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For every hyperbolic group I' with Gromov boundary 0T, one can form the cross
product C*-algebra C(oT') X T. For each such algebra, we construct a canonical
K-homology class. This class induces a Poincaré duality map Ky (C(oI') xT') —
K**1(C(dr) xT). We show that this map is an isomorphism in the case of T = Fp,
the free group on two generators. We point out a direct connection between our
constructions and the Baum-Connes conjecture and eventually use the latter to
deduce our result.
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1. Introduction. The aim of this paper is to point out a connection between
the Baum-Connes conjecture with coefficients for the free group F, on two gen-
erators and a Poincaré duality result for the “noncommutative space” o, /[F»,
where 0F» is the Gromov boundary of [F», acted upon minimally by F, through
homeomorphisms.

In order to formulate what Poincaré duality should mean for a noncom-
mutative space such as 0F,/[F,, one passes to the C*-algebra cross product
C(0F,) X[, and to K-theory and K-homology for C*-algebras. A Poincaré du-
ality for 0F,/F, then means an isomorphism between the K-theory and K-
homology of C(0F,) x [, induced by cap product with a fixed K-homology
class.

More generally, one can speak of C*-algebras having Poincaré duality, or,
as we call them in this paper, Poincaré duality algebras. It seems that such
algebras are in some sense noncommutative analogs of spin® manifolds. For it
is well known that if M is a compact spin® manifold, the C*-algebra C(M) of
continuous functions on M is a Poincaré duality algebra. Such a manifold has,
corresponding to the spin® structure, a canonical elliptic operator on it—the
Dirac operator—and thus (see, e.g., [9]) a canonical K-homology class. The cap
product with this class induces the Poincaré duality isomorphism.

Various noncommutative examples of Poincaré duality C*-algebras have
been produced by Connes [3]; the first of which was the irrational rotation
algebra Ay. Several other examples now exist, but all have the same charac-
ter insofar as they are in some sense deformations of actual spin® manifolds.
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Our example is somewhat different. The geometric data underlying oF,/F» is
highly singular: the space 0F; is not a homology manifold, and the group [F; is
not a Poincaré duality group. It turns out to be true, however, that in factoring
the space by the action of the group, that is, by forming the cross product
C*-algebra C(0F,) X F,, the resulting noncommutative space satisfies Poincaré
duality.

A part of our goal is thus to point out this example and also to place it in its
proper context: that of hyperbolic groups acting on their Gromov boundaries.
The second part is to show, as mentioned above, a connection between our
constructions and the Baum-Connes conjecture for [F».

We begin by constructing—in the full generality of hyperbolic groups—the
K-homology class cap product with which we will induce our Poincaré dual-
ity isomorphism. It turns out that with Gromov hyperbolic groups I, in gen-
eral there is a certain duality between functions continuous on the Gromov
boundary oI of T and right translation operators on [°T. Using this duality,
we produce an algebra homomorphism C(dI') XTI’ ® C(oT) XTI — 9.(I1%T'), where
9 (I°T) = W(I2T) /K (I°T') denotes the Calkin algebra of I°T, and where T is an
arbitrary hyperbolic group. Since C(0I') XTI is nuclear [1], such an algebra homo-
morphism vyields via the Stinespring construction a class A € KK (C(oT') xI'®
C(oT') xI,C), that is, a class A in the K-homology of C(0T') XxI'® C(oT') xT. Kas-
parov product with A gives the required “cap-product” map NA : Ky (C(0I') X
I) — K*+*1(C(ar) «I).

We next wish to prove that a cap product with A as above gives an iso-
morphism in the case of I' = F», the general case of hyperbolic groups be-
ing beyond the scope of this paper. To this end, we observe that a sort of
geodesic flow on the Cayley graph of F, may be used to construct a dual el-
ement to A, this time in the K-theory of C(0F;) x F» ® C(0F2) X Fp, playing
the same role in this context as does the Thom class of the normal bundle
of M in M x M in the commutative setting. We obtain a putative inverse map
K*(C(0F2) X [F2) = Ky 41 (C(OF2) X Fp).

We then set about calculating the composition of these two maps. The con-
nection with the Baum-Connes conjecture appears in that the composition
K« (C(0F2) X [F2) — K4 (C(0F2) X F2) turns out to be multiplication by the y-
element constructed by Julg and Valette [7].

As mentioned, the construction of our fundamental class A makes sense for
a general hyperbolic group acting on its boundary, and in fact several of our
other constructions have their counterparts for arbitrary hyperbolic groups;
thus for instance, it is possible by means of the work of Gromov [5] to make
sense of “geodesic flow” for an arbitrary hyperbolic group. Furthermore, al-
though the statement y = 1 for general hyperbolic groups is false due to the
possible presence of property T, it is nevertheless true by the work of Tu [11]
that yarsr = lcr), where yarur is the y-element for the amenable groupoid
oI’ ¥T and this weaker statement is sufficient for our purposes. Nevertheless,
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the arguments for the general case, being substantially more involved, will
be dealt with in a later paper. We have chosen to emphasize the free-group
case for two reasons: firstly, the relationship to the Baum-Connes conjecture
is extremely explicit, and secondly, the geometry of our constructions is par-
ticularly visible.

Finally, we note that our arguments tend to suggest that the phenomenon of
Poincaré duality for amenable groupoid algebras constructed from boundary
actions of discrete groups is relatively common. Specifically, we expect similar
results for uniform lattices in semisimple Lie groups acting on their Fursten-
berg boundaries, and for discrete, cocompact isometry groups of affine build-
ings acting on the boundaries of these buildings. Along these lines, we draw the
attention of the reader to the work of Kaminker and Putnam on Cuntz-Krieger
algebras (see [8]); indeed, our result (in the case of the free group of two gen-
erators) can be deduced from theirs. In fact, our work was partly motivated by
the idea of finding a geometric explanation for theirs.

2. Geometric preliminaries. In this section, we work on the generality of
a Gromov hyperbolic group I (see [4] or [5]). So, let I be such. Thus, we have
fixed a generating set S for I' and the corresponding metric d(y1,y2) = |y, Ly, |,
where | - | denotes the word length of a group element with respect to S, and
with this metric, I is hyperbolic in the sense of Gromov as a metric space. Note
that the metric is clearly invariant under left translation.

Recall that with the hypothesis of hyperbolicity, the group I' viewed as a
metric space can be compactified by addition of a boundary; thus, there exists
a compact metrizable space I = I'U oI’ such that I sits densely in I and T
is compact. The compactification is I'-equivariant in the sense that the left
translation action of T extends to an action by homeomorphisms on I.

There turns out to be an interesting duality between functions on I' which
extend continuously to the Gromov compactification I', and a certain class of
operators on 2T as follows. First, we recall a definition. For what follows, let
ex, ey, and so forth denote the standard basis vectors in I°T corresponding
to points x,y € I. Also, if f is a function on T, we will denote by M; the
corresponding multiplication operator on [°T.

DEFINITION 2.1. An operator T € $B(I°T) has finite propagation if there
exists R > 0 such that (T (ex),e,) = 0 whenever d(x,y) = R.

The duality we have alluded to is stated in the following lemma.

LEMMA 2.2. If f is a function on I which extends continuously to T, then
(M 7 T] is a compact operator for all finite propagation operators T on I°T.

For the proof, we need to use the following fact about the Gromov compact-
ification of a hyperbolic group (see [4]): note that here and elsewhere in this
paper, B, (x), for v > 0 and x €T, denotes the ball of word-metric radius »
centered at x.
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LEMMA 2.3. Iff is a continuous function on T, then for every R > 0,
y}{losupﬂf(x)—f(yﬂ | v €Br(x)} =0. (2.1)

PROOF OF LEMMA 2.2. Let T be a finite propagation operator with propa-
gation R and f be a bounded function on I' which extends continuously to I.
Then

(M7 T|(ex) = D (Fx)=F() Tavey, (2.2)

YEBR(x)

where Ty, denotes as usual (T (ex),ey). Therefore, ([Mf,T](eX),ey) = 0 if
d(x,y) = R, and equals (f(x) —f(y))Txy else. The result follows immediately
from Lemma 2.3. O

Let y €T, and let p(y) denote the unitary [°I — I°T induced from right
translation by y, p(y)ex = e,,-1. The relevance of the above remarks to us lies
in the following observation.

LEMMA 2.4. Ify €T, then p(y) has a finite propagation.

PROOF. Onehasd(x,xy~!) <|y|from which the result follows withR = |y|.
O

COROLLARY 2.5. Ify €T and f is a function onT which extends continuously
toT, then [p(y),Mf] is a compact operator.

Now, consider the unitary I : I°T — [°T induced from inversion ¢ : I — I'. Then
Ip(y)I = A(y), where A(y) denotes left translation by y, and IMJ;I = Mfol-
The following corollary follows from conjugating the commutator expression
appearing in Corollary 2.5 by the unitary I.

COROLLARY 2.6. The commutator [A(y),M JzOL] is a compact operator for
everyy €T and f a function on T extending continuously toT.

In Section 3, we show how the above constructions can be organized to pro-
duce a K-homology class inducing a Poincaré duality isomorphism.

3. KK-theoretic preliminaries. In this section, we recall some basic facts
from Kasparov theory (KK-theory). For further details, we refer the reader to
[2, 9].

THE CATEGORY KK. Kasparov theory can be understood categorically (see
[6]): there is a category KK whose objects are separable, nuclear C*-algebras
and whose morphisms A — B are the elements of KK(A,B). There is a func-
tor from the category of C*-algebras to the category KK. If ¢¢ : A — B is
an algebra homomorphism A — B, we denote its image under this functor
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as [¢]. There is a composition or intersection product operation KK (A, D) X
KK(D,B) — KK(A,B) which we denote by («,8) — cx®p B.If ¢ : A - B is
an algebra homomorphism and D is any C*-algebra, we thus have a map
¢+« : KK(D,A) - KK(D,B) given by & — &x®4 [¢]. Similarly, we have a map
¢*:KK(B,D) — KK(A,D) givenby B — [¢p]®pB.

We will sometimes use the notations ¢* ([8]) and [¢ ] ®p S interchangeably,
as is warranted by the clarity of notation. Similarly with ¢.

If D is a C*-algebra, there is a natural map KK(A,B) — KK(A® D,B® D),
o~ &®1p, and similarly a map KK(A,B) -~ KK(D® A,D ® B).

GRADED COMMUTATIVITY. There are higher KK groups KKi(A,B) for all
i € Z,defined by KK*(A,B) = KK(A,B®C;), where C; is the ith complex Clifford
algebra, and one of the features of the theory is that the intersection product
is graded commutative. If Ay,...,A, are C*-algebras, let 0;; denote the map

A®---Ai®- - Aj®---®A; —A1®---A;j®---A;®---®A, (3.1)

obtained by flipping the two factors. Then by graded commutativity, we mean
the following: if « € KK*(A;,B;) and B € KK/ (A»,B»), then

(x®1a,) ®p,04, (15, ®B)

Ny (3.2)
= (—1)”(0’12)*0'1*2((3@ 1A1) ® (132 ® 0()) (S KK(A] ®A2,B] ®B2).
K-THEORY AND K-HOMOLOGY. For any C*-algebra A, KKi(C,A) = K;(A) is
the topological K-theory of A and KK'(A,C) = K'(A) is the K-homology of A
by definition.

DESCRIPTION OF EVEN CYCLES. Let %(¢€) denote bounded operators on a
Hilbert module ¢, ¥ (€) denote compact operators, and 2 (¢) denote the Calkin
algebra %B(¢€)/J(€). The quotient map B(€) — 2(€) will always be denoted
by .

Following Kasparov [9], if € is a Hilbert B-module and A acts on € by a
homomorphism A — %B(€), we will refer to ¢ as a Hilbert (A, B)-bimodule.

Because all the algebras in this paper are ungraded—or alternatively, have
trivial grading—we can make certain simplifications in the definitions of the
KK groups (see [2]). With such ungraded A and B, cycles for KK (A, B) are given
simply by pairs (€,F), where € is an (A, B)-bimodule, F commutes modulo
compact operators with the action of A, and a(F*F — 1) and a(FF* —1) are
compact for every a € A.

DESCRIPTION OF ODD CYCLES. Cycles for KK (A, B) are given by pairs (¢, P)
for which P is an operator on the (A, B)-bimodule ¢ satisfying the three con-
ditions [a,P], a(P? —P), and a(P —P*) are compact for all a € A.

Let (¢,P) be an odd cycle. Then we obtain a homomorphism A — 2(¢€) by
the formula a — T (PaP).
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Conversely, let T : A — 2(%) be a homomorphism. Under the assumption
of nuclearity of all algebras concerned, there exists a potentially larger Hilbert
B-module €, a representation of A on €, an isometry U : € — €, and an operator
P on € such that a(P? -P), [a,P], and a(P — P*) are compact for all a € A,
and T(U*PaPU) = 7(a) for all a € A (see [2]). The data (€, P) makes up an
odd cycle. The process of constructing a €, U, and P, from an extension, we
will refer to as the Stinespring construction.

As a consequence, for A and B nuclear, we may regard KK'(A,B) as given
by classes of maps T : A — 9(¢), where € is a right Hilbert B-module. This
description of KK!-classes will be particularly appropriate to our purposes.

BOTT PERIODICITY. Recall that KK~ (C,Cy(R)) = Z and is generated by the
class [dr] of the multiplier f(x) = x/vI1+x2 of Co(R), suitably interpreted
in terms of the Clifford gradings. The class [dug] allows us to identify, for any
C*-algebras A and B, the groups KK'(Cy(R) ® A,B) and KK (A,B) by the map
KK (Cy(R) ® A,B) — KK(A,B), x — [(im] ®c*(r) X. We will need to compute
this map at the level of cycles in several simple cases.

Let @ be the function @ (t) = —2i/(t +1i) in Cy(R); it has the property that
@ + 1 is unitary in Co(R)". We begin by stating the simplest version of what
we will need.

LEMMA 3.1. Let T be a homomorphism Cy(R) — 2(H) to the Calkin algebra
of some Hilbert space H. Let [T] denote the class in KK'(Cy(R),C) correspond-
ing to T. Then the class [dR] ®cyr) [T] € KK(C,C) is represented by the cycle
(H,U+1), where U is any operator on H such that t(U) = ().

The significance of this simple lemma is that in the given setting, it is not
necessary to explicitly represent [T] as a KK-cycle (i.e., perform the Stinespring
construction) in order to calculate the Kasparov product of [dm] and [T]. This
is true also for the situation in the following lemma, which will be of direct use
to us.

LEMMA 3.2. Let Ay and A, be C*-algebras and € be a right Hilbert A;-
module. Let h be a homomorphism Cy(R) ® A1 — Q(€) and [h] be its class,
regarded as an element of KK'(Cy(R) ® A1,A). Assume that h has the form
x®a; — h'(x)h' (a,), where h' and h"' are homomorphisms. Suppose that the
homomorphism h' lifts to a homomorphism h'’ : Ay — B(€). Then it follows
that the class [aLR] ®cyr) [h] € KK(A1,Az) is represented by the following cy-
cle. The module is € with its original right A;-module structure and the left
A:-module structure given by the homomorphism h''. The operator is given by
U +1, where U is any operator on ¢ such that t(U) = h' ().

The proof of both lemmas involves an application of the axioms for the
intersection product, and is omitted (see [9]).

EQUIVARIANT KK. If T is a group acting on C*-algebras A and B, we have,
in addition to the group KK(A,B), an equivariant group KKr(A,B). We will
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discuss this group briefly in connection with the y-element and the work of
Julg and Valette. It is sufficient to say that the cycles for KK (A, B) consist of
the same cycles as for KK (A, B), but with the following extra conditions:
(1) T acts as linear isometric maps on the Hilbert (A, B)-module ¢ in such
away that y(a&b) =y(a)y(E)y(b) forac A, b € B, and & €°¢;
(2) the operator F satisfies the condition that y(F) — F is compact for all
yel.

Regarding KKy as a category in its own right, with morphisms A — B the ele-
ments of KKy (A, B), and objects I'-C*-algebras, there is a functor A : KKy (A, B)
— KK(AXT,BxT) called descent. The map A : KKr(A,B) - KK(AXT,BxT)
can be explicitly calculated on cycles; the formulas are given in [9]. Since A is
a functor, it takes the unit 14 € KKr(A, A) to the unit 144 € KK(AXIT,AXT),
which is a fact we will make use of.

4. Construction of the fundamental class. For this section, we will return
to the generality of a hyperbolic group I'. Since I acts by homeomorphisms on
oI, we can consider the cross product C*-algebra C(0I') T, which is our main
object of interest in this paper. Note that the cross product we are referring
to is the reduced cross product; however, by the proof of the following lemma
(whose proof can be found in [1]), the reduced and max cross products are in
fact the same.

LEMMA 4.1. The algebra C(0T') XTI is nuclear and separable.

Our goal is to construct an element of the K-homology of the algebra C(0T')
I'® C(0T) xT; specifically, an element of KK!(C(0T') xI ® C(oI') xT,C). This
element will be presented as an extension, thatis, as amap C(0I') XxI' ® C(dT') X
I' - 9(H) for some Hilbert space H. By our remarks in the previous section
and Lemma 4.1, such a map does produce a canonical class in KK' (C(oI') xT' ®
C(oT') xT, Q).

We construct two commuting maps A, p : C(0I') xI' — 2(IT). Let f € C(oI),
and let f denote any extension of f to a continuous function on I'. Let M 7
denote as above the multiplication operator on I°T corresponding to f , and let
A(f) be the image in 2 (I°T) of the operator Mj. Let A(y) be the image in 9.(1°T)
of the unitary u, corresponding to left translationby y : u, (ex) = eyx, x €. 1t
is easy to check that the assignments f — A(f) and y — A(y) define a covariant
pair for the C*-dynamical system (C(oI'),I'), and so a homomorphism

A:C(dr) xT — 9(1°T). 4.1)
Next, define

p:C(3r) XTI — 9(I°T) 4.2)
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by p(a) = IA(a)I, where I is as at the end of Section 2. Thus, p(f) is the
image in 9 (I1%T') of the multiplication operator M Fous and p(y) is the image in
9(I°T) of right translation by y, ex — exy-1. The following theorem follows
from Corollaries 2.5 and 2.6.

THEOREM 4.2. The homomorphisms A, p : C(0T') xI' — 9(I1°T') commute, and
so define a homomorphism C(0T') XTI ® C(oI') XI' — .(I°T) bya®b — A(a)p(b).

DEFINITION 4.3. Let A € KK'(C(dT) xT ® C(dT) xT,C) denote the class
corresponding to the above homomorphism C(0T) XTI ® C(oT') XTI’ — 2.(I°T).

We will refer to the class A as the fundamental class of the algebra C(0T') xT.

Before proceeding, we note the following: let o2 : C(0I') XI' ® C(0T') xT —
C(oT') XxT ® C(dT') XT be the homomorphism which interchanges factors and
let 075 : KK'(C(0T) XIT'® C(aI') xT,C) — KK'(C(oT') xI'® C(ar) xT,C) be the
corresponding homomorphism of KK groups. The following rather simple ob-
servation reflects a common property of “fundamental classes,” that is, those
classes implementing by cap product Poincaré duality isomorphisms; the au-
thor knows of no case, either commutative or not, where the fundamental class
does not have it.

LEMMA 4.4. The class A satisfies o5 (A) = A.

PROOF. For gy (A) is the class corresponding to the map C(oT) XI'® C ()
I'—9(I°T),a®b — p(a)A(b).But this is unitarily conjugate to the map a®b —
A(a)p(b) via the symmetry I. |

We can now define the “cap-product map” interchanging the K-theory and
K-homology of C(0T') xT, which we are going to show is an isomorphism when
I' = . Specifically, define

NA: K, (C(OT) XT) — K**1(C(ar) 1T) (4.3)
by the formula

X — (X ® Le@ry«r) ®c@r) xrec@n) «r A. (4.4)

Our main theorem is as follows.

THEOREM 4.5. ForT = [F, and A as in Definition 4.3, the map NA is an iso-
morphism.

5. Connes’ notion of Poincaré duality. In order to prove that the map NA of

the previous section is an isomorphism, we will use some ideas due to Connes.

THEOREM 5.1. Let A be a separable, nuclear C*-algebra and A be a class in
KKi(A® A,C). Suppose that there exists a class A € KK~1(C,A® A) such that
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the following equations hold:

(A@].A)®A®A®A(1A®O'1*2A) = 1y4, (5.1)
((012) yA®14) ®apaea (14®A) = (1) 1 4. (5.2)

Then the map
NA:K;j(A) — K/TH(A) (5.3)

defined previously is an isomorphism with inversing (up to sign) the map
KJ(A) - Kj_i(A),

y~»A®A®A(1A®y). (5.4)

If A is as above, with classes A and A satisfying (5.1) and (5.2), respectively,
we will call A a Poincaré duality algebra.

PROOF. The hypotheses imply the two equations

(A@lA) RAcARA (1A®0'1*2(A)) =14,

((012) . (A) ®14) ®apaea (14®A) = (=1)'1 4. (5-3)
We show that as a consequence of these two equations,
ABasa(la®(¥ynA)) = (-1)Yy, ¥ eKKI(CA). (5.6)
Expanding the product involved in (5.6), we obtain
A®asa (14®Y®14) ®asasa (14®A). (5.7)

Consider the term (1, Y ®14) ® 49404 (14 ® A). It is easy to check that this
is the same as (14 ® 14 ® ¥) ®asaca (14 ® 075(A)). Returning to the original
product (5.6), we see that the latter can be written as

(A®a0a (14sa®Y)) ®asaea (14® 075 (A)). (5.8)
Now, by skew-commutativity of the external tensor product,

A®apa (lasa®y) = (-1)(023), (012) . (¥ ®4 (14 ®A))

., A (5.9)
= (DY y®4(023),(012), (1a®A).

Furthermore, (023)« (012) % (14®A) = A® 1 4. Hence, putting back into the main
product, we see that (5.6) can be written as

(~Dy o4 ((A®14) ®asasa (1a® 075 (A))) = (-1)¥y, (5.10)

where the last equality follows from (5.1). O
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REMARK 5.2. We note that if we happen to have A and A as above, and
o15(A) = A, (012) . (A) = (-1)TA, (5.11)

then the two equations (5.1) and (5.2) would be the same, and it would suffice
to show that one of them holds. This is the case in the commutative setting
of a compact spin® manifold and will be the case for us also, part of which we
have already proven (Lemma 4.4).

We now set about proving Theorem 4.5 in the case of I = [, by verifying
(5.1) and (5.2) of Theorem 5.1, with A = C(0F») x F, and A the fundamental
class of Definition 4.3. We need first produce an element A € KK~ (C, C(3F») x
F2»® C(0F2) x F2) playing the role of the dual element in Theorem 5.1. We will
then verify (5.1), the other being rendered superfluous as a consequence of
Remark 5.2, which is applicable in this case.

It will turn out, rather surprisingly, that (5.1) can be shown to be equivalent
to the equation

YoFoxF, = L (aF,), (5.12)

where y;r,«r, is the y-element for the groupoid 0F, X F». Since this latter equa-
tion has been established by Julg and Valette, and also by Tu, we will, by this
device, that is, by means of the Baum-Connes conjecture, be done.

6. Construction of a dual element. In this section, as for the rest of this
paper, we specialize to the free group F, on two generators. We are going
to define an element A € KK~1(C,C(8F,) x F» ® C(dF») x F») serving as an
“inverse” to A.

The class A will be constructed by use of the fact that any two points of F»
may be connected by a unique geodesic.

By “geodesic,” we mean an isometric map v : Z — [F,. Topologize the collec-
tion of such » by means of the metric

dgr, (r1,72) = >, 27" d(r (n), 2 (n)), (6.1)
nez
and denote the resulting metric space by GF» (we follow [5]). Both F, and Z
act freely and properly on GF;, the former by translation (yr)(n) = yr(n)
and the latter by flow (g"r) (k) = v (k—mn). These actions commute. Note that
GF,/F;, is compact, whereas G[F»/Z may be identified with the [F,-space

0%F, = {(a,b) € 0F, x0F» | a # b}. (6.2)

All these observations are easy to check. As a consequence of them, the C*-
algebras C(GF»/F») xZ and Cy(0°F») x [F, are strongly Morita equivalent (see
[10]). Let [E] denote the class of the strong Morita equivalence bimodule. It is
an element of KK(C(GF2/F2) XZ,Co(0%Fp) X [Fp).



THE BAUM-CONNES CONJECTURE, NONCOMMUTATIVE ... 2435

On the other hand, if u is the generator of Z C C*(Z) C C(GF,/F,) XZ, we
obtain a natural homomorphism Co(R) — C(GF,/F2) X Z by the formula ¢ —
u—1 where, recall, y is a specified generator of Cy(R) satisfying ¢y +1 € Co(R)™*
is unitary.

We denote the class in KK (Cy(R),C(GF2/F2)xZ) of this homomorphism by
[u—-11].

It will be convenient for our later computations to define an auxiliary class
[D], which will lie in KK 1 (C, Cy(9%F,) x F»), as follows.

DEFINITION 6.1. The class [D] € KK~1(C, Cy(02%F,) X F») will be defined by
[D] = [dr] ®cy®) [~ 11®C(GE, /Fy)xz [E] (6.3)

Next, note that the cross product Cy(02F,) x F» may be regarded as a subal-
gebra of C(0F2) X [F, ® C(0F») X [F, via the composition of inclusions

C()(azﬂ:z) Xy — C(a[F2 Xaﬂ:z) X o

(6.4)
= (C(aﬂ:z) ®C(8[F2)) Xy — C(aﬂ:z) X[ ®C(8[F2) X Fo.
Let i denote this composition.
Our class A will be defined by the following definition.
DEFINITION 6.2. Let
A =[D]®¢, 325, ur, [i] € KK™H(C,C(0F2) X F2 ® C(3F2) x F2), (6.5)

where [Gi[R] is as in Section 3 and [u —1] and [E] are as above.

It will be convenient to calculate more explicitly the cycle corresponding
to the class [u — 1] ®c(Gr,/r,)xz [E] € KK(Co(R),Co(8%F2) X F2). We will ex-
press it as a homomorphism Co(R) — Co(02F») x F», that is, as an element
w € Cy(0%F») xF» such that w + 1 is unitary in (Co(0%F») xF»)*.

We will first describe an element v € Cy(0%F») x F» satisfying v*v = vv* =
X, Where x is a projection. We will then set w = v — x. Then, of course, w +1 =
v +1— x will be unitary in (Co(3%F») x[F2)*.

As the method of discovering such an explicit description (i.e., of transfer-
ring K-classes under strong Morita equivalences) is well known (see [3] in which
a similar calculation is carried out in the context of Ay), we give the outcome
without further discussion.

As a function on 02F, X F», v(a,b,y) = 1if and only if there exists a geodesic
¥ap such that v, (—c0) = a, ¥y p(+0) = b, ¥4,(0) =e, and v, (—1) = y; and
v(a,b,y) =0 else.

Note that x = v*v = vv* is the locally constant function on 0%F, given by
x(a,b) =1 if some (therefore any) geodesic from a to b passes through e, and
equals O else.
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We can describe v in group-algebra notation as follows. Fix y a generator.
Then v (-,-,y) is a function on 02F, and, in particular, is a function on 0F» X 0F»,
whose representation as a tensor product of two functions on 0F; is

v y) =Xy (1-Xy), (6.6)
where
1, yelea),
= 6.7
xv(@) {0, else. ©.7)

We can therefore represent v as

v = Z xyy®(l—xy)y S Co(az[Fz) X[y C C(aﬂ:z) >4[F2®C(8[F2) X[F.  (6.8)
lyl=1

Similarly, we represent the function x by x = >.x, ® (1-x,), and it is easy to
check that v*v = vv* = x as claimed.
Finally, we note the following lemma.

LEMMA 6.3. The class A satisfies (012) « (A) = —A.

PROOF. We have A =i,([D]), and so
(012) 4 (A) = (012) 415 ([D]) = (01201) . ([D]) = (012) . ([D]),  (6.9)

where 715 : Co(0%F2) X Fp — Co(0%F2) x [y is the algebra homomorphism in-
duced by the F,-equivariant map 0%F, — 02F,, (a,b) — (b,a). Now, [D] =
[dr]l®cyr) [V —x], and hence

(012), (ID]) = [dr] ®cym) (012) , ([v —X])

A R (6.10)
= [dr]®cym) [V* = X] = —[dr] ®c,®) [V* —X]

by a direct calculation, and we are done. O

In the following sections, we show that in an appropriate sense, A provides
an “inverse” to the extension A. More precisely, we show that the conditions
of Theorem 5.1 are met by A, the fundamental class, and the element A above.

7. The y-element. Before proceeding to verify the equations of Theorem
5.1, we need to recall the work of Julg and Valette [7].

Up to now, we have adopted the convention of writing even KK-cycles in
the form (¢é,F), where F is an operator on the module €. A different defi-
nition is possible, in which two modules are involved, and F is an operator
between them. This was the setup in [7]. We retain their notation temporarily.
In a moment, we describe means of geometrically describing their class in a
way consistent with our conventions.
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Consider the Cayley graph = for [F», which is a tree with edges =! and ver-
tices 0. Note that we work with geometric edges, that is, set-theoretic pairs
of vertices {x,x’}.If x is a vertex, let x’ be the vertex one unit closer to e, the
origin, and let s(x) be the edge {x,x"}. Define an operator

b 1230 — 231 (7.1)
by
bley) = {es“‘)' x#e (7.2)
0, X =e.

Then it is clear that b is an isometry, is Fredholm, and has index 1. Next, note
that [, acts unitarily on 12(2°) and [2(2'), and that, furthermore, yby ! —b is
a compact (in fact finite rank) operator, for all y € F».

It follows that the pair (lZZO @ 123!, (2 bo* )) defines a cycle for KK, (C,C).

Let y denote its class. That y = 1 in this group implies the Baum-Connes
conjecture for F». This fact (that y = 1) was proved by Julg and Valette in [7].

We can produce a cycle for KKy, (C(9F2),C(0F2)), whose class we will de-
note by yar,, by tensoring all the above data with C(dF;). Thus, let g0 =
C(0F;12(20)) and ¢! = C(OF,;12(=1)). Let B:€° — ¢! be defined by (BE) (a) =
b(&(a)). The Hilbert C(dF,)-modules ¢’ carry obvious actions of [F,. Let Yar,
be the class of the cycle (%0 o€l (g B )) It is easy to check that the process
of tensoring with C(0F,) in this way preserves units, that is,

Y =1= ysr, = lc@r) (7.3)

in the ring KK, (C(0F2),C(0F>)). Hence, we have the following lemma.

LEMMA 7.1. The cycle (%0 ®¢é!, (g BO* )) is equivalent to the cycle correspond-
ing to 1¢(ar,) in the group KKy, (C(0F2),C(0F2)).

We now set about describing a cycle equivalent to the above, but which is in
some sense simpler. To do this, it will be notationally and conceptually simpler
to work with fields. Thus, we note that €° and ¢! may be viewed as sections
of the constant fields of Hilbert spaces {HY | a € oF,} and {H} | a € 9F,},
respectively, with H) = 12(3°) and H) = [>(=!) for all a € dF,, and that the
operator B may be regarded as the constant family of operators {b, | a € 0F»}
with b, = b for all a € 0F,. What we are going to do is to eliminate edges
from the cycle at the expense of changing the constant field of operators to a
nonconstant field.

To this end, consider the field of unitary maps {U, : H: — H? | a € oF,}
given by U, (es) = ex, where x is the vertex of s farthest from a. Note that the
assignment a — U,, though not constant, is strongly continuous. For if a and b
are two boundary points, then U, = U, except for edges lying on the geodesic
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(a,b). Consequently, if s is a fixed edge and a and b are close enough, then
U, (es) = Up(es) since if a and b are sufficiently close, s does not lie on (a,b).
Now, consider the composition

12F, = HO 2o g1 Ya o _ 2, (7.4)

which we denote by W,. We see that for x = e, W,(ey) = 0, and for x # e, we
have

Walex) = {e"" xelea 75)

ey, else,

where x’ is the vertex one unit closer to e than x.

Since the assignment a — W, is continuous, we obtain a Hilbert C(0F;)-
module map €° — €° by defining for & € C(0F»;1%F,), (WE)(a) = W, (E(a)).
Then, by unitary invariance of KK and the work of Julg and Valette, we see the
following lemma.

LEMMA 7.2. The cycle (%0 €0, (v% V‘{f)) is equivalent to the cycle corre-

sponding to 155, in the group KKr, (C(0F2),C(0F»)).

Since we have now altered the cycle of Julg and Valette up to equivalence
so that only one Hilbert module is involved (it is now otherwise known as an
“evenly graded” Fredholm module), we may now return as promised to our
conventions and write it simply as

(C(0F;1%F2), W), (7.6)

consistent with the way we have been writing (even) KK-cycles up to now.
To summarize, we have

[(C(3F2;1°F2),W)] = [1c@r,) ] € KKF, (C(3F2),C(3F2)). (7.7)
Next, we apply the descent map
A:KK[FZ(C(a[Fz),C(a[Fz)) — KK(C(a[FQ) ><][F2,C(3[F2) >4[F2) (7.8)

to the cycle described in equation (7.6) thus producing a cycle for KK (C(0[F2) %
F2,C(0F2) x [F») which, by functoriality of descent, will be equivalent to the
cycle corresponding to 1¢(r,)xr,- A direct appeal to the definition of A (see [9])
produces the cycle (C(0F») X [F, ® [2F», W), where, regarding C (0F,) X F» ® [2F»
as given by functions F, — C(0F») ® I°[F», the action of W on these functions is
given by the formula (W€)(y) = W(&(y)). We have the following lemma.

LEMMA 7.3. The cycle (C(3F,) xF» ® I°F2, W) is equivalent to the cycle cor-
responding to 1¢er,)xr, in KK(C(0F2) X [Fp, C(0F2) X [Fp).
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This concludes our preparatory work. We now show that the class of the
cycle given in the above lemma is the same as the class of the Kasparov product
of the elements A and A, concluding thus, as a consequence of the work of Julg
and Valette, that (5.1) holds.

8. Untwisting. We are interested in calculating the cycle corresponding to
the Kasparov product

(A®1¢(ar)xFs) ®C(0F2) xF20C(3F) 4F26C(3F2)xFa (1C(aFs)xF, ® O1HA). (8.1)

In this section, we do something we call—following an analogous proce-
dure in [8]—"“untwisting.” A simple but fundamental property of hyperbolic
groups—and in particular of the free group—will be used: specifically, if two
points a and b on 0F; are sufficiently far apart, then any geodesic connecting
them passes quite close to the identity e of the group. This follows immedi-
ately from the definition of the topology on the compactified space F,. More
precisely, we have the following lemma.

LEMMA 8.1. Let N be a neighborhood of the diagonal {(a,a) | a € 0F,»} in
OF,» x Fp. Then there exists R > 0 such that if (a,b) € (0F» x F»)\N, then the
(unique) geodesic from a to b passes through Bg (e).

NOTE 8.2. To simplify the notation in this section, we denote by A the cross
product C(dF,) % F» and by B the algebra Co(02F») X F».

Consider then the product (A® 14) ®asaea (14 ® 075A) involved in the left-
hand side of (5.1).
Since A = i, ([D]) = [D]®g[i], we have

(A®14) ®asaea (La®07HA)

8.2
=([D1®14) ®pea[i®14] ®agaca (La®OHA). 6.2

We begin by examining the term [i ® 14] ® o404 (14 ® 075A) € KK' (B ®
A,A). It is easy to describe the corresponding cycle explicitly. For since o5A
is represented by a map A® A — 2(I°F,), so also 1,4 ® 075A is represented by
amap ARAR®A — 2(AQIF,) and [i®14] @ agaea (14 ® o5A) is represented
by amap B® A — 9(A®I%F»). By construction, this map is given on the set of
elementary tensors by the formula

a®a®az — a®p(az)A(as), (8.3)

where we have suppressed the inclusion i : B — A® A, so that a; ® a, in the
above expression is understood as an element of B.

We first show that the above map up to unitary equivalence can be rewritten
in a much more tractable way.

Before proceeding, let G be a function on dF, x [F» not necessarily continuous
in the second variable, but continuous in the first. Then G can be made to act
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on the right A-module A® [2F, by the formula
G-(a®e,) =G(-,y)ave,y, (8.4)

noting that for each y € F», G(-,y) € C(3F,) C A.

Now, let F be a continuous, compactly supported function on 02F,. Thus,
F is a continuous function on 0F; X 0F, vanishing in a neighborhood of the
diagonal. So, we can extend it to a continuous function F on dF, x F» by the
Tietze extension theorem and restrict the result to dF, X F». Let F’ denote the
function on dF, X F» given by (a,x) — F(x'a,x~!). Note that F’ is continuous
in the first variable, but not in the second. Hence, £’ may be made to act on
the Hilbert A-module A® I2[F, by the remark in the previous paragraph. We can
thus regard F’ as an element of B(A® [2F,). Let T(F) denote the image of the
operator F’ in 9 (A® [2F»).

Remark that F — T(F) is a well-defined homomorphism Cy(0°F,) — 2(A®
I2F»). For any two extensions of F to functions on 0F» x F» differ by a function—
say H—vanishing on 9F, x 0F», then H’ also vanishes on 0F, x 0F,, and so
defines an operator lying in % (A ® I°F»).

Next, fory € Fo,setT(y) = 1®p(y) € 2(A®1°F,).Itis aroutine computation
to check that the assignments

F—1(F), y—py) (8.5)

make up a covariant pair for the dynamical system (Cy(92F),F»), and hence
a homomorphism

T:B— 2(A®’F,). (8.6)

Next, define a covariant pair for the dynamical system (C(0F;),F2) by @ (f) =
feleBAI’F) and @(y) = y®u, € B(A® I%F,). It is similarly easy to
check that this makes up a covariant pair and so a homomorphism

P:A— B(ASIF,). (8.7)

The following proposition is a key to the untwisting argument.

PROPOSITION 8.3. The class [i® 14] ®apasa (14 ® 075A) € KK (B® A, A) is
represented by the homomorphism 1: B® A — 9(A® I?F,) such that

tboa)=1(b)t(p(a)), beB, acA, (8.8)

where @ and T are as above.

We note that the homomorphisms T and 7T o  commute, and so ¢ actually
is a homomorphism. That ¢ is a homomorphism also follows, however, from
the proof of Proposition 8.3 below, which shows that ( is unitarily conjugate
to the map in (8.3).
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We will require the following lemma.

LEMMA 8.4. Letk € C.(0%F, x0F,) and k be an extension of k to a continuous
function on 0F, X F» X F». Then the two functions on dF» x [,

1

(a,x) — k(x'(a),x!,x),

1

(a,x) — k(x'a),x ' ,a)

are the same modulo Co(0F» X [Fp).

PROOF. Let k be as in the statement of the lemma. Then for some neighbor-
hood N of the diagonal in dF, X 0F,, k is supported on (0F» X 0F> X 0F2)\ (N X
dF,). It follows that we can choose an extension k of k to a function on dF, x
F, x F» such that there is a neighborhood N of the diagonal in oF, x F» such
that k is supported in (8F» X Fo X F2)\ (N X F»).

Now, by routine compactness arguments, it suffices to show that for a € 0F,
fixed and x;, a sequence in F, converging to a boundary point b € 0F,, the
sequence

k(x, (a),x;', xn) —k(x; (a),x;",a) (8.10)

converges to 0 as n — c. We may clearly also assume without loss of gener-
ality that for all n, the point (x;!(a),x;!) lies in the complement of N, else
both terms are 0. By Lemma 8.1, there exists R > 0 such that any two points
(c,z) € 0F» X F» not in N have the property that the geodesic [z,c) passes
through Bg (e). Thus, for all n large enough, d(e,[x;',x;!(a)) < R. But then
d(xyn,le,a)) <R for all n. If a sequence in a hyperbolic space remains at fixed,
bounded distance from a geodesic ray, it must converge to the endpoint of the
ray. Hence, x,, — a, and we are done by continuity of k in the third variable.

O

PROOF OF PROPOSITION 8.3. Consider the class [i ® 14] ®ag4a04 (14 ®
o15A), which is represented by the map B® A — 2(A® [*F) in (8.3).

Define a unitary map of Hilbert modules U : A ® I’F, — A ® I°[F, by the
formula U(a® eyx) = x - a ® ex. Let Ady denote the inner automorphism of
9(A®I°F,) given by (T) — r(UTU*), and let ¢’ denote the homomorphism
B®A — 2(A®I2F,), where

U(ar®az®as) = Ady (a1 @ p(az)A(as)). (8.11)

= l‘,BM;F )’
where B® C;f (F») is viewed as a subalgebra of B® A, and that for b € B and (f2>e
C(0F2), we have (b® f) = T(b)T(f ®1) whereas '(b® f) = T(b)(1®A(f)).
Thus, it remains to prove that T(b)7r(1 ®M;j — f®1) =0 in the Calkin algebra
92(A®I%F,) whenever b € B, f € C(3F»), and f is an extension of f to F,. The
collection of b of the form >’ yF, with each F, € C.(02F,) is dense in B, and

We claim that (" = (. It is a simple matter to check that ¢ BoCH(Fy)
*
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hence it suffices to prove the result for b having this form. Hence, it is sufficient
to prove the result for b = F € C.(0°F,). We are now done by Lemma 8.4 with
k(a,b,c) =F(a,b)f(c). O

9. Conclusion of the proof. Consider the class [i® 14]®aga0a (14® 05A),
which we have shown has the form [(], where ( is as in Proposition 8.3. We are
interested in calculating the Kasparov product of the class of this extension
and the class [D]®14 € KK 1(A,B®A).

Recall that

[D] = [dr] ®cym [V —X], (9.1

where [v — x] is the class of the homomorphism Cy(R) — B induced by map-
ping ¢ to v —x.

Hence, [D]®14 = ([ring] ®14) ®cyryoa ([V—x1®1,4), where [v—-x]®1, is
represented by the homomorphism Cy(R) ® A — B® A induced by mapping
yea—- (v-x)®a.

The Kasparov product

([D1®14) ®poa[i®14] ®asasa (La®0[5(A)) (9.2)

therefore has the form

([dr]®14) ®c,®yea (([V—X]®14) ®poaltl), (9.3)

and ([v—x]®14)®pealt] is represented by the homomorphism Cy(R) ® A —
9(A®I°F,) induced by mapping

yoea— T(v-x)(pa)). (9.4)

But, this homomorphism has the form stated in the hypothesis of Lemma 3.2.
By that lemma,

([dr]®14) ®cyryoa ([V=X]1®14) ®pealt] (9.5)

is represented by the KK(A,A) cycle (A®I°F,,U + 1), where U is any lift to
B(A®1%F,) of the element T(v —x) € 2(A ® [2F,), where the Hilbert (A, A)-
bimodule A ® I°[F, has its standard right A-module structure, and where it has
the left A-module structure given by the homomorphism @ : A — B(A® [2[F,).

In particular, the bimodule is in fact the same as the bimodule appearing in
the Julg and Valette cycle appearing in Lemma 7.3.

It remains to calculate a lift U of T(v — x) and show that in fact such a lift
can be chosen, which agrees with the operator W of Lemma 7.3.

We first construct a lift of T(v). Recall that v = >, cs Xy Y ® (1 —Xy)y, where
S is a basis for [,. Each y is mapped under T to the image in the Calkin algebra
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of the right translation operators 1 ® p(y) : A® IF, — A® [°F». Consider each
term Fy = x, ®(1-xy) € C.(02%F,). Let Xy denote the function on [F, given by

Xy(9) = (9.6)

0, else.

) {1, y € [e,g],

Then ¥, extends continuously to F», and the restriction of ¥, to dF; is xy.
Let then

Fy=xy®(1-%)), 9.7)

which is an extension to 0F, X F, of F,. Forming F}’, as per the recipe described
in the definition of T, we obtain the function

-1 -1
F(a,g)=F, (97 'a,g7") = «[1' yelegma), yéleg™, (9.8)
0, else.

We remind the reader that the statement “x € [e,y]” for x,y € F, may
be equivalently read: “the reduced expression of y contains x as an initial
subword,” or more shortly, “y begins with x.”

With this in mind, consider the first case above. If g~'a begins with y but
g~ ! does not, it follows that there is cancellation between g~! and a; more
precisely, a must begin with g, followed by y. (Since g~' does not begin with
y, g does not end in y~!, and hence gy is in fact reduced.) We have

. 1, gy€le,a), g doesnotendiny!,
Fi(a,g) - { g g 9.9
0, else.

Now, consider the operator F;,(1®vy) € A® B(I*F2) C B(A® I°F). This
operates by

(thh> ®ey— (Zﬁ;(-,gy’l)fhh) ®eyy-1 (9.10)

for > fih is an arbitrary element of the cross product A. From our above work,
we see that F;, (-,gy~") = Ounless g ends in y. On the other hand, if g does end
in y, gy~ ! does not end in y~!. Hence, we see that the above operator sends

(thh)eaeg = {(ngfhh)®egy1, gendsiny, ©.11)

’ else.

We see finally that V = Zyegﬁ}’, - (1®wvy), which is a lift of T(v), acts on
A®l2|]:2 by

(D fuh)®eg — (D xafuh) ey, (9.12)

where the prime notation is as in the discussion just prior to Lemma 7.2.
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In particular, V as an operator on A ® I2F», where the latter is regarded as
functions F» — C(0F») ® I2F», has the form

(VE)(9) =V(E(g)), (9.13)
where V is the operator C(0F») ® I°F, — C(0F») ® I2F,, where
V(foey) =xgf®ey. (9.14)

Otherwise expressed, let £ be an element of C(0F;I°F,) of the form &(a) =
> &y(a)ey, where each &, is a scalar-valued function on 0F,. Then

VE(a)= > Ey(a)eey. (9.15)

gele,a)

Now, apply the same calculations to the element T(x). We obtain the oper-
ator (projection) P on A® I°F, given by P = > F;, € A@ B(I*F2) C B(AI°F>).

We have that V — P is an operator whose projection to the Calkin algebra is
T(v —x) as required. Let it be denoted by U. Form F = U + 1.

Our calculations show that F is an operator having the form

(FE)(g) =F(&(9)), (9.16)

where F: C(0F») ® I2F, — C(0F») ® I2F, is the operator

(F&) (@)= > Ea)®ey+ > xgla)®ey, (9.17)

gele,a) gé¢le,a)

which is precisely the operator W of Lemma 7.2, that is, F = W, and therefore
F=W e BARI%F,).
We are now done, having shown by direct computation that

([D1®14) ®poa [i®1a] ®asasa (La®0HA)

_ 9.18
=[(C(OF2) X F2 ® I°F2, W) ] = A(Yor,xr, ), ©-18)

and therefore that

([D] ®1A) ®BoA [i® lA] R AARA (1A®0'1*2A) =14. (9.19)
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