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CONTINUOUS DEPENDENCE OF SOLUTIONS
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We prove continuous dependence on the intensity coefficient and continuous de-
pendence on the external data in the theory of magneto-elasticity. We do not re-
quire the Lamé coefficients to be positive. We use logarithmic convexity arguments
similar to those of Ames and Straughan (1992) in classical thermoelasticity.
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1. Introduction. In recent years, much attention has been directed to the

knowledge of existence, uniqueness, and continuous dependence in several

thermomechanical situations. We recall the book of Ames and Straughan [2]

where the energy method is widely considered as a tool to obtain qualitative

properties of solutions. We focus our interest on coupling elastic effects with

magnetic effects. A derivation of the equations and recent papers on magneto-

thermoelasticity and isothermal magneto-elasticity can be found in [3, 4, 5, 6,

7, 8, 9, 10, 11, 12].

In this paper, we consider the dynamical theory of magneto-elasticity. The

system of equations is

ρu,tt−µ�u−(λ+µ)∇divu−α[∇×h]×H= ρm, (1.1)

βh,t+∇×[∇×h]−β∇×[v×H]= ρr, (1.2)

divh= 0, (1.3)

where u denotes the displacement, v = ut is the velocity, and h the magnetic

field. A (known) constant magnetic field is denoted by H = (H,0,0), ρ, α, and

β are positive constants, and m and r are the supply terms.

Here and from now on, we use summation and differentiation conventions:

subscripts preceded by a comma denote partial differentiation with respect to

the corresponding Cartesian coordinate; summation over repeated subscripts

is implied.

The logarithmic convexity method is a very useful source of information

about the qualitative behavior of the solutions of several kind of equations and

systems (see, e.g., [2]). In particular, the method has been used to analyze the

behavior of the solutions in classical thermoelasticity. Ames and Straughan [1]
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applied a logarithmic convexity technique to achieve continuous dependence

on the supply terms and structural stability on the coupling term for the classi-

cal linear theory of thermoelasticity. They did not require the elasticity tensor

to be sign-definite. All they needed was that the elasticity coefficients were

symmetric.

The aim of this paper is to obtain a continuous dependence result on the

intensity of the vector field H and the supply terms. Our main tool is also the

logarithmic convexity method.

In this paper, we restrict our attention to homogeneous and isotropic mate-

rials. It is worth recalling that the extension to inhomogeneous and anisotropic

materials would be straightforward.

Let B be a bounded domain in the three-dimensional Euclidean space whose

boundary ∂B is smooth enough to allow the application of the divergence theo-

rem. We assume that the set of equations (1.1), (1.2), and (1.3) holds in B×(0, t1)
for a time value t1 <∞, and we assume the boundary conditions

u= 0, h·n= 0, [∇×h]×n= 0, on ∂B×(0,∞), (1.4)

for all t > 0. Here and from now on, we denote by n the normal vector to the

boundary directed to the exterior. We impose the initial conditions

u(x,0)= f(x), v(x,0)= g(x), h(x,0)= h0(x), in B. (1.5)

For later use, we recall that the following inequality

∫
B

(
hihi+hi,jhi,j

)
dV ≤ C

∫
B

(
hi,j−hj,i

)(
hi,j−hj,i

)
dV (1.6)

holds with any vector field (hi) that satisfies (1.3) and the second and third

equalities of (1.4). Here, C is a constant that depends on the domain B.

Here are the contents of the paper. In Section 2, we prove some lemmas

and we state some other preliminaries. In Section 3, we prove the continuous

dependence result.

2. Preliminaries. We denote by (u(1)i ,h(1)i ) the solution corresponding to

the external data (m(1)
i ,r (1)i ) and intensity H(1). Let (u(2)i ,h(2)i ) be the solution

corresponding to the external data (m(2)
i ,r (2)i ) and intensityH(2). We introduce

the notation

wi =u(2)i −u(1)i , li = h(2)i −h(1)i , K =H(2)−H(1), K = (K,0,0),
Fi = ρ

(
m(2)
i −m(1)

i

)
, Ri = ρ

(
r (2)i −r (1)i

)
.

(2.1)



CONTINUOUS DEPENDENCE IN MAGNETO-ELASTICITY 231

It follows that (wi,li) satisfies the system

ρw,tt−µ�w−(λ+µ)∇divw−α[∇× l]×H(1)−α[∇×h(2)
]×K = F, (2.2)

βl,t+∇×[∇× l]−β∇×[ẇ×H(1)]−β∇×[v(2)×K
]= R, (2.3)

div l = 0, (2.4)

the boundary conditions

w= 0, l·n= 0, [∇× l]×n= 0, on ∂B×(0,∞), (2.5)

and the initial conditions

w(x,0)= ẇ(0,x)= l(x,0)= 0, in B. (2.6)

Lemma 2.1. Let

V(t)=
∫ t

0

∫
B

[
ρẇẇ+µ∇w·∇w+(λ+µ)(divw)2+αl· l]dV ds. (2.7)

Then,

V(t)= 2
∫ t

0

∫
B
(t−s)

[
Fiẇi+Sili+αK

(
ẇ2

(
h(2)2,1−h(2)1,2

)
+ẇ3

(
h(2)3,1−h(2)1,3

))

+Kα
(
l1
(
−u̇(2)2,2−u̇(2)3,3

)
+l2u̇(2)2,1+l3u̇(2)3,1

)

− α
β
(
li,j−lj,i

)(
li,j−lj,i

)]
dV ds,

(2.8)

where

Si(t)= αβRi(t). (2.9)

Proof. Differentiate twice and use the evolution equations and the bound-

ary conditions to obtain

d2V
dt2

= 2
∫
B

[
µwi,jẇi,j+(λ+µ)wi,iẇj,j+ρẇiẅi+αlil̇i

]
dV

= 2
∫
B

[
µwi,jẇi,j+(λ+µ)wi,iẇj,j

]
dV

−2
∫
B

[
µwi,jẇi,j+(λ+µ)wi,iẇj,j−αH1(ẇ2

(
l2,1−l1,2

)+ẇ3
(
l3,1−l1,3

))]
dV

+2
∫
B

[
Fiẇi+αK

(
ẇ2

(
h(2)2,1−h(2)1,2

)
+ẇ3

(
h(2)3,1−h(2)1,3

))]
dV

−2
∫
B

[
αH1(ẇ2

(
l2,1−l1,2

)+ẇ3
(
l3,1−l1,3

))]
dV
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+2
∫
B

[
Sili+Kα

(
l1
(
−u̇(2)2,2−u̇(2)3,3

)
+l2u̇(2)2,1+l3u̇(2)3,1

)

− α
β
(
li,j−lj,i

)(
li,j−lj,i

)]
dV

= 2
∫
B

[
Fiẇi+Sili+αK

(
ẇ2

(
h(2)2,1−h(2)1,2

)
+ẇ3

(
h(2)3,1−h(2)1,3

))

+Kα
(
l1
(
−u̇(2)2,2−u̇(2)3,3

)
+l2u̇(2)2,1+l3u̇(2)3,1

)
−α
β
(
li,j−lj,i

)(
li,j−lj,i

)]
dV.

(2.10)

The lemma follows after two quadratures and from the equality

∫ t
0

(∫ s
0
f(τ)dτ

)
ds =

∫ t
0
(t−s)f (s)ds, (2.11)

which is satisfied by every function f(s).

It will be useful to introduce the notation

Pi(t)=
∫ t

0
li(s)ds. (2.12)

To obtain our results, we define the function

H(t)=
∫ t

0

∫
B

(
ρwiwi+ αβ (t−s)

(
Pi,j−Pj,i

)(
Pi,j−Pj,i

))
dV ds. (2.13)

It is clear that

dH
dt

= 2
∫ t

0

∫
B

(
ρwiẇi+ α

2β
(
Pi,j−Pj,i

)(
Pi,j−Pj,i

))
dV ds. (2.14)

The second derivative of the function H is given in the next lemma.

Lemma 2.2. The second derivative of the function H is

d2H
dt2

= 4
∫ t

0

∫
B

[
ρẇiẇi+ αβ (t−s)

(
li,j−lj,i

)(
li,j−lj,i

)]
dV ds

−4
∫ t

0

∫
B
(t−s)

[(
Fiẇi+Sili

)+αK(ẇ2

(
h(2)2,1−h(2)1,2

)
+ẇ3

(
h(2)3,1−h(2)1,3

))

+Kα
(
l1
(
−u̇(2)2,2−u̇(2)3,3

)
+l2u̇(2)2,1+l3u̇(2)3,1

)]
dV ds

+2
∫
B

[(
Fiwi+Qili

)+αK(w2

(
h(2)2,1−h(2)1,2

)
+w3

(
h(2)3,1−h(2)1,3

))]
dV

+2
∫
B

[
Kα
(
l1
(
−u(2)2,2−u(2)3,3

)
+l2u(2)2,1+l3u(2)3,1

)

−Kα(l1(−f3,3−f2,2
)+l2f2,1+l3f3,1

)]
dV,

(2.15)
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where

Qi(t)=
∫ t

0
Si(s)ds. (2.16)

Proof. A direct differentiation gives

d2H
dt2

= 2
∫ t

0

∫
B
ρẇiẇi dV ds+2

∫ t
0

∫
B

[
ρwiẅi+ αβ

(
Pi,j−Pj,i

)(
li,j−lj,i

)]
dV ds.

(2.17)

Now, we make some calculations to determine the evolution of the second

integral. If we multiply (2.2) by wi, and integrate over B, we obtain

∫
B
ρwiẅi dV

=−
∫
B

[
µwi,jwi,j+

(
λ+µ)wi,iwj,j−αH1(w2

(
l2,1−l1,2

)+w3
(
l3,1−l1,3

))]
dV

+
∫
B

[
Fiwi+αK

(
w2

(
h(2)2,1−h(2)1,2

)
+w3

(
h(2)3,1−h(2)1,3

))]
dV.

(2.18)

If we integrate (2.3) with respect to the time parameter, multiply it by li, and

integrate over B, we obtain

α
β

∫
B
lili dV

=−
∫
B

[
αH1(w2

(
l2,1−l1,2

)+w3
(
l3,1−l1,3

))− α
β
(
Pi,j−Pj,i

)(
li,j−lj,i

)]
dV

+
∫
B

[
Qili+Kα

(
l1
(
−u(2)2,2−u(2)3,3

)
+l2u(2)2,1+l3u(2)3,1

)

−Kα(l1(−f3,3−f2,2
)+l2f2,1+l3f3,1

)]
dV.

(2.19)

It follows that

∫
B

(
ρwiẅi+ αβ

(
Pi,j−Pj,i

)(
li,j−lj,i

))
dV

=−
∫
B

[
µwi,jwi,j+(λ+µ)wi,iwj,j+ αβ lili

]
dV

+
∫
B

[(
Fiwi+Qili

)+αK(w2

(
h(2)2,1−h(2)1,2

)
+w3

(
h(2)3,1−h(2)1,3

))]
dV

+
∫
B

[
Kα
(
l1
(
−u(2)2,2−u(2)3,3

)
+l2u(2)2,1+l3u(2)3,1

)

−Kα(l1(−f3,3−f2,2
)+l2f2,1+l3f3,1

)]
dV.

(2.20)
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Then, we obtain

d2H
dt2

= 4
∫ t

0

∫
B
ρẇiẇi dV ds

−2
∫ t

0

∫
B

[
µwi,jwi,j+(λ+µ)wi,iwj,j+ αβ lili+ρẇiẇi

]
dV ds

+2
∫
B

[(
Fiwi+Qili

)+αK(w2

(
h(2)2,1−h(2)1,2

)
+w3

(
h(2)3,1−h(2)1,3

))]
dV

+2
∫
B

[
Kα
(
l1
(
−u(2)2,2−u(2)3,3

)
+l2u(2)2,1+l3u(2)3,1

)

−Kα(l1(−f3,3−f2,2
)+l2f2,1+l3f3,1

)]
dV.

(2.21)

Lemma 2.2 is a consequence of Lemma 2.1 and equality (2.21).

We now state a lemma concerning the behaviour of the magnetic field, which

will also be used in the next section.

Lemma 2.3. There exist three positive constants A, B∗, and C∗ such that

∫ t
0

∫
B
lili dV ds ≤

∫ t1
0

∫
B

[
ASiSi+B∗ρẇiẇi+C∗K2]dV ds, (2.22)

for t ≤ t1.

Proof. In view of (2.3), we have

∫ t
0

∫
B
lili dV ds = 1

β

∫ t
0

∫
B
βlili dV ds

=−1
β

∫ t
0

∫
B

∂
∂s
[
(t−s)βlili

]
dV ds

+ 2
β

∫ t
0

∫
B
(t−s)βli ∂li∂s dV ds

= 2
β

∫ t
0

∫
B
(t−s)

[
Rili−

(
li,j−lj,i

)(
li,j−lj,i

)

−βH(1)(ẇ2
(
l2,1−l1,2

)+ẇ3
(
l3,1−l1,3

))

−βK
(
u̇(2)2

(
l2,1−l1,2

)+u̇(2)3

(
l3,1−l1,3

))]
dV ds.

(2.23)
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The use of the arithmetic-geometric mean inequality leads to the following

estimates:

∫ t
0

∫
B
(t−s)Rili dV ds ≤ ε1

2

∫ t
0

∫
B
t1RiRidV ds+ 1

2ε1

∫ t
0

∫
B
t1lili dV ds,

∫ t
0

∫
B
(t−s)(ẇ2

(
l2,1−l1,2

)+ẇ3
(
l3,1−l1,3

))
dV ds

≤ ε2

2

∫ t
0

∫
B
t1
(
li,j−lj,i

)(
li,j−lj,i

)
dV ds+ 1

2ε2

∫ t
0

∫
B
t1ẇiẇi dV ds,

∫ t
0

∫
B
(t−s)K

(
u̇(2)2

(
l2,1−l1,2

)+u̇(2)3

(
l3,1−l1,3

))
dV ds

≤ ε3

2

∫ t
0

∫
B
t1K2dV ds+ 1

2ε3

∫ t
0

∫
B
t1u̇

(2)
i
(
li,j−lj,i

)(
li,j−lj,i

)
dV ds,

(2.24)

where ε1, ε2, and ε3 are arbitrary positive constants.

If we assume that u̇(2)i is uniformly bounded on the interval [0, t1], we can

make a suitable choice of the parameters εi (i= 1,2,3) to obtain the estimate

(2.22), where A, B∗, and C∗ can be easily computed.

3. Continuous dependence. In this section, we obtain continuous depen-

dence and structural stability results. We assume that the functions

sup
B

∣∣∣h(2)i,j
∣∣∣2
, sup

B

∣∣∣u̇(2)i,j
∣∣∣2
, sup

B

∣∣∣u(2)i,j −fi,j
∣∣∣2
, (3.1)

are uniformly bounded by a constant M .

Here, we introduce a family of functions

Hω(t)=H(t)+ω, (3.2)

where ω is an arbitrary positive constant.

Lemma 3.1. Let

ω=
∫ t1

0

∫
B

(
FiFi+2K2+SiSi+QiQi

)
dV ds. (3.3)

Then, there exists a positive constant ξ such that

Hω
d2Hω
dt2

−
(
dHω
dt

)2

≥−ξH2
ω, (3.4)

for t ≤ t1.
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Proof. From the definition of Hω and Lemma 2.2, it follows that

Hω
d2Hω
dt2

−
(
dHω
dt

)2

= 4N2+4ω
∫ t

0

∫
B

(
ρẇiẇi+(t−s)αβ

(
li,j−lj,i

)(
li,j−lj,i

))
dV ds

−Hω
(

4
∫ t

0

∫
B
(t−s)

[(
Fiẇi+Sili

)+αK(ẇ2

(
h(2)2,1−h(2)1,2

)
+ẇ3

(
h(2)3,1−h(2)1,3

))

+Kα
(
l1
(
−u̇(2)2,2−u̇(2)3,3

)
+l2u̇(2)2,1+l3u̇(2)3,1

)]
dV ds

+2
∫ t

0

∫
B

[(
Fiwi+Qili

)+αK(w2

(
h(2)2,1−h(2)1,2

)
+w3

(
h(2)3,1−h(2)1,3

))]
dV

+2
∫
B

[
Kα
(
l1
(
−u(2)2,2−u(2)3,3

)
+l2u(2)2,1+l3u(2)3,1

)

−Kα(l1(−f3,3−f2,2
)+l2f2,1+l3f3,1

)]
dV ds

)
,

(3.5)

where

N2 = I1I2−I23 ,

I1 =
∫ t

0

∫
B

(
ρwiwi+(t−s)αβ

(
Pi,j−Pj,i

)(
Pi,j−Pj,i

))
dV ds,

I2 =
∫ t

0

∫
B

[
ρẇiẇi+(t−s)αβ

(
li,j−lj,i

)(
li,j−lj,i

)]
dV ds,

I3 =
∫ t

0

∫
B

(
ρwiẇi+(t−s)αβ

(
Pi,j−Pj,i

)(
li,j−lj,i

))
dV ds.

(3.6)

In view of the Schwarz inequality, we have N2 ≥ 0.

Now, we estimate some integrals which are on the right-hand side of equality

(3.5). After some uses of the Hölder inequality and inequality (1.6), we can

obtain the existence of constants ai such that

∫ t
0

∫
B
(t−s)Fiẇi dV ds ≤ a1

(∫ t
0

∫
B
ρẇiẇi dV ds

)1/2(∫ t
0

∫
B
FiFi dV ds

)1/2
,

∫ t
0

∫
B
(t−s)Sili dV ds ≤ a2

(∫ t
0

∫
B
(t−s)(li,j−lj,i)(li,j−lj,i)dV ds

)1/2

×
(∫ t

0

∫
B
SiSi dV ds

)1/2
,

∫ t
0

∫
B
(t−s)αK

(
ẇ2

(
h(2)2,1−h(2)1,2

)
+ẇ3

(
h(2)3,1−h(2)1,3

))
dV ds

≤ a3

(∫ t
0

∫
B
ρẇiẇi dV ds

)1/2(∫ t
0

∫
B
K2dV ds

)1/2
,



CONTINUOUS DEPENDENCE IN MAGNETO-ELASTICITY 237

∫ t
0

∫
B
(t−s)Kα

(
l1
(
−u̇(2)2,2−u̇(2)3,3

)
+l2u̇(2)2,1+l3u̇(2)3,1

)
dV ds

≤ a4

(∫ t
0

∫
B
(t−s)(li,j−lj,i)(li,j−lj,i)dV ds

)1/2

×
(∫ t

0

∫
B
K2dV ds

)1/2
.

(3.7)

From (3.7), it follows that

∫ t
0

∫
B
(t−s)

[(
Fiẇi+Sili

)+αK(ẇ2

(
h(2)2,1−h(2)1,2

)
+ẇ3

(
h(2)3,1−h(2)1,3

))

+Kα
(
l1
(
−u̇(2)2,2−u̇(2)3,3

)
+l2u̇(2)2,1+l3u̇(2)3,1

)]
dV ds

≤D
(∫ t

0

∫
B

(
ρẇiẇi dV ds+(t−s)

(
li,j−lj,i

)(
li,j−lj,i

))
dV ds

)1/2

×
(∫ t

0

∫
B

(
FiFi+SiSi+K2)dV ds

)1/2
,

(3.8)

where D is an easily computable constant that depends on the constitutive

coefficients, the initial conditions, the time t1, and the domain.

The arithmetic-geometric mean inequality implies that

4Hω
∫ t

0

∫
B
(t−s)

[(
Fiẇi+Sili

)+αK(ẇ2

(
h(2)2,1−h(2)1,2

)
+ẇ3

(
h(2)3,1−h(2)1,3

))

+Kα
(
l1
(
−u̇(2)2,2−u̇(2)3,3

)
+l2u̇(2)2,1+l3u̇(2)3,1

)]
dV ds

≤D2H2
ω+4

(∫ t
0

∫
B

(
ρẇiẇi dV ds+(t−s)

(
li,j−lj,i

)(
li,j−lj,i

))
dV ds

)

×
(∫ t

0

∫
B

(
FiFi+SiSi+K2)dV ds

)
.

(3.9)

Similarly, we can obtain several constants bi such that

∫ t
0

∫
B
FiwidV ds ≤ b1

(∫ t
0

∫
B
ρwiwidV ds

)1/2(∫ t
0

∫
B
FiFi dV ds

)1/2
,

∫ t
0

∫
B
Qili dV ds ≤

(∫ t
0

∫
B
lili dV ds

)1/2(∫ t
0

∫
B
QiQidV ds

)1/2
,

(3.10)

∫ t
0

∫
B
αK
(
w2

(
h(2)2,1−h(2)1,2

)
+w3

(
h(2)3,1−h(2)1,3

))
dV ds

≤ b3

(∫ t
0

∫
B
ρwiwidV ds

)1/2(∫ t
0

∫
B
K2dV ds

)1/2
,

(3.11)

∫ t
0

∫
B

[
Kα
(
l1
((
−u(2)2,2−u(2)3,3

)
−(−f3,3−f2,2

))

+l2
(
u(2)2,1−f2,1

)
+l3

(
u(2)3,1−f3,1

))]
dV ds

≤ b4

(∫ t
0

∫
B
lili dV ds

)1/2(∫ t
0

∫
B
K2dV ds

)1/2
.

(3.12)
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Thus,

2Hω
∫ t

0

∫
B

(
Fiwi+αK

(
w2

(
h(2)2,1−h(2)1,2

)
+w3

(
h(2)3,1−h(2)1,3

)))
dV ds

≤ EH2
ω+Hω

(∫ t
0

∫
B

(
FiFi+K2)dV ds

)
.

(3.13)

In (3.13), E is a constant that can be computed in terms of the constitutive

coefficients, the initial conditions, the time t1, and the domain.

In view of the estimates (2.22), (3.10), and (3.13), we can see that

2Hω
∫ t

0

∫
B
Qili dV ds

≤ 2Hω
(∫ t

0

∫
B

(
ASiSi+C∗K2)dV ds

)1/2(∫ t
0

∫
B
QiQidV ds

)1/2

+2Hω
(
B∗
∫ t

0

∫
B
ρẇiẇi dV ds

)1/2(∫ t
0

∫
B
QiQidV ds

)1/2
,

2Hω
∫ t

0

∫
B

[
Kα
(
l1
((
−u(2)2,2−u(2)3,3

)
+(f3,3+f2,2

))

+l2
(
u(2)2,1−f2,1

)
+l3

(
u(2)3,1

)
−f3,1

)]
dV ds

≤N∗Hω
(∫ t

0

∫
B

(
ASiSi+C∗K2)dV ds

)1/2(∫ t
0

∫
B
K2dV ds

)1/2

+N∗Hω
(
B∗
∫ t

0

∫
B
ρẇiẇi dV ds

)1/2(∫ t
0

∫
B
K2dV ds

)1/2
.

(3.14)

Again, N∗ is an easily computable positive constant. If we use the arithmetic-

geometric mean inequality, we obtain

2Hω
∫ t

0

∫
B

(
Qili+

[
Kα
(
l1
((
−u(2)2,2−u(2)3,3

)
+(f3,3+f2,2

))

+l2
(
u(2)2,1−f2,1

)
+l3

(
u(2)3,1−f3,1

))])
dV ds

≤ 4F2H2
ω+

(∫ t
0

∫
B

((
C∗+1

)
K2+ASiSi+QiQi

)
dV ds

)

+ B
∗F2

2
H2
ω+4

(∫ t
0

∫
B
ρẇiẇi dV ds

)(∫ t
0

∫
B

(
K2+QiQi

)
dV ds

)
,

(3.15)

where F can be computed in terms of the constitutive coefficients, the initial

conditions, the time t1, and the domain.

From (3.5), (3.9), (3.13), and (3.15), we conclude that we can explicitly deter-

mine a constant ξ satisfying (3.4).

Theorem 3.2. Let (wi,li) be a solution of the problem determined by system

(2.2), (2.3) with initial conditions (2.4), and boundary conditions (2.5). Then, there
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exists a positive constant M∗ such that

Hω(t)≤M∗
(∫ t1

0

∫
B

(
FiFi+2K2+SiSi+QiQi

)
dV ds

)1−t/t1
, (3.16)

for all t ≤ t1, where ω is given in (3.3).

Proof. If we define the function

P(t)= ln
[
Hω(t)exp

(
1
2
ξt2

)]
, (3.17)

then

d2P
dt2

=H−2
ω

(
Hω

d2Hω
dt2

−
(
dHω
dt

)2

+ξH2
ω

)
. (3.18)

Thus, according to (3.4),

d2P
dt2

≥ 0. (3.19)

Jensen’s inequality gives

Hω(t)≤
[
Hω(0)

]1−t/t1[Hω(t1)]t/t1 exp
[

1
2
ξt
(
t1−t

)]
, (3.20)

for t ∈ [0, t1]. The theorem is proved taking

M∗ =max
(
1,Hω

(
t1
))

exp
[

1
8
ξt2

1

]
. (3.21)
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