
IJMMS 2003:39, 2487–2499
PII. S0161171203203197

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

AN OPTIMAL ORDER YIELDING DISCREPANCY PRINCIPLE
FOR SIMPLIFIED REGULARIZATION OF ILL-POSED

PROBLEMS IN HILBERT SCALES

SANTHOSH GEORGE and M. THAMBAN NAIR

Received 19 March 2002

Recently, Tautenhahn and Hämarik (1999) have considered a monotone rule as a
parameter choice strategy for choosing the regularization parameter while con-
sidering approximate solution of an ill-posed operator equation Tx =y , where T
is a bounded linear operator between Hilbert spaces. Motivated by this, we pro-
pose a new discrepancy principle for the simplified regularization, in the setting
of Hilbert scales, when T is a positive and selfadjoint operator. When the data y
is known only approximately, our method provides optimal order under certain
natural assumptions on the ill-posedness of the equation and smoothness of the
solution. The result, in fact, improves an earlier work of the authors (1997).
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1. Introduction. Tikhonov regularization (cf. [2]) is one of the most widely

used procedures to obtain stable approximate solution to an ill-posed operator

equation

Tx =y, (1.1)

where T : X → Y is a bounded linear operator between Hilbert spaces X and

Y . Suppose that the data y is not exactly known, but only an approximation

of it, namely ỹ , is available. Then, the regularized solution x̃α, by Tikhonov

regularization, is obtained by minimizing the map

x � �→‖Tx−ỹ‖2+α‖x‖2 (1.2)

for α > 0. For y ∈ R(T)+R(T)⊥, if x̂ is the generalized solution of (1.1), that

is, x̂ = T †y , where T † is the Moore-Penrose generalized inverse of T , then

estimates for the error ‖x̂− x̃α‖ are obtained by choosing the regularization

parameter α appropriately. It is known that (see, e.g., [2]) if x̂ ∈ R((T∗T)ν) for

some ν > 0 and if ‖y − ỹ‖ ≤ δ for some noise level δ > 0, then the optimal

order for the above error is O(δµ), where µ =min{2ν/(2ν+1),2/3}.
In order to improve the error estimates available in Tikhonov regularization,

Natterer [9] carried out error analysis in the framework of Hilbert scales. Sub-

sequently, many authors extended, modified, and generalized Natterer’s work
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to obtain error bounds under various contexts (see, e.g., Natterer [9], Hegland

[3], Schröter and Tautenhahn [12], Mair [6], Nair et al. [8], and Nair [7]).

If T is a positive and selfadjoint operator on a Hilbert space, then the sim-

plified regularization introduced by Lavrentiev is better suited than Tikhonov

regularization in terms of speed of convergence and condition number in the

case of finite-dimensional approximations (cf. Schock [11]).

In [1], simplified regularization in the framework of Hilbert scales was stud-

ied for the first time and obtained error estimates under a priori and a poste-

riori parameter choice strategies. The a posteriori choice of the parameter in

that paper has a drawback that it can yield the optimal rate only under certain

restricted smoothness assumption on the solution.

In this paper, we propose a new discrepancy principle, for choosing the reg-

ularization parameter α, for simplified regularization in the setting of Hilbert

scales, which eliminates the drawback of the method in [1] yielding the optimal

order for a range of values of smoothness. The discrepancy principle of this

paper is motivated by a recent procedure adopted by Tautenhahn and Hämarik

[13].

2. Preliminaries. Let H be a Hilbert space and let A :H →H be a bounded,

positive and selfadjoint operator on H. Recall that A is said to be a positive

operator if 〈Ax,x〉 ≥ 0 for every x ∈H. For y ∈ R(A), the range of A, consider

the operator equation

Ax =y. (2.1)

Let x̂ be the minimal norm solution of (2.1). It is well known that if R(A) is not

closed inH, then the problem of solving (2.1) for x̂ is ill-posed in the sense that

small perturbation in the data y can cause large deviations in the solution.

A prototype of (2.1) is an integral equation of the first kind,

∫ 1

0
k(s,t)x(t)dt =y(s), 0≤ s ≤ 1, (2.2)

where k(·,·) is a nondegenerate kernel which is square integrable, that is,

∫ 1

0

∫ 1

0

∣∣k(s,t)∣∣2dtds <∞, (2.3)

satisfying k(s,t)= k(t,s) for all s, t in [0,1], and such that the eigenvalues of

the corresponding integral operator A : L2[0,1]→ L2[0,1],

(Ax)(s)=
∫ 1

0
k(s,t)x(t)dt, 0≤ s ≤ 1, (2.4)
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are all nonnegative. For example, consider the kernel k(·,·) defined by

k(s,t)=

(1−s)t, if 0≤ s ≤ t ≤ 1,

(1−t)s, if 0≤ t ≤ s ≤ 1.
(2.5)

Clearly, k(s,t) = k(t,s), so that A : L2[0,1] → L2[0,1], defined as in (2.4), is

a selfadjoint operator. Moreover, the eigenvalues of this operator are 1/n2π2

for n= 1,2, . . . (see Limaye [5, page 329]).

For considering the regularization of (2.1) in the setting of Hilbert scales,

we consider a Hilbert scale {Ht}t∈R generated by a strictly positive operator

L :D(L)→H with its domain D(L) dense in H satisfying

‖Lx‖ ≥ ‖x‖, x ∈D(L). (2.6)

Recall (cf. [4]) that the space Ht is the completion of D := ⋂∞
k=0D(Lk) with

respect to the norm ‖x‖t , induced by the inner product

〈u,v〉t =
〈
Ltu,Ltv

〉
, u,v ∈D. (2.7)

Moreover, if β≤ γ, then the embedding Hγ ↩Hβ is continuous, and therefore

the norm ‖·‖β is also defined in Hγ and there is a constant c0,1 such that

‖x‖β ≤ c0,1‖x‖γ, x ∈Hγ. (2.8)

We assume that the ill-posed nature of the operator A is related to the Hilbert

scale {Ht}t∈R according to the relation

c1‖x‖−a ≤ ‖Ax‖ ≤ c2‖x‖−a, x ∈H, (2.9)

for some positive reals a, c1, and c2.

For the example of an integral operator given in the previous paragraph, one

may take L to be defined by

Lx :=
∞∑
j=1

j2〈x,uj〉uj, (2.10)

where uj(t) :=√2sin(jπt), j ∈N, and the domain of L is

D(L) :=

x ∈ L2[0,1] :

∞∑
j=1

j4
∣∣〈x,uj〉|2 <∞


. (2.11)

In this case, it can be seen that

Ht =

x ∈ L2[0,1] :

∞∑
j=1

j4t∣∣〈x,uj〉∣∣2 <∞

 (2.12)
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and the constants a, c1, and c2 in (2.9) are given by a = 1 and c1 = c2 = 1/π2

(see Schröter and Tautenhahn [12, Section 4]).

As in [1], we consider the regularized solution of (1.1) as the solution of the

well-posed equation

(
A+αLs)xα =y, α > 0, (2.13)

where s is a fixed nonnegative real number.

Suppose that the data y 
= 0 is known only approximately, say ỹ 
= 0 with

‖y−ỹ‖ ≤ δ for a known error level δ > 0. Then, in place of (2.13), we consider

(
A+αLs)x̃α = ỹ. (2.14)

It can be seen that the solution x̃α of the above equation is the unique mini-

mizer of the function

x � �→ 〈Ax,x〉−2〈ỹ,x〉+α〈Lsx,x〉, x ∈D(L). (2.15)

We also observe that taking

As := L−s/2AL−s/2, (2.16)

(2.13) and (2.14) take the forms

Ls/2
(
As+αI

)
Ls/2xα =y, Ls/2

(
As+αI

)
Ls/2x̃α = ỹ, (2.17)

respectively. Note that the operatorAs defined above is positive and selfadjoint

bounded operator on H.

One of the crucial results for proving the results in [1] as well as the results

in this paper is the following result, where functions f and g are defined by

f(t)=min
{
ct1,c

t
2

}
, g(t)=max

{
ct1,c

t
2

}
, t ∈R, |t| ≤ 1, (2.18)

respectively.

Proposition 2.1 (see [1, Proposition 3.1]). For s ≥ 0 and |ν| ≤ 1,

f
(
ν
2

)
‖x‖−ν(s+a)/2 ≤

∥∥Aν/2s x
∥∥≤ g(ν

2

)
‖x‖−ν(s+a)/2, x ∈H. (2.19)

Using the above proposition, the following result has been proved in [1].

Theorem 2.2 (see [1, Theorem 3.2]). Suppose that x̂ ∈Ht , 0< t ≤ s+a, and

α> 0. Then

∥∥x̂− x̃α∥∥≤φ(s,t)αt/(s+a)‖x‖t+ψ(s)α−a/(s+a)δ, (2.20)
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where

φ(s,t)= g
(
(s−2t)/(2s+2a)

)
f
(
s/(2s+2a)

) , ψ(s)= g
(−s/(2s+2a)

)
f
(
s/(2s+2a)

) . (2.21)

In particular, if α= c0δ(s+a)/(t+a) for some constant c0 > 0, then

∥∥x̂− x̃α∥∥≤ η(s,t)δt/(t+a), (2.22)

where

η(s,t)=max
{
φ(s,t)‖x̂‖tct/(t+a)0 ,ψ(s)c−a/(s+a)0

}
. (2.23)

Let Rα = (As+αI)−1. We will make use of the relation

∥∥RαAτs ∥∥≤ατ−1, α > 0, 0< τ ≤ 1, (2.24)

which follows from the spectral properties of the selfadjoint operatorAs , s > 0.

In [1], the authors considered parameter choice strategies, a priori and a

posteriori, which yield the optimal rateO(δt/(t+a)) if x̂ ∈Ht for certain specific

values of t. The a posteriori parameter choice strategy in [1] is to chooseα such

that

αp+1
∥∥(As+αI)−p−1L−s/2x

∥∥= kδ, (2.25)

where k > 1 and ỹ ∈ X satisfy 0 < kδ ≤ ‖ỹ‖−s/2. Under the above procedure,

the optimal order O(δt/(t+a)) is obtained for t = s+p(s+a).
In the present paper, we propose a new discrepancy for choosing the regu-

larization parameter α which yields the optimal rate

∥∥x̂− x̃α∥∥=O(δt/(t+a)). (2.26)

3. The discrepancy principle. Let s and a be fixed positive real numbers.

For α> 0 and nonzero x ∈H, let

Φ(α,x) := α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥ . (3.1)

Note that, by assumption (2.9), ‖R2
αA

−s/(2s+2a)
s L−s/2x‖ is nonzero for every

nonzero x ∈ H so that the function Φ(α,x) is well defined for every α > 0

and for every nonzero x ∈H.

We assume that the available data ỹ is nonzero and

‖y−ỹ‖ ≤ δ (3.2)
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for some known error level δ > 0. Our idea is to prove the existence of a unique

α such that

Φ(α,ỹ)= cδ (3.3)

for some known c > 0.

In due course we will make use of the relation

f
( −s

2s+2a

)
‖x‖ ≤ ∥∥A−s/(2s+2a)

s L−s/2x
∥∥≤ g( −s

2s+2a

)
‖x‖ (3.4)

which can be easily derived from Proposition 2.1.

First we prove the monotonicity of the function Φ(α,x) defined in (3.1).

Theorem 3.1. For each nonzero x ∈H, the function α� Φ(α,x) for α> 0,

defined in (3.1), is increasing and it is continuously differentiable with Φ′(α,x)≥
0. In addition

lim
α→0

Φ(α,x)= 0, lim
α→∞Φ(α,x)=

∥∥A−s/(2s+2a)
s L−s/2x

∥∥. (3.5)

Proof. Using (3.1), one can write

d
dα

Φ(α,x)

= (d/dα)
(
Φ2(α,x)

)
2Φ(α,x)

= 2α
∥∥R2

αA
−s/(2s+2a)
s L−s/2x

∥∥2∥∥R3/2
α A−s/(2s+2a)

s L−s/2x
∥∥2

2α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2

×
(d/dα)

[
α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2
]

∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥3

−
α2
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥4(d/dα)
[∥∥R2

αA
−s/(2s+2a)
s L−s/2x

∥∥2
]

2α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥3 .

(3.6)

Thus,

d
dα

Φ(α,x)

=
∥∥R2

αA
−s/(2s+2a)
s L−s/2x

∥∥2(d/dα)
[
α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2
]

∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥3

−
α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2(d/dα)
[∥∥R2

αA
−s/(2s+2a)
s L−s/2x

∥∥2
]

2
∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥3 .

(3.7)
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Let {Eλ : 0≤ λ≤ a} be the spectral family of As , where a= ‖As‖. Then

d
dα

(
α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2
)

= d
dα

∫ a
0

α
λs/(s+a)(λ+α)3d

〈
EλL−s/2x,L−s/2x

〉

=
∫ a

0

[
1

λs/(s+a)(λ+α)3 −
3α

λs/(s+a)(λ+α)4
]
d
〈
EλL−s/2x,L−s/2x

〉

= ∥∥R3/2
α A−s/(2s+2a)

s L−s/2x
∥∥2−3α

∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥2.

(3.8)

Similarly

d
dα

(∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥)=−4

∥∥R5/2
α A−s/(2s+2a)

s L−s/2x
∥∥2. (3.9)

Therefore, from (3.7), using (3.8) and (3.9), we get

d
dα

Φ(α,x)

= ∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥2

×
[∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2−3α
∥∥R2

αA
−s/(2s+2a)
s L−s/2x

∥∥2
]

∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥3

+ 2α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2∥∥R5/2
α A−s/(2s+2a)

s L−s/2x
∥∥2∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥3 .

(3.10)

The above equation can be rewritten as

d
dα

Φ(α,x)= Ψ1(α,x)+Ψ2(α,x), (3.11)

where

Ψ1(α,x)

= ∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥2

×
[∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2−α∥∥R2
αA

−s/(2s+2a)
s L−s/2x

∥∥2
]

∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥3 ,

Ψ2(α,x)

=
(
2α
[∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2

×∥∥R5/2
α A−s/(2s+2a)

s L−s/2x
∥∥2−∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥4
])

× 1∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥3 .

(3.12)
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Since

∥∥R3/2
α A−s/(2s+2a)

s L−s/2x
∥∥2

= 〈(As+αI)−3A−s/(2s+2a)
s L−s/2x,A−s/(2s+2a)

s L−s/2x
〉
,∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥2

= 〈(As+αI)−3A−s/(2s+2a)
s L−s/2x,

(
As+αI

)−1A−s/(2s+2a)
s L−s/2x

〉
,

(3.13)

we have

∥∥R3/2
α A−s/(2s+2a)

s L−s/2x
∥∥2−α∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥2

= ∥∥Aa/(2s+2a)
s R2

αL−s/2x
∥∥2.

(3.14)

Also,

∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥4

= [〈R2
αA−s/(2s+2a)

s L−s/2x,R2
αA−s/(2s+2a)

s L−s/2x
〉]2

= [〈R3/2
α A−s/(2s+2a)

s L−s/2x,R5/2
α A−s/(2s+2a)

s L−s/2x
〉]2

≤ ∥∥R3/2
α A−s/(2s+2a)

s L−s/2x
∥∥2∥∥R5/2

α A−s/(2s+2a)
s L−s/2x

∥∥2.

(3.15)

Hence

Ψ1(α,x)≥ 0, Ψ2(α,x)≥ 0, (3.16)

so that

d
dα

(
Φ(α,x)

)= Ψ1(α,x)+Ψ2(α,x)≥ 0. (3.17)

To prove the last part of the theorem we observe that

α2
∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥−Φ(α,x)
= α

2
∥∥R2

αA
−s/(2s+2a)
s L−s/2x

∥∥2−α∥∥R3/2
α A−s/(2s+2a)

s L−s/2x
∥∥2∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥ .
(3.18)

Since

α2
∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥2

=α〈R3
αA−s/(2s+2a)

s L−s/2x,αRαA−s/(2s+2a)
s L−s/2x

〉
,

α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2

=α〈R3
αA−s/(2s+2a)

s L−s/2x,A−s/(2s+2a)
s L−s/2x

〉
,

(3.19)
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and since αRα−I =AsRα = RαAs , we have

α2
∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥−Φ(α,x)
= −α

〈
R3
αA

−s/(2s+2a)
s L−s/2x,AsRαA

−s/(2s+2a)
s L−s/2x

〉
∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥
= −α

∥∥Aa/(2s+2a)
s R2

αL−s/2x
∥∥2∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥ ≤ 0.

(3.20)

Hence

Φ(α,x)≥α2
∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥≥α2

∥∥A−s/(2s+2a)
s L−s/2x

∥∥(∥∥As∥∥+α)2 . (3.21)

Also, we have

Φ(α,x)= α
〈
RαA

−s/(2s+2a)
s L−s/2x,R2

αA
−s/(2s+2a)
s L−s/2x

〉
∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥
≤α∥∥RαA−s/(2s+2a)

s L−s/2x
∥∥.

(3.22)

Hence

(
α∥∥As∥∥+α

)2∥∥A−s/(2s+2a)
s L−s/2x

∥∥
≤ Φ(α,x)≤α∥∥RαA−s/(2s+2a)

s L−s/2x
∥∥.

(3.23)

From this, it follows that

lim
α→0

Φ(α,x)= 0, lim
α→∞Φ(α,x)=

∥∥A−s/(2s+2a)
s L−s/2x

∥∥. (3.24)

This completes the proof.

For the next theorem, in addition to (3.2), we assume that

∥∥A−s/(2s+2a)
s L−s/2ỹ

∥∥≥ cδ (3.25)

for some c > 0. This assumption will be satisfied if, for example,

δ≤ f̃ (s)
c+ f̃ (s)‖y‖, f̃ (s) := f

( −s
2s+2a

)
(3.26)

since, by (3.2), we have ‖ỹ‖ ≥ ‖y‖−δ, and by (3.4),

∥∥A−s/(2s+2a)
s L−s/2ỹ

∥∥≥ f( −s
2s+2a

)
‖ỹ‖, (3.27)

where f is as in (2.18).

Now, the following theorem is a consequence of Theorem 3.1.
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Theorem 3.2. Assume that (3.2) and (3.25) are satisfied. Then there exists a

unique α :=α(δ) satisfying

Φ(α,ỹ)= cδ. (3.28)

4. Error estimates. In order to obtain Hölder-type error bounds, that is, er-

ror

bounds of the form

∥∥x̃α− x̂∥∥=O(δτ) (4.1)

for some τ , we assume that the solution x̂ of (2.1) satisfies the source condition

(as in [1, 10]):

x̂ ∈Mρ,t := {x ∈Ht : ‖x‖t ≤ ρ
}

(4.2)

for some t > 0.

Lemma 4.1. Suppose that x̂ belongs toMρ,t for some t ≤ s, andα :=α(δ) > 0

is the unique solution of (3.28), where c > g(−s/(2s+2a)). Then

α≥ c0δ(s+a)/(t+a), c0 = c−g(−s/(2s+2a)
)

g
(
(s−2t)/(2s+2a)

)
ρ
. (4.3)

Proof. Note that by (3.22), Proposition 2.1, and (2.24), we have

Φ(α,ỹ)≤α∥∥RαA−s/(2s+2a)
s L−s/2ỹ

∥∥
≤α∥∥RαA−s/(2s+2a)

s L−s/2(ỹ−y)∥∥+α∥∥RαA−s/(2s+2a)
s AsLs/2x̂

∥∥
≤α∥∥RαA−s/(2s+2a)

s L−s/2(ỹ−y)∥∥+α∥∥RαA(s+2a)/(2s+2a)
s Ls/2x̂

∥∥
≤α∥∥RαA−s/(2s+2a)

s L−s/2(ỹ−y)∥∥
+α∥∥RαA(t+a)/(s+a)s A(s−2t)/(2s+2a)

s Ls/2x̂
∥∥

≤ ∥∥αRα∥∥∥∥A−s/(2s+2a)
s L−s/2(ỹ−y)∥∥

+∥∥αRαA(t+a)/(s+a)s
∥∥∥∥A(s−2t)/(2s+2a)

s Ls/2x̂
∥∥

≤ g
( −s

2s+2a

)
δ+g

(
s−2t

2s+2a

)
ρα(t+a)/(s+a).

(4.4)

Thus [
c−g

( −s
2s+2a

)]
δ≤ g

(
s−2t

2s+2a

)
ρα(t+a)/(s+a), (4.5)

which implies

α≥ c0δ(s+a)/(t+a), c0 = c−g(−s/(2s+2a)
)

g
(
(s−2t)/(2s+2a)

)
ρ
. (4.6)

This completes the proof.
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Theorem 4.2. Under the assumptions in Lemma 4.1,

∥∥x̂−xα∥∥=O(δκ), κ := t
t+a. (4.7)

Proof. Since xα is the solution of (2.13), we have

x̂−xα = x̂−
(
A+αLs)−1y

=αL−s/2(As+αI)−1Ls/2x̂ =αL−s/2RαLs/2x̂.
(4.8)

Therefore, by (3.4), we have

f
(

s
2s+2a

)∥∥x̂−xα∥∥≤ ∥∥αAs/(2s+2a)
s RαLs/2x̂

∥∥. (4.9)

To obtain an estimate for ‖αAs/(2s+2a)
s RαLs/2x̂‖, first we will make use of the

following moment inequality

∥∥Bux∥∥≤ ∥∥Bvx∥∥u/v‖x‖1−u/v , 0≤u≤ v, (4.10)

where B is a positive selfadjoint operator. Precisely, we use (4.10) with

u= t
a
, v = 1+ t

a
, B =αRαAa/(s+a)s ,

x =α1−t/aR1−t/a
α A(s−2t)/(2s+2a)

s Ls/2x̂.
(4.11)

Then since

‖x‖ ≤ ∥∥A(s−2t)/(2s+2a)
s Ls/2x̂

∥∥
≤ g

(
s−2t

2s+2a

)∥∥Ls/2x̂∥∥t−s/2 ≤ g
(
s−2t

2s+2a

)
ρ,

(4.12)

we have

∥∥αAs/(2s+2a)
s RαLs/2x̂

∥∥
= ∥∥Bt/ax∥∥≤ ∥∥B1+t/ax

∥∥t/(t+a)‖x‖a/(t+a)
≤ ∥∥α2R2

αA(2a+s)/(2s+2a)
s Ls/2x̂

∥∥t/(t+a)‖x‖a/(t+a)
≤ ∥∥α2R2

αA−s/(2s+2a)
s L−s/2y

∥∥t/(t+a)‖x‖a/(t+a)
≤ g

(
s−2t

2s+2a

)a/(t+a)
ρa/(t+a)

∥∥α2R2
αA−s/(2s+2a)

s L−s/2y
∥∥t/(t+a).

(4.13)

Further, by (2.24) and (3.20),

∥∥α2R2
αA−s/(2s+2a)

s L−s/2y
∥∥≤ ∥∥α2R2

αA−s/(2s+2a)
s L−s/2(y−ỹ)∥∥

+∥∥α2R2
αA−s/(2s+2a)

s L−s/2ỹ
∥∥

≤ δ+Φ(α,ỹ).
(4.14)
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Therefore, if α :=α(δ) is the unique solution of (3.28), then we have

∥∥α2R2
αA−s/(2s+2a)

s L−s/2y
∥∥≤ (1+c)δ. (4.15)

Now the result follows from (4.9), (4.13), (4.14), and (4.15).

Theorem 4.3. Under the assumptions in Lemma 4.1,

∥∥x̂− x̃α∥∥=O(δκ), κ := t
t+a. (4.16)

Proof. Let xα and x̃α be the solutions of (2.13) and (2.14), respectively.

Then by triangle inequality, (2.24), and Proposition 2.1,

∥∥x̂− x̃α∥∥≤ ∥∥x̂−xα∥∥+∥∥xα− x̃α∥∥
= ∥∥x̂−xα∥∥+∥∥L−s/2RαL−s/2(y−ỹ)∥∥
≤ ∥∥x̂−xα∥∥+ 1

f
(
s/(2s+2a)

)∥∥As/(2s+2a)
s RαL−s/2(y−ỹ)

∥∥
≤ ∥∥x̂−xα∥∥+ 1

f
(
s/(2s+2a)

)∥∥As/(s+a)s RαA−s/(2s+2a)
s L−s/2(y−ỹ)∥∥

≤ ∥∥x̂−xα∥∥+ 1
f
(
s/(2s+2a)

)∥∥As/(s+a)s Rα
∥∥∥∥A−s/(2s+2a)

s L−s/2(y−ỹ)∥∥
≤ ∥∥x̂−xα∥∥+ g

(−s/(2s+2a)
)

f
(
s/(2s+2a)

) δα−a/(s+a).
(4.17)

The proof now follows from Lemma 4.1 and Theorem 4.2.

Remark 4.4. We observe that unlike the discrepancy principle in [1], the

discrepancy principle (3.3) gives the optimal order O(δt/(t+a)) for all 0< t ≤ s.
Acknowledgments. The first author acknowledges the assistance from

the Institute of Mathematical Sciences Chennai, India, for providing the oppor-

tunity to work in the institute as an Associate Member. The author also thanks

Dr. M. Krishna for his help.

References

[1] S. George and M. T. Nair, Error bounds and parameter choice strategies for sim-
plified regularization in Hilbert scales, Integral Equations Operator Theory
29 (1997), no. 2, 231–242.

[2] C. W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Equations
of the First Kind, Research Notes in Mathematics, vol. 105, Pitman, Mas-
sachusetts, 1984.

[3] M. Hegland, An optimal order regularization method which does not use ad-
ditional smoothness assumptions, SIAM J. Numer. Anal. 29 (1992), no. 5,
1446–1461.

[4] S. G. Krein and J. I. Petunin, Scales of Banach spaces, Russian Math. Surveys 21
(1966), no. 2, 85–160.



AN OPTIMAL ORDER YIELDING DISCREPANCY PRINCIPLE . . . 2499

[5] B. V. Limaye, Functional Analysis, 2nd ed., New Age International Publishers, New
Delhi, 1996.

[6] B. A. Mair, Tikhonov regularization for finitely and infinitely smoothing operators,
SIAM J. Math. Anal. 25 (1994), no. 1, 135–147.

[7] M. T. Nair, On Morozov’s method for Tikhonov regularization as an optimal order
yielding algorithm, Z. Anal. Anwendungen 18 (1999), no. 1, 37–46.

[8] M. T. Nair, M. Hegland, and R. S. Anderssen, The trade-off between regularity
and stability in Tikhonov regularization, Math. Comp. 66 (1997), no. 217,
193–206.

[9] F. Natterer, Error bounds for Tikhonov regularization in Hilbert scales, Applicable
Anal. 18 (1984), no. 1-2, 29–37.

[10] A. Neubauer, An a posteriori parameter choice for Tikhonov regularization in
Hilbert scales leading to optimal convergence rates, SIAM J. Numer. Anal.
25 (1988), no. 6, 1313–1326.

[11] E. Schock, Ritz-regularization versus least-square-regularization. Solution meth-
ods for integral equations of the first kind, Z. Anal. Anwendungen 4 (1985),
no. 3, 277–284.

[12] T. Schröter and U. Tautenhahn, Error estimates for Tikhonov regularization in
Hilbert scales, Numer. Funct. Anal. Optim. 15 (1994), no. 1-2, 155–168.

[13] U. Tautenhahn and U. Hämarik, The use of monotonicity for choosing the regular-
ization parameter in ill-posed problems, Inverse Problems 15 (1999), no. 6,
1487–1505.

Santhosh George: Department of Mathematics, Government College, Sanquelim, Goa
403505, India

E-mail address: santhoshsq1729@yahoo.co.in

M. Thamban Nair: Department of Mathematics, Indian Institute of Technology, Madras,
Chennai 600 036, India

E-mail address: mtnair@iitm.ac.in

mailto:santhoshsq1729@yahoo.co.in
mailto:mtnair@iitm.ac.in


Advances in Difference Equations

Special Issue on

Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back
to its founder Stefan Hilger (1988), and is a new area of
still fairly theoretical exploration in mathematics. Motivating
the subject is the notion that dynamic equations on time
scales can build bridges between continuous and discrete
mathematics; moreover, it often revels the reasons for the
discrepancies between two theories.

In recent years, the study of dynamic equations has led
to several important applications, for example, in the study
of insect population models, neural network, heat transfer,
and epidemic models. This special issue will contain new
researches and survey articles on Boundary Value Problems
on Time Scales. In particular, it will focus on the following
topics:

• Existence, uniqueness, and multiplicity of solutions
• Comparison principles
• Variational methods
• Mathematical models
• Biological and medical applications
• Numerical and simulation applications

Before submission authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/ade/guidelines.html. Authors should
follow the Advances in Difference Equations manuscript
format described at the journal site http://www.hindawi
.com/journals/ade/. Articles published in this Special Issue
shall be subject to a reduced Article Processing Charge of
C200 per article. Prospective authors should submit an elec-
tronic copy of their complete manuscript through the journal
Manuscript Tracking System at http://mts.hindawi.com/
according to the following timetable:

Manuscript Due April 1, 2009

First Round of Reviews July 1, 2009

Publication Date October 1, 2009

Lead Guest Editor

Alberto Cabada, Departamento de Análise Matemática,
Universidade de Santiago de Compostela, 15782 Santiago de
Compostela, Spain; alberto.cabada@usc.es

Guest Editor

Victoria Otero-Espinar, Departamento de Análise
Matemática, Universidade de Santiago de Compostela,
15782 Santiago de Compostela, Spain;
mvictoria.otero@usc.es

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/ade/guidelines.html
http://www.hindawi.com/journals/ade/guidelines.html
http://www.hindawi.com/journals/ade/
http://www.hindawi.com/journals/ade/
http://mts.hindawi.com/
mailto:alberto.cabada@usc.es
mailto:mvictoria.otero@usc.es

	1Call for Papers4pt
	Lead Guest Editor
	Guest Editor

