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The present paper studies some common fixed-point theorems for pairs of a
single-valued and a multivalued coincidentally commuting mappings in D-metric
spaces satisfying a certain generalized contraction condition. Our result general-
izes more than a dozen known fixed-point theorems in D-metric spaces including
those of Dhage (2000) and Rhoades (1996).
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1. Introduction. The concept of a D-metric space introduced by the first
author in [1] is as follows. A nonempty set, together with a function p : X x X x
X — [0,00), is called a D-metric space and denoted by (X, p) if the function p,
called a D-metric on X, satisfies the following properties:

(i) p(x,y,z) =0 < x =y =z (coincidence),
(i) p(x,v,z) =0=p(pix,y,z}) (symmetry), where p is a permutation,

(iii) p(x,y,z) <p(x,y,a)+p(x,a,z)+p(a,y,z) forall x,y,z,a € X (tetra-

hedral inequality).

It is known that the D-metric p in a continuous function on X3 in the topol-
ogy of D-metric convergence is Hausdorff. The details of a D-metric space and
its topological properties appear in Dhage [8]. Some specific examples of a
D-metric space are presented in Dhage [2].

A sequence {x,} C X is called convergent and converges to a point x if
limy,  p(Xm,Xn,X) = 0. Again a sequence {x,} C X is called D-Cauchy if
limyy ,p P (Xm, Xn,Xp) = 0. A complete D-metric space X is one in which every
D-Cauchy sequence converges to a point in X. A subset S of a D-metric space
X is called bounded if there exists a constant k > 0 such that p(x,y,z) < k for
all x,y,z € X and the constant k is called a D-bound of S. The smallest among
all such D-bounds k of S is called the diameter of X and it is denoted by 6(S).

Let 2X and CB(X) denote the classes of nonempty closed and nonempty,
closed, bounded subsets of X, respectively. A correspondence F : X — 2% is
called a multivalued mapping on a D-metric space X, and a point u € X is
called a fixed point of F if u € Fu.
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In [3], the first author has defined a notion of the generalized or Kasusai
D-metric on X. Let k : (CB(X))3 — [0, ) be a function defined by

K(A,B,C) =inf{e >0| AUB C N(c,€), BUCCN(A,e), CUAC N(B,e)},
(1.1)

where N(A,€) = UzeaN(a,€), N(a,e) = {x € N*(a,€) | p(a,x,y) < € for all

v € N*(a,e)}, and N*(a,e) = {x €e X | p(a,x,x) <€}.
The definition (1.1) is equivalent to

K(A,B,C):max{ sup D(a,b,c), sup D(b,c,A), sup D(c,a,B)},

acA, beB beB, ceC ceC,acA
(1.2)
where D(a,b,c) =inf{p(a,b,c) | c € C}.
Define
D(A,B,C) =inf {p(a,b,c) |la€ A, b€ B, c € C},
(1.3)

S6(A,B,C) =supip(a,b,c) lac A, beB, ceCl.
Notice that D and § are continuous functions on (CB(X))3 and satisfy
D(A,B,C) <k(A,B,C) <6(A,B,C). (1.4)
A multivalued mapping F : X — CB(X) is called continuous if
%I‘Inlp(xm,xn,x) =0 = k(Fxy,Fxu,Fx)=0. (1.5)

In [3], the first author has proved some fixed-point theorem for multivalued
contraction mappings in D-metric spaces, and in [5] he has proved some com-
mon fixed-point theorems for coincidentally commuting single-valued map-
pings in D-metric spaces satisfying a condition of generalized contraction.

In this paper, we prove some common fixed-point theorems for a pair of
singlevalued and multivalued mappings in a D-metric space satisfying a con-
traction condition more general than that given in Dhage [1, 2, 3, 4, 5, 7] and
Rhoades [12]. The results of this paper are new to the fixed-point theory in
D-metric spaces and include nearly a dozen of known fixed-point theorems as
special cases (see [1, 2, 3,4, 5,6, 7,8,9, 10, 12]).

2. Preliminaries. Before going to the main results of this paper, we give
some preliminaries needed in the sequel.

Let F: X — 2¥X. Then by an orbit of F at a point x € X we mean a set Or(x)
in X defined by

Or(x) = {x0 = x, Xn+1 € Fxyn, n = 0}. (2.1)
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An orbit Op(x) is called bounded if 6 (Or(x)) < o, and a D-metric space X
is called F-orbitally bounded if Or(x) is bounded for each x € X. Again an F-
orbit Or(x) is called complete if every D-Cauchy sequence in Or(x) converges
to a point in X. A D-metric space X is said to be F-orbitally complete if Or(x)
is complete for each x € X. Finally, F is called F-orbitally continuous if for any
sequence {x,} < Op(x), we have

Limp (X, %0, x*) = 0= limk (Fxy,,Fx,,Fx*) =0 (2.2)
m,n m,n

for each x € X.
Let ® denote the class of all functions ¢ : [0,0) — [0,00) satisfying the
following properties:
(i) ¢ is continuous,
(ii) ¢ is nondecreasing,
(iii) ¢p(t) <t,t >0,
(iv) >_1p™(t) < oo forall t € [0,c0).
The function ¢ is called a Lipschitz control function or Lipschitz growth func-
tion and the usual growth functionis ¢ (t) = «t,0 <t < 1. The following lemma
concerning the function ¢ appears in [7].

LEMMA 2.1. If ¢ € @, then ¢"(t) =0 for eachn € N and lim,, $™(t) =0 for
eacht € [0, ).

We need the following D-Cauchy principle of Dhage [7] in the sequel.

LEMMA 2.2 (D-Cauchy principle). Let {x,} be a bounded sequence in a D-
metric space X with D-bound k satisfying, for some positive real number v,

P (%n, Xns1,Xm) < [d™ (k") ] (2.3)

for allm > n € N, where ¢ : [0,00) — [0,00) satisfies >.5,_ p™(t) < oo for each
t €[0,0). Then {xy} is a D-Cauchy sequence in X.

PROOF. The proof appears in [7], but for the sake of completeness we give
the details. Let p,t € N be arbitrary but fixed. Then from (2.3) it follows that

P (X, Xni1,Xnip) < [" (K],
(2.4)

p(xn,xn+1,xn+p+t) = [d)n(kr)]l“’,

for all n e N.
Now by repeated application of the tetrahedral inequality, we obtain

p(xn,xn+pyxn+p+t)
= p(Xm Xn+1axn+p) + P(Xn,Xn+1,Xn+p+t) +p (xn+1,Xn+p,Xn+p+t)
= p(Xn, Xn+1;xn+p) + p(Xn,Xn+1;Xn+p+t) +p (Xn+lxxn+2|xn+p)

+ P (Xne1,Xn12, Xnipet) + P (Xna2, Xnaps Xnipst)
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2[‘]5"(’(7)]1/7 + 2[¢)n+1 (ky)]l/r +p(xn+2,xn+p1xn+p+t)

{[d)n(kr)]llr et [¢n+p—2(kr)]1/7”} +p(xn+p—lyxn+pyxn+p+t)
n+p-1

<2 Z [/ (k)"

IA

(2.5)

Since >,,_; ¢p™(t) < oo for each t € [0,), we have Z;":l[d)f(ky)]”’ < co and
so limy, Z"w '[¢7 (k")1V" = 0. Now from (2.5) it follows that

rlli?}op(xnyanrpyanrpﬂ) =0. (2.6)

This proves that {x,} is a D-Cauchy sequence in X and the proof of the lemma
is complete. O

As a direct application of Lemma 2.2, we obtain the following result proved
in [5].

LEMMA 2.3. Let {x,} be a bounded sequence in a D-metric space X with
D-bound k satisfying

P (Xn, Xni1,Xm) < A"k (2.7)

forallm >n € N, where 0 < A < 1. Then {x,} is D-Cauchy.

We use contractive conditions of the form
a” <¢((b") (2.8)

for some positive real number v, where a and b are nonnegative real numbers
and ¢ € ®, because sometimes inequality (2.8) holds, but for the same real
numbers a and b, the inequality

a<¢(b) (2.9)
does not hold. To see this, let ¢ : R* — R* be a function defined by
xt
d)(t)_l_-i-t, 0<ua<l. (210)

Obviously the function ¢ is continuous, nondecreasing and satisfies ¢ (t) =
xt/(1+t) <t for t > 0. Again since

N HGEDS L S arco, (2.11)
n=1

we have that ¢ € ®.
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Now for a =1/2 and b = 2/3, we have, by (2.9),

1 2\ @3)a 2
§5¢(§>_1+2/3_5“' (2.12)

which is not true since 0 < x < 1. But for the same values of a and b, we have
a positive real number » = 2 such that

(&) -2e 3 -o((3))

for 13/16 < o < 1. Hence inequality (2.8) holds. Thus inequality (2.9) does not
imply inequality (2.8). Actually, inequalities (2.8) and (2.9) are independent. To
show that inequality (2.8) does not imply inequality (2.9), leta =1/4, b =4/9,
and r = 1/2. Clearly, inequality (2.8) does not hold, but for the same values of
a, b, and 7, one has

«x(4/9)

%: 1+4/9 :‘b(g) (2.14)

1
— <4
4<

for ¢ = 13/16, and so inequality (2.9) holds. Thus inequalities (2.8) and (2.9)
are independent.
In the following sections, we will prove the main results of this paper.

3. Weak commuting mappings in D-metric spaces. Let F : X — 2% and
g : X — X. Then the pair {F,g} of maps is called limit coincident if lim,, Fx, =
{lim,, gx, } for some sequence {x,} in X, and coincident if there exists a point
u € X such that Fu = {gu}. Again two maps F and g are called limit commut-
ing if lim, Fgx, = {lim, gFx,}, where {x, } is a sequence in X, and commuting
if Fgx = {gFx} for all x € X. Two maps F and g are called limit coincidentally
commuting if their limit coincidence implies the limit commutativity on X.
Similarly, they are called coincidentally commuting if they are commuting at
the coincidence points. Again two maps F and g are said to be limit pseudocom-
muting if lim, Fgx, nlim, gFx, # ¢, that is, lim,, D(Fgx,,gFxn,gFxy) =0,
where {x,} is a sequence in X, and pseudocommuting if Fgx ngFx + & for
each x € X. Finally, the pair {F, g} is called limit coincidentally pseudocommut-
ing if its limit coincidence implies the limit pseudocommutativity on X, and
coincidentally pseudocommuting if it is pseudocommuting at the coincidence
points. It is known that a coincidentally commuting pair is limit coincidentally
commuting and a coincidentally pseudocommuting pair is limit coincidentally
pseudocommuting, but the converse implications need not hold. A pair of
maps {F,g} is weak commuting if it is either limit commuting, coincidentally
commuting, limit pseudocommuting, or coincidentally pseudocommuting on
X. Below, we will prove some common fixed-point theorems for each of these
weak commuting mappings on D-metric spaces.
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3.1. Limit coincidentally commuting maps in D-metric spaces. Let F:X —
2Xand g : X — X. By an (F/g)-orbit of the pair {F,g} of maps at a point x € X,
we mean a set Or(gx) in X defined by

Or(gx) ={vn | Yo =9gx0, Yn =9gxn € Fxy_1, n €N, where xo = x} (3.1)

for some sequence {x,} in X. The orbit Or(gx) is well defined for each x € X
if F(X) <€ g(X). By Or(gx) we denote the closure of the set Or(gx) in X.

A D-metric space X is called (F/g)-orbitally bounded if 6(Op(gx)) < o for
each x € X. Further X is called (F/g)-orbitally complete if every D-Cauchy
sequence {x,} C Op(gx) converges to a point in X for each x € X. Finally, a
mapping T : X — CB(X) is called (F/g)-orbitally continuous if for any {x,} C
Or(gx), xn — x* implies that Tx, — Tx* for each x € X.

THEOREM 3.1. LetF: X — CB(X) and g : X — X be two mappings satisfying,
for some positive real number v,

0" (Fx,Fy,Fz)
< ¢p(max {p” (9x,9Y,92),8" (Fx,Fy,gz),8" (gx,Fx,gz), (3.2)
0" (gy,Fy,92),0" (9x,Fy,92),6" (9y,Fx,92)})

for all x,v,z € X, where ¢ € ®. Suppose that

(a) F(X) € g(X) and g(X) is bounded,

(b) {F,g} is limit coincidentally commuting,

(c) F or g is (F/g)-orbitally continuous.

Further if X is (F/g)-orbitally complete D-metric space, then F and g have a
unique common fixed point u € X such that Fu = {u} = gu. Moreover, if g is
continuous at u, then F is also continuous at u in the Kasubai D-metric on X.

PROOF. Let x € X be arbitrary and define a sequence {y,} in X as follows.
Take xp = x and yy = gxo. Choose a point y; € Fxg = X;. Since F(X) < g(X),
there is a point x; € X such that y; = gx;. Again choose a point y, € Fx; = X>.
By hypothesis (a), there is a point x> € X such that y» = gx». Proceeding in
this way, by induction there is a sequence {x,} of points in X such that

Yo=9X0,  Yne1=9Xna1 € Xns1 =Fxn, n=0,1,2,.... (3.3)
From hypothesis (a), it follows that
6 (Xm, Xn,Xp) <6(g(X)) =k <o (3.4)
for all m,n,p e N.
Now there are two cases.

CASE 1. Suppose that y, = y,,1 for some » € N. Then we have gx, =
gxy+1 = u for some u € X.
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We will show that Fx, = {u}. Suppose not. Then by (3.2),

6" (Fxy,Fxy,u)
= 0" (Fxy,Fxyr,gxy1)
< 6V(Fxr,Fxr,ny)
max {p" (gxr,gxr, 9% ),6" (9xr,Fxyr,gxy),8" (Fxy,Fxr,gxr)}) (3.5)

o (
< d)(max{O 6" (gxy,Fxy,gxy),0" (Fxy,Fxy,u)})
= ¢p(max {6" (u,Fxy,u),8" (Fxy,Fx,,u)})
= (8" (u,Fx,r,u))

because 6" (Fx,,Fxy,u) < ¢p(6" (Fxy,Fxy,u)) is not possible in view of ¢p € ®.
Again by (3.2),

0" (Fxy,u,u) = 8" (FXy,gXr+1,9%r+1)
< 6" (Fxy,Fx,,Fx,)

< ¢p(max{6" (u,Fx,,u),8" (Fx,,Fx,,u)}) (3.6)
= ¢(5T (FXVlFxVau))'
Substituting (3.6) in (3.5), we obtain
ST (Fxy,Fxy,u) < > (8" (Fxy,Fx,,u)), (3.7)

which is a contradiction since ¢ € ®. Hence Fx, = u. Since F and g are limit
coincidentally commuting, one has Fgx, = {gFx,}.

We will show that u is a common fixed point of F and g such that Fu =
{ul =

Now,

6" (Fu,gu,u) = 6" (FFx,,Fgx,,Fx,)

< ¢p(max{p” (gFxr,g9xr,gxr), 0" (FFxy,Fgxyr,gxy),

),0 )
8" (gFxy,FFxy,gxy),0" (9gxr,Fgxr,gxyr), 38
8" (gFxy,Fgxy,gxy),0" (9gxr,FFxy,gxy)})

) )}

= ¢p(max {p" (gFxr,99xr,9%v),8" (99%r,FFxy,gxr)})
= ¢ (6" (Fu,gu,u)),

which is possible only when Fu = {u} = gu since ¢ € .

CASE 2. Assume that v, # v, for each n € N. We will show that {y,} is
a D-Cauchy sequence in X. Let x = xg, ¥ = X1, and z = x;,-1, m > 1. Then by
(3.2),
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P’ (Y1, 2,Ym)
<0"(Fxo,Fx1,Fxm-1)
< ¢(max {p" (gx0,9x1,9%m-1),0" (Fx0,FX1,9Xm-1),6" (gx0,FX0,9Xm-1),
10" (gx0,Fx1,9Xm-1),8"(gx1,FX0,9%m-1)})
X1, X2, Xm-1),6" (X0, X1, Xm-1),

X0,X2,Xm-1),0" (X1,X1,Xm-1)})

8" (gx1,Fx1,9Xm-1
¢ (max {6" (Xo, X1, Xm 1
0" (X1, X2, Xm-1

AAVV

),0"
),6"
¢>( max 6" (Xa,Xb,Xm—l))

O<a<l,1<b<?

< ¢(k"),

IA

that is,
p (1,2, 0m) < [p (k)] (3.10)
Similarly, letting x = x1, ¥ = x2, and z = z;,_1, m = 2 in (3.2), we obtain

P (¥2,3,Ym)
< 6" (Fx1,Fx2,FXm-1)
< ¢p(max {p" (gx1,9x2,9Xm-1),0" (Fx1,FX2,9Xm-1),
6" (9x1,Fx1,9Xm-1),6" (9x2,FX2,9Xm-1),
6" (gx1,Fx2,9%Xm-1),0" (gx2,FX1,9Xm-1)})
¢ (max {8 (Fxo,Fx1,Fxm-2),0" (Fx1,Fx2,FXm-2), 3.11)
( ), 0" (Fx1,Fx2,Fxm_2)
( ),6"( )

v

0" (Fxo,Fx1,FxXm-2),

0" (Fxo,Fx2,FXpm—2),0" (Fx1,Fx1,FXm_2)})

<9 ([, max, 0 XX X))
<¢(p(k))
d*(k"),
that is,
p (V2,3 vm) < [ (k)] (3.12)
In general, by induction,
P(Vn Vi1, ym) < [d"(k")]" (3.13)

forallm >n e N.
Hence, the application of Lemma 2.2 yields that {y,,} is a D-Cauchy sequence

in X. The D-metric space X being complete, there is a point u € X such that
lim,, ¥, = u. The definition of {y,} implies that lim,, gx, = u. We will show
that lim,, Fx,, = {u}.
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Now,
li1rln67(Fxn,Fxn,u)
=Um&" (Fxn,FXn, Yn+1)
<1im 6" (Fxn, FXn, Fxy)
< lim ¢ (max {p" (9Xn, 9Xn, 9Xn), 8" (FXn, FXn,gxn),6" (9Xn, FXn,gxn)})
= li1r1n¢>(max{5r (Fxn,Fxpn,u),0})

= ¢ (ims" (Fxp, Fxn,u)),

(3.14)
which implies that lim,, Fx;,, = u. Thus we have
liranFxn ={u} = liyrlngxn. (3.15)
Since F and g are limit coincidentally commuting, one has
liranng,1 = {liranngn}. (3.16)
Suppose that g is (F/g)-orbitally continuous on X. Then we have
li1£rngxn = liyrlnngn = liyrlnggxn =Ju. (3.17)

First, we will show that u is a common fixed point of F and g. Suppose not.
Then we have

o (u,u,gu) = liranéST(Fxn,Fxn,ngn)
:liran(ST(Fxn,Fxn,ngn)
<lim¢p(max {p" (9xn, 9Xn, 99%n),
6" (Fxn,FXn,99%n), 0" (9Xn, FXn,ggxn)})
= d)(max{hyrlnér (gxn,gxn,ggxn),lirrlnér(Fxn,Fxn,ggxn)})
= (6" (u,u,gu)),
(3.18)

which is a contradiction and hence gu = u.
Again
6" (Fu,gu,u)
= liﬁnér (Fu,Fxy,,Fgxy)
<lim ¢ (max {p" (gu,gxn, ggxn), 6" (Fu,Fxn,g9xn),6" (gu,Fu,ggxn),
6" (9xn, FXn,99%n),6" (gU,FXn,99%n), 6" (9Xn, FU,ggxn)})
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= ¢ (max {p" (gu,u,gu),s" (Fu,u,gu),s" (gu,Fu,gu),
8" (u,u,gu),8" (gu,u,gu),é6" (u,Fu,gu)})
= ¢ (6" (Fu,gu,u)),
(3.19)

which is possible only when Fu = {u} = gu since ¢ € ®. Thus u is a common
fixed point of F and g.
Next, suppose that F is (F/g)-orbitally continuous on X. Then we have

liyrlanxn = liyrlnngn = lignFFxn =Fu={z}. (3.20)

We will show that z is a common fixed point of F and g. Since F(X) < g(X),
there is a point v € X such that Fu = gv = z. We will show that Fv = gv = {z}.
By (3.2),

6" (Fv,gv,Fv)
=li£n57(Fv,Fv,FFxn)
< lirrln¢>(max{p’(gv,gv,ngn),57(Fv,gv,ngn),5r (gv,Fv,gFxn)})

= ¢ (max {6 (gv,gv,gv),5" (Fv,gv,2)}),
(3.21)

that is,
0" (Fv,gv,z) < (6" (Fv,gv,z)), (3.22)

which implies that Fv = gv = {z} since ¢ € .

Since F and g are limit coincidentally commuting, they are coincidentally
commuting on X. Therefore, we have Fgv = gFv. Now, proceeding with the
arguments as in Case 1, it is proved that z is a common fixed point of F and g.

To prove the uniqueness, let z* (# z) be another common fixed point of F
and g. Then by (3.2),

p"(z,z,z*) = 6" (Fz,Fz,Fz*)
< ¢p(max{p”(g9z,9z,9z*),6" (Fz,Fz,gz*),
6" (9z,Fz,9z*),6" (9z,Fz,9z*)})
=p(p"(2,2,27)),

(3.23)

which is a contradiction. Hence z = z*. Then F and g have a unique common
fixed point z € X with Fz = {z} = gz.

Finally, suppose that g is continuous at the common fixed point z of F and
g. Then we will prove that F is also continuous at z. Let {z,,} be any sequence
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in X converging to the common fixed point z. Since g is continuous on X, we
have

limp (zm,zn,z) =0= limp(gzm,gzn,g9z) = 0. (3.24)
mmn mmn
From (1.2), it follows that
K(Fzm,Fzn,Fz) < 5(Fzy,Fzy,Fz). (3.25)

Now,
6" (Fzy,Fzy,Fz)
< ¢p(max{p"(9zm,9zn,92),8" (Fzm,Fz1n,92),6" (gzm,Fzm,92), (3.26)
6V (gznvFZnagZ)a5T(gzm1FZnagZ)a5T(gzn7FZmagz)})'
Therefore,
lim6&" (Fzy,Fzy,Fz)
mmn
s%ny}d)(max{p’(gzm,gzn,gz),67(Fzm,an,Fz),6V (9zm,Fzm,2),

6" (gzn,Fzn,2),8" (9gzm,Fzn,2),0" (9zn,Fzm,z)})

(l)(max {0,1}11’17}67 (Fzm,an,Fz),lirﬂnér(z,Fzm,z),ligllér(z,an,z)})
¢

(max{liyglnér(z,Fzm,z),liwrlnér(z,an,z)}).
(3.27)
But
limoé" (z,Fzy,z)
m
:liylnnéy(Fz,Fz,Fzm)
= hyl;lnqs(max{pr (gZ,gZ,me),6Y(FZ,FZ,me),6T (gZ!FZngWL)}) (328)
= ¢(max{0,0,0})
=0.

Similarly, lim,, 6" (z,Fz,,z) = 0. Substituting these estimates in (3.27) yields
that

lim 6" (Fzy,Fzn,Fz) =0 (3.29)
mmn

or
limé(Fzy,Fzy,Fz) = 0. (3.30)
mn

Now from (3.25), it follows that

limk(Fzy,,Fz,,Fz) =0, (3.31)
m,n
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and so F is continuous at the common fixed point z of F and g. This completes
the proof. |

Letting g = I, the identity map on X and » = 1, in Theorem 3.1, we obtain
the following corollary.

COROLLARY 3.2. Let F: X — CB(X) be a multivalued mapping satisfying

0(Fx,Fy,Fz) <¢p(p(x,v,z),0(Fx,Fy,z),6(x,Fx,z),

5(y,Fy,z),58(x,Fy,2),5(y,Fx,z)) (3.32)

for all x,v,z € X, where ¢ € ®. Further if X is F-orbitally bounded and F-
orbitally complete D-metric space, then F has a unique fixed point u € X such
that Fu = {u} and F is continuous at u.

COROLLARY 3.3. Let F: X — CB(X) be a multivalued mapping satisfying

8(Fx,Fy,Fz) <Amax{p(x,y,z),8(Fx,Fy,z),5(x,Fx,z),

3.33
6(y,Fy,2),0(x,Fy,2),6(y,Fx,z)} (3:33)

for all x,y,z € X, where 0 < A < 1. Further if X is F-orbitally bounded and

F-orbitally complete D-metric space, then F has a unique fixed point u € X such

that Fu = {u} and F is continuous at u.

Corollary 3.3 includes the following fixed point of Dhage [3] as a special
case.

COROLLARY 3.4 (see [3]). Let X be a bounded and complete D-metric
space and let F : X — CB(X) be a multivalued mapping satisfying

0(Fx,Fy,Fz) <Ap(x,y,z) (3.34)

forall x,yv,z € X, where 0 < A < 1. Then F has a unique fixed pointu € X such
that Fu = {u}and F is continuous at u.

COROLLARY 3.5. Let f,g: X — X be two mappings satisfying

P (fx,fy,f2)
< ¢p(max{p”(gx,9y,92),p" (fx,fy,92),p" (gx,fx,92), (3.35)
P (9y.fy,92),p"(gx,f¥,92),p" (9y,fx,92)})

for all x,y,z € X, where ¢ € ®. Suppose that

@ f(X)<cg(X),

(b) {f,g} is limit coincidentally commuting,

(c) f or g is continuous.

Further if X is ( f/ g) -orbitally bounded and ( f | g) -orbitally complete D -metric
space, then f and g have a unique common fixed point u € X. Moreover, if g is
continuous at u, then f is also continuous at u.
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REMARK 3.6. Note that Corollary 3.5 includes the class of pairs of fixed-
point mappings of Dhage [7] characterized by the inequality

pr(fx,fy,fz)
< ¢p(max {p" (9x,9¥,92),p" (gx,fx,92), (3.36)
P gy, fy,92),p"(9x,f¥,92),p" (9¥,fx,92)})
for all x,y,ze X and ¢ € ®.

COROLLARY 3.7. Let f,g: X — X be two mappings satisfying for some posi-
tive real numbers p, q, and v,

pr(fPx, fPy,fPz)
< ¢p(max{p”(97x,97y,92),p" (fPx,f"¥,92),
p (9%, fPx,92),p" (97, fP¥,92),
p (9, fPy,92),p" (9, fPx,972)})

(3.37)

forall x,y,z € X, where ¢ € ®. Suppose that

(@ fP(X)cg?(X),

(b) {f,g} is commuting,

(c) f or g is continuous.

Further if X is an (f? /| g4)-orbitally bounded and (f? | g4)-orbitally complete
D-metric space, then f and g have a unique common fixed point u € X. More-
over, if g is continuous at u, then f¥ is also continuous at u.

PROOF. LetS = f? and T = g4. Then by Corollary 3.5, S and T have a unique
common fixed point u € X, that is, Su = fPu = u = g%u = Tu. Now by com-
mutativity of f and g, we obtain

fu=f(fru)=frifw), fu=f(gu)=g7(fu). (3.38)

This shows that fu is again a common fixed point of f? and g<%. By the
uniqueness of u, we have fu = u. Similarly it is proved that gu = u. Thus f
and g have a unique common fixed point u € X. Further if g is continuous on
X, g% is continuous on X and by application of Corollary 3.5 yields that f7 is
continuous at u. This completes the proof. |

Corollary 3.7 includes the class of pairs of fixed-point mappings of Dhage
[7] characterized by the inequality

P (fPx, fry, fPz)
< ¢p(max{p”(g%x,9%y,9%),p" (9, f"x,92),
P (9%, fPy,912),p" (9%, fY ¥,92),p" (9?¥, [P x,992)})
(3.39)

for all x,y,z€ X and ¢ € .
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COROLLARY 3.8. Let f be a self-map of a D-metric space X satisfying

p(fx,fy,fz) <Amax {p(x,y,2),p(fx,fy,2),p(x,fx,2),

3.40
PV, fy,2),p(x,fy,2),p(y,fx,2)} (5:40

for all x,v,z € X, where 0 < A < 1. Further if X is f-orbitally bounded and
f-orbitally complete, then f has a unique fixed point u € X and f is continuous
atu.

COROLLARY 3.9. Let f be a self-map of a D-metric space X satisfying, for
some positive real number p,

p(fPx,fPy,ffz)
<Amax {p(x,y,2),p(fPx,fPy,z),p(x,f"x,2), (3.41)
PV, fPy,2),p(x,fPy,2),p(y,f"x,2)}

for all x,y,z € X, where 0 < A < 1. Further if X is f-orbitally bounded and
f-orbitally complete, then f has a unique fixed point u € X, f? is continuous,
and f is f-orbitally continuous at u.

Note that Corollaries 3.8 and 3.9 include the fixed-point theorems of Rhoades
[12] and Dhage [9] for the mappings characterized by the inequalities

p(fx,fy,fz) <Amax{p(x,y,2),p(x,fx,2),

3.42
Py, fy,2),p(x,fy,2),p(y,fx,2)}, (542

p(fPx,fPy,fPz) <Amax{p(x,y,2),p(x,f"x,z), (3.43)
o, fPy.z),0(x,fPy,2),p(y,f"x,2)},

forall x,y,ze Xand 0 <A < 1.

3.2. Coincidentally commuting mappings. The coincidentally commuting
mappings require some stronger condition than limit coincidentally commut-
ing mappings and a good number of mathematicians have studied them on
metric and D-metric spaces for the existence of their common fixed point. See
[5, 11] and the references therein. The novelty of the fixed-point theorems for
these coincidentally commuting mappings lies in the fact that here we do not
require any of the maps under consideration to be continuous. Below, we prove
a result in this direction and derive some interesting corollaries.

THEOREM 3.10. Let X be a D-metric space andletF : X — CB(X) andg: X —
X be two mappings satisfying (3.2). Further suppose that
(@) F(X)cg(X),
(b) g(X) is bounded and complete,
(c) {F,g} is coincidentally commuting.
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Then F and g have a unique common fixed point u € X such that Fu = {u} =
gu. Moreover, if g is continuous at u, then F is also continuous at u in the
Kasubai D-metric on X.

PROOF. Let x € X be arbitrary and define a sequence {y,} C X by (3.3).
Clearly the sequence {y,} is well defined since F(X) < g(X). Further we note
that {y,} € g(X). We prove the conclusion of the theorem in two cases.

CASE 1. Suppose that y, = v, for some r € N. Then proceeding with
the arguments similar to Case 1 of the proof of Theorem 3.1, it is proved that
v, =u is a common fixed point of F and g such that Fu = {u} = gu.

CASE 2. Assume that v, # yu+1 for each n € N. Then following Case 2 of
the proof of Theorem 3.1, it is shown that {y},} is a D-Cauchy sequence. Since
g(X) is complete, there is a point z € g(X) such that lim,, v, = z = lim,, gx»,.
We will show that lim,, Fx,, = {z}.

Now,

lim 6" (Fxp,Fxn, )
= liyrlnar(FXn,FxnaynH)
Sliglar(FXn,Fxnann)
< 1i£n¢(max{pr(gxn’gxn’gxn)’57’(Fxn,FXn,an),5V(an,FXn,an)})
= d)(max{o,liyllnéy (Fxn,FXn,Z)})

= ¢(ims" (Fxn, Fxn,2)),
(3.44)

which gives that lim, Fx,, = {z}.
Since z € g(X), there is a point u € X such that gu = u. We will show that
Fu = {z} = gu. Now,
0" (Fu,z,z)
=liran§V (Fu,Fxy,Fxy)
:117111167 (Fxpn,Fxn,Fu)
sliTILnd)(maX{p’(gu,gxn,gxn),ér (Fxn,Fxn,gu),8" (gxn,Fxn,gu)})
= ¢(max{0,0,0})
=¢(0)
=0
(3.45)

and so Fu = gu = {z}. Thus u is a coincidence point of F and g. The rest of the
proof is similar to Case 2 of the proof of Theorem 3.1. We omitted the details.
O
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As a consequence of Theorem 3.10, we obtain the following corollaries.

COROLLARY 3.11. Let f,g: X — X be two mappings satisfying (3.35). Sup-
pose that
(@ fX)csgX),
(b) g(X) is bounded and complete,
(c) {f,g} is coincidentally commuting.
Then f and g have a unique common fixed point u and if g is continuous at u,
then f is also continuous at u.

COROLLARY 3.12. Let X be a D-metric space and let f,g : X — X be two
mappings satisfying
p(fx,fy,fz)
<Amax{p(gx,9y,92),p(fx,fy,92),p(gx,fx,92), (3.46)
p(9y.fy.92),p(gx,fy,92),p(gy,fx,92)}
for all x,y,z € X, where 0 < A < 1. Further suppose that hypotheses (a), (b),

and (c) of Corollary 3.11 hold. Then f and g have a unique common fixed point
u € X and if g is continuous at u, then f is also continuous at u.

Corollary 3.12 includes a common fixed-point theorem of Dhage [5] for the
mappings f and g on a D-metric space characterized by the inequality

p(fx,fy,9z)
<Amax{p(gx,9y,92),p(gx,fx,92), (3.47)
p(gy.fy.92),p(gx,fy,92),p(gy,fx,92)}

forall x,y,ze Xand 0 <A < 1.

COROLLARY 3.13. Let X be a D-metric space and let f,g : X — X be two
mappings satisfying (3.37). Further suppose that
(@) fP(X)cgi(X),
(b) g”(X) is bounded and complete,
(c) {f,g} is commuting.
Then f and g have a unique common fixed point u and if g% is continuous at
u, then f? is also continuous at u.

Notice that Corollary 3.13 includes a class of common fixed-point mappings
f and g on a D-metric space X characterized by the inequality

p(fPx,fPy,frz)
<Amax {p(gix,9%y,92),p(9x, [P x,992), (3.48)
p(g%y,.f?y,9%2),p(9%, f*v,972),p (9%, fFx,92)}

for all x,v,z€ X and 0 < A < 1. See [5].
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4. Weak commuting mappings in compact D-metric spaces. In this sec-
tion, we prove some common fixed-point theorems for the pairs of singleval-
ued and multivalued coincidentally commuting mappings on a D-metric space
satisfying a contraction condition more general than (4.3). But in this case the
D-metric space under consideration is required to satisfy a stronger condition
of compactness and the mappings under consideration are required to satisfy
the continuity condition on the D-metric spaces. Our results of this section
generalize some earlier known fixed-point theorems such as those of Dhage
[9] and Rhoades [12] for single maps as well as for a pair of maps on D-metric
spaces.

THEOREM 4.1. Let X be a compact D-metric space and let F : X — CB(X) and
g : X — X be two continuous mappings satisfying, for some positive real number
T!

6" (Fx,Fy,Fz)
<max{p"(gx,9y,92),6" (Fx,Fy,gz),8" (gx,Fx,gz), 4.1)
6" (9y,Fy,92),6" (gx,Fy,92),6" (gy,Fx,92)}

forall x,y,z € X for which the right-hand side is not zero. Further suppose that
(@ F(X)cg(X),
(b) {F,g} is limit coincidentally commuting.
Then F and g have a unique common fixed point u € X such that Fu = {u} =
gu.

PROOF. From inequality (4.3), it follows that if F and g have a common fixed
point u € X, then it is unique and Fu = {u} = gu. Since X is compact and &
is continuous, both sides of inequality (4.1) are bounded on X. Now, there are
two cases.

CASE 1. Suppose that the right-hand side of (4.1) is zero for some x,y,z €
X. Then, we have

Fx=gx =gz, Fy=gy=gz. (4.2)

Now, proceeding with the arguments similar to Case 1 of the proof of
Theorem 3.1, it is proved that u = Fx = gx is a common fixed point of F
and g and so it is unique.

CASE 2. Suppose that the right-hand side of inequality (4.1) is not zero for
all x,y,z € X. Define a mapping T: X X X XX — (0,%) by

0" (Fx,Fy,Fz)

Mx.v.2) (4.3)

T(x,y,z) =

where

M(x,y,z) =max{p"(gx,g9y,92),6" (Fx,Fy,gz),6" (gx,Fx,gz), (4.4)
8" (9y,Fy,g92),6"(gx,Fy,g92),6"(9y,Fx,g92)}. '
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Clearly, the function T is well defined since M (x,y,z) # 0 for all x,y,z € X.
Since F and g are continuous, from the compactness of X it follows that the
function T attains its maximum on X3 at some point u,v,w € X. Call the
value c. It is clear from (4.1) that O < ¢ < 1. By the definition of ¢, we have
T(x,v,z) <c forall x,y,z € X. This further, in view of (4.3), implies that

6" (Fx,Fy,Fz)
<cM(x,y,z)

4.5

=cmax {p"(gx,g9y,92),6" (Fx,Fy,Fz),8" (gx,Fx,gx), (4.5)

0" (9y,Fy,92),0" (9gx,Fy,92),0" (9y,Fx,gz)}

for all x,y,z € X.

As X is compact, it is complete and g(X) is bounded in view of the con-
tinuity of g on X. Now, the desired conclusion follows by an application of
Theorem 3.1. This completes the proof. O

Now we derive some interesting corollaries.

COROLLARY 4.2. Let X be a compact D-metric space and let F : X — CB(X)
be a continuous mapping satisfying

6(Fx,Fy,Fz) <max {p(x,y,z),8(Fx,Fy,z),6(x,Fx,z),

S(v,Fy,z),6(x,Fy,2),6(y,Fx,z)} (4.6)

forall x,y,z € X for which the right-hand side is not zero. Then F has a unique
fixed point u € X such that Fu = {u}.

PROOF. The proof follows by letting g = I in Theorem 4.1, where I is the
identity map on X. O

COROLLARY 4.3 (see [3]). Let X be a compact D-metric space and let F : X —
CB(X) be a continuous mapping satisfying

6(Fx,Fy,Fz) <p(x,y,z) (4.7)

for all x,y,z € X for which p(x,y,z) # 0. Then F has a unique fixed point
u € X such that Fu = {u}.

COROLLARY 4.4. Let X be a compact D-metric space and let f,g: X — X be
two continuous mappings satisfying

p(fx,fy,fz) <max{p(gx,g9y,92),p(fx,fy,92),p(gx,fx,92),

(4.8)
P9y, fy,92),p(9x,f¥,92),p(9y,fx,92)}
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forall x,y,z € X for which the right-hand side is not zero. Further suppose that
(@ f(X)<cgX),
(b) {f,g} is limit coincidentally commuting.

Then f and g have a unique common fixed point.

PROOF. The proof follows by letting F = {f}, a single-valued mapping in
Theorem 4.1. O

COROLLARY 4.5. Let X be a compact D-metric space and let f : X — X be a
continuous mapping satisfying

p(fx,fy,fz) <max{p(x,y,2),p(fx,fy,2),p(x,fx,2), o)
PV, f¥,2),p(x,f¥,2),p (¥, fx,2)} '

forall x,y,z € X for which the right-hand side is not zero. Then f has a unique
fixed point.

PROOF. The conclusion follows by letting g = I in Corollary 4.4, where I is
the identity map on X. O

Note that Corollaries 4.4 and 4.5 include the fixed-point theorems of Dhage
[5] and Rhoades [12] for the mappings f and g on a D-metric space X charac-
terized by the inequalities

p(fx,fy,fz) <max{p(gx,g9y,92),p(gx,fx,92), €10
4.10
P9y, fy,92),p(9x,fy,92),p(9y,fx,92)},

p(fx,fy,fz) <max{p(x,y,z),p(x,fx,2), Wi
4.11
PV, fy,2),p(x,fy,2),p(y,fx,2)},

respectively.

THEOREM 4.6. Let X be a D-metric space and let F: X — CB(X),g: X - X
be two continuous mappings satisfying (4.1). Suppose further that

(a) F(X) cg(X),

(b) g(X) is compact,

(c) {f,g} is coincidentally commuting.
Then F and g have a unique common fixed point u € X such that Fu = {u} =

gu.
PROOF. lLet A = g(X). Then A is a compact D-metric space and F and g

define the maps F: A — CB(A) and g : A — A. Now, the desired conclusion
follows by an application of Theorem 4.1. O

COROLLARY 4.7. Let X be a D-metric space and let f,g : X — X be two
continuous mappings satisfying (4.8). Further suppose that
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(@ f(X)cgX),
(b) g(X) is compact,
(c) {f,g} is coincidentally commuting.
Then f and g have a unique common fixed point.

5. Remarks and conclusion. It has been noted in [6, 10] that the fixed-point
theorems for the limit coincidentally commuting mappings have some nice ap-
plications to approximation theory, and therefore it is of interest to discuss
the fixed-point theorems for a wide class of coincidentally commuting map-
pings in a D-metric space. The terms “compatible” and “6-compatible” have
been used by Jungck and Rhoades [11] for limit coincidentally commuting and
coincidentally commuting mappings, respectively, but our terminologies are
natural and more informative than the previous one patterned after [4]. Fur-
ther we note that a similar study can be made for coincidentally pseudocom-
muting mappings on a D-metric space and analogously for limit coincidentally
pseudocommuting mappings. But in order to prove fixed-point theorems for
these classes of weakly pseudocommuting mappings, we require a stronger
contraction condition for the mappings F and g under consideration:

6" (Fx,Fy,Fz)
< ¢p(max {p"(gx,9y,92),D" (Fx,Fy,gz),D" (gx,Fx,gz), (5.1)
D"(gy,Fy,9z),D"(gx,Fy,gz),D"(gy,Fx,gz)}).

Obviously, condition (5.1) implies condition (3.2) on a D-metric space X and
hence the fixed-point theorems for weakly pseudocommuting mappings can
be obtained very easily with appropriate modifications. Finally, we close this
discussion with the following open question.

OPEN QUESTION. Can we prove fixed-point theorems for a class of multival-
ued mapping F on a D-metric space X satisfying the generalized contraction
condition

K(Fx,Fy,Fz) <Amax{p(x,v,z),D(Fx,Fy,z),D(x,Fx,z),

(5.2)
D(y,Fy,z),D(x,Fy,z),D(y,Fx,z)}

forall x,y,ze Xand 0 <A <1?
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