similar. Hence

inequality (3.25) holds for both cases. Since the families {qα : α ∈ �} and

{rα : α ∈ �} define on Ã the same topology, then (Ã, τ̃) is a complex locally

m-pseudoconvex algebra.

4. Complexification of real exponentially galbed algebras. Next, we will

show that the complexification (Ã, τ̃) of (A,τ) is a complex exponentially

galbed algebra if (A,τ) is a real exponentially galbed algebra, and all elements

of (Ã, τ̃) are bounded in (Ã, τ̃) if (A,τ) is a commutative exponentially galbed

algebra in which all elements are bounded and the multiplication in (A,τ) is

jointly continuous.

Theorem 4.1. Let (A,τ) be a real exponentially galbed algebra (commuta-

tive real exponentially galbed algebra with jointly continuous multiplication and

bounded elements). Then (Ã, τ̃) is a complex exponentially galbed algebra (resp.,

commutative complex exponentially galbed algebra with bounded elements).

Proof. Let (A,τ) be a real exponentially galbed algebra and Õ a neighbor-

hood of zero in (Ã, τ̃). Then there are a neighborhood O of zero of (A,τ) such

that O+iO ⊂ Õ and another neighborhood U of zero of (A,τ) such that




n∑
k=0

ak
2k

: a0, . . . ,an ∈U

⊂O (4.1)
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for each n∈N. Since U+iU is a neighborhood of zero in (Ã, τ̃) and




n∑
k=0

ak+ibk
2k

: a0+ib0, . . . ,an+ibn ∈U+iU

⊂O+iO ⊂ Õ (4.2)

for each n∈N, then (Ã, τ̃) is a complex exponentially galbed algebra.

Let now (A,τ) be a commutative real exponentially galbed algebra with

jointly continuous multiplication and bounded elements, Õ an arbitrary neigh-

borhood of zero of (Ã, τ̃), and a+ib ∈ Ã an arbitrary element. Then there are

a neighborhood O of zero of (A,τ) such that O+ iO ⊂ Õ and λa,λb ∈ C\{0}
and the sets

{(
a
λa

)n
:n∈N

}
,

{(
b
λb

)n
:n∈N

}
(4.3)

are bounded in (A,τ). The neighborhood O defines now a balanced neigh-

borhood U of zero of (A,τ) such that (4.2) holds and U defines a balanced

neighborhood V of zero of (A,τ) such that VV ⊂ U (because the multiplica-

tion in (A,τ) is jointly continuous). Now there are numbers µa,µb > 0 such

that

(
a∣∣λa∣∣

)n
∈ µaV,

(
b∣∣λb∣∣

)n
∈ µbV, (4.4)

for each n∈N. Let κ = 4(|λa|+|λb|). Since a+ib = (a+iθA)+i(b+iθA), then

(
a+ib
κ

)n
=

n∑
k=0

(
n
k

)((
a
κ

)k
+iθA

)
in−k

((
b
κ

)n−k
+iθA

)

= µaµb
n∑
k=0

x̃k
2k

(4.5)

for each n∈N, where

x̃k = �nk 1
µaµb



(
a∣∣λa∣∣

)k(
b∣∣λb∣∣

)n−k
+iθA


,

�nk = 2kin−k
(
n
k

)(∣∣λa∣∣
κ

)k(∣∣λb∣∣
κ

)n−k
,

(4.6)

for each k �n. Herewith

∣∣�nk∣∣= 2k

κn

(
n
k

)∣∣λa∣∣k∣∣λb∣∣n−k � 2n

κn
(∣∣λa∣∣+∣∣λb∣∣)n �

(
1
2

)n
< 1,

(
a∣∣λa∣∣

)k(
b∣∣λb∣∣

)n−k
+iθA ∈ µaµbVV +iθA ⊂ µaµb(U+iU).

(4.7)
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Since U is a balanced set, then x̃k ∈U+iU for each k∈ {0, . . . ,n}. Hence

(
a+ib
κ

)n
∈ µaµb(O+iO)⊂ µaµbÕ (4.8)

by (4.2) for eachn∈N. It means that a+ib is bounded in (Ã, τ̃). Consequently,

(Ã, τ̃) is a commutative complex exponentially galbed algebra with bounded

elements.

5. Real Gel’fand-Mazur division algebras. To describe main classes of real

Gel’fand-Mazur division algebras, we first describe these real topological divi-

sion algebras (A,τ) for which the complexification (Ã, τ̃) of (A,τ) is a complex

Gel’fand-Mazur division algebra.

Proposition 5.1. If (A,τ) is a commutative strictly real topological Haus-

dorff division algebra with continuous inversion, then the complexification (Ã, τ̃)
of (A,τ) is a commutative complex topological Hausdorff division algebra with

continuous inversion.

Proof. Let A be a commutative strictly real division algebra. Then Ã is

a complex division algebra (see [7, Proposition 1.6.20]). Since the underlying

topological space of (A,τ) is a Hausdorff space, then (A,τ) is a Q-algebra.

Hence (A,τ) is a commutative real Waelbroeck algebra with a unit element.

Therefore (Ã, τ̃) is a commutative Waelbroeck algebra (see [7, Proposition

3.6.31] or [17, proposition on page 237]). Thus, (Ã, τ̃) is a commutative com-

plex Hausdorff division algebra with continuous inversion.

Proposition 5.2. Let (A,τ) be a real topological algebra and Ã the com-

plexification of A. If the topological dual (A,τ)∗ of (A,τ) is nonempty, then the

topological dual (Ã, τ̃)∗ of (Ã, τ̃) is also nonempty.

Proof. If ψ ∈ (A,τ)∗, then ψ̃, defined by ψ̃(a+ ib) = ψ(a)+ iψ(b) for

each a+ib ∈ Ã, is an element of (Ã, τ̃)∗.

Proposition 5.3. Let A be a commutative strictly real (not necessarily topo-

logical) division algebra and Ã the complexification of A. Then

spÃ(a+ib)=
{
α+iβ∈ C :α∈ spA(a) and β∈ spA(b)

}
. (5.1)

Proof. Let α+iβ∈ spÃ(a+ib). Since A is a commutative strictly real divi-

sion algebra, then Ã is a commutative complex division algebra (see [7, Propo-

sition 1.6.20]). Therefore

a+ib−(α+iβ)(eA+iθ)= (a−αeA)+i(b−βeA)= θA+iθA (5.2)

if and only if α∈ spA(a) and β∈ spA(b).

The main result of the present paper is the following theorem.
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Theorem 5.4. Let (A,τ) be a commutative strictly real topological division

algebra and Ã the complexification of A. If there is a topology τ′ on A such that

(A,τ′) is

(a) a locally pseudoconvex Hausdorff algebra with continuous inversion;

(b) a Hausdorff algebra with continuous inversion for which (A,τ)∗ is non-

empty;

(c) an exponentially galbed Hausdorff algebra with jointly continuous mul-

tiplication and bounded elements;

(d) a topological Hausdorff algebra for which the spectrum spA(a) is non-

empty for each a∈A,

then (A,τ) and R are topologically isomorphic.

Proof. If A is a commutative strictly real division algebra, then Ã is a com-

mutative complex division algebra (by [7, Proposition 1.6.20]). In case (a) the

complexification (Ã, τ̃′) of (A,τ′) is a commutative complex locally pseudo-

convex Hausdorff division algebra with continuous inversion (by Theorem 3.1

and Proposition 5.1); in case (b) (Ã, τ̃′) of (A,τ′) is a commutative complex

topological Hausdorff algebra with continuous inversion for which the set

(Ã, τ̃′)∗ is nonempty (by Propositions 5.1 and 5.2); in case (c) (Ã, τ̃′) of (A,τ′)
is a commutative complex exponentially galbed Hausdorff division algebra

with bounded elements (by Theorem 4.1); and in case (d) (Ã, τ̃′) of (A,τ′)
is such a commutative topological Hausdorff division algebra for which the

spectrum spÃ(a+ ib) is nonempty for each a+ ib ∈ Ã (by Proposition 5.3),

therefore (Ã, τ̃) and C are topologically isomorphic (see [4, Theorem 1] and [2,

Proposition 1]). Hence every element a+ ib ∈ Ã is representable in the form

a+ ib = λeÃ for some λ ∈ C. It means that for each a ∈ A there is a real

number µ such that a = µeA. Consequently, A is an isomorphism to R. In the

same way as in complex case (see, e.g., [4, page 122]) it is easy to show that

this isomorphism is a topological isomorphism because (A,τ) is a Hausdorff

space.

Corollary 5.5. Let A be a commutative strictly real division algebra. If A
has a topology τ such that (A,τ) is

(a) a locally pseudoconvex Hausdorff algebra with continuous inversion;

(b) a locally A-pseudoconvex (in particular, locally m-pseudoconvex) Haus-

dorff algebra;

(c) a locally pseudoconvex Fréchet algebra;

(d) an exponentially galbed Hausdorff algebra with jointly continuous mul-

tiplication and bounded elements;

(e) a topological Hausdorff algebra for which the spectrum spA(a) is non-

empty for each a∈A,

then (A,τ) is a commutative real Gel’fand-Mazur division algebra.

Proof. It is easy to see that (A,τ) is a commutative real Gel’fand-Mazur

division algebra (by Theorem 5.4) in cases (a), (d), and (e). Since the inversion
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is continuous in every locally m-pseudoconvex algebra and every locally A-

pseudoconvex Hausdorff algebra with a unit element having a topology τ′ such

that (A,τ′) is a locallym-pseudoconvex Hausdorff algebra (see [5, Lemma 2.2]),

then (A,τ) is a commutative real Gel’fand-Mazur division algebra in case (b)

by (a) and Theorem 5.4.

Let now (A,τ) be a commutative strictly real locally pseudoconvex Fréchet

division algebra. Then (A,τ) is a commutative strictly real locally pseudocon-

vex Fréchet Q-algebra by Corollary 3.2. Therefore the inversion in (A,τ) is

continuous (see [15, Corollary 7.6]). Hence (A,τ) is also a commutative real

Gel’fand-Mazur division algebra by Theorem 5.4.
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