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A multiplicative function f is said to be specially multiplicative if there is a com-
pletely multiplicative function f4 such that f(m) f (1) = > 4/(mn) fmn/d?) fa(d)
for all m and n. For example, the divisor functions and Ramanujan’s T-function are
specially multiplicative functions. Some characterizations of specially multiplica-
tive functions are given in the literature. In this paper, we provide some further
characterizations of specially multiplicative functions.
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1. Introduction. An arithmetical function f is said to be multiplicative if
f(1) =1 and

Sf(m) f(n) = f(mn) (1.1

whenever (m,n) = 1. If (1.1) holds for all m and n, then f is said to be com-
pletely multiplicative. A multiplicative function is known if the values f(p™)
are known for all prime numbers p and positive integers n. A completely mul-
tiplicative function is known if the values f(p) are known for all prime num-
bers p.

A multiplicative function f is said to be specially multiplicative if there is a
completely multiplicative function f4 such that

ramfm=3 (") @ (1.2)

dl(m,n)

for all m and n, or equivalently

Fomm = 3 () (5 )u@ (1.3)

dl(mn)

for all m and n, where u is the Mobius function. If f4 = 8, where §(1) = 1 and
0(n) =0forn > 1, then (1.2) reduces to (1.1). Therefore, the class of completely
multiplicative functions is a subclass of the class of specially multiplicative
functions.
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The study of specially multiplicative functions was initiated in [7], and arose
in an effort to understand the identity

oatmn) = 3 ou( " )ou( B uaras, (1.4)

dl(m,n)

where 04(n) denotes the sum of the «th powers of the positive divisors of n.
Vaidyanathaswamy used the term “quadratic function,” while the term “spe-
cially multiplicative function” was coined by Lehmer [3]. For more background
information, reference is made to the books by McCarthy [4] and Sivarama-
krishnan [6].

The Dirichlet convolution of two arithmetical functions f and g is defined
as

(f*g)(n) = Zf(d)g(%). (1.5)

dln

The function 6 serves as the identity under the Dirichlet convolution. An arith-
metical function f possesses a Dirichlet inverse f~1 if and only if f(1) # 0.

We next review some basic characterizations of specially multiplicative func-
tions, see [4, 6].

PROPOSITION 1.1. The following statements are equivalent.

(1) The function f is a specially multiplicative function.

(2) The function f is the Dirichlet convolution of two completely multiplica-
tive functions a and b. (In this case fx = ab, the usual product of a and
b.)

(3) The function f is a multiplicative function, and for each prime number

p!
f Y p™ =0, n=3. (1.6)

(In this case fa(p) = f~1(p?) for all prime numbers p.)
(4) The function f is a multiplicative function, and for each prime number
p, there exists a complex number g(p) such that

fp™h) =fp)fp™)-gp)f(p"'), n=1. (1.7)

(In this case fA(p) = g(p) for all prime numbers p.)
(5) The function f is a multiplicative function, and for each prime number
p, there exists a complex number g(p) such that

In/2]

fpm = > (—D"(";k)[f(p)]”'”[g(v)]k, n=0. (1.8)
k=0

(In this case fA(p) = g(p) for all prime numbers p.)
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REMARK 1.2. Completely multiplicative functions a and b in part 2 need not
be unique. The usual product ab, however, is unique. For example, let a, b, c,
and d be completely multiplicative functions such that a(p) =1 and b(p) =2
for all prime numbers p, and c(2) =2,c(p) =1,d(2) =1,and d(p) = 2 for all
prime numbers p # 2. Then a* b = c xd, but a,b # ¢ and a,b # d. However,
ab =cd.

The purpose of this paper is to provide some further characterizations of
specially multiplicative functions. As applications, we obtain formulas for the
usual products ox$g, 0«0, and o« T, where ¢ is a generalized Euler totient
function and T is Ramanujan’s T-function. The function ¢ is given by ¢pg =
NB % u, where N#(n) = nf for all n. In particular, we denote N! = N, N° = ¢,
and ¢, = ¢, where ¢ is the Euler totient function. Ramanujan’s T-function is
a specially multiplicative function with T4 = N1,

In the characterizations, we need the concepts of the unitary convolution
and the kth convolute. The unitary convolution of two arithmetical functions
f and g is defined as

(feg)m) = 3 f@a (), (1.9)

dn

where d|ln means that d|n, (d,n/d) = 1. The kth convolute of an arithmeti-
cal function f is defined as Qr(f)(n) = f(n/*) if n is a kth power, and
Qi (f) (n) = 0 otherwise.

2. Characterizations

THEOREM 2.1. If f is a specially multiplicative function and g is a completely
multiplicative function, then

hxf(g*xw = fg, (2.1)
where h is the specially multiplicative function such that
hip)=f(p),  ha(p)=gP)falp) (2.2)

for all prime numbers p. Conversely, if f(1) = 1 and there exist completely
multiplicative functions a, b, g, and k such that

axbxf(g*xu)=fg, (2.3)
where
a(p)+b(p) = f(p), a(p)b(p) =g(p)k(p), (gxpu)(n)#gn) (24)

for all prime numbers p and integers n (= 2), then f is a specially multiplicative
function with fx = k.
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PROOF. By multiplicativity, it suffices to show that (2.1) holds at prime pow-
ers, that is,

[f(g*xw](p°) = (fg*xh')(p°) (2.5)

for all prime powers p¢.If e = 1, then both sides of (2.5) are equal to f(p)g(p) —
f(p). Assume that e > 2. Then

)
( (2.6)
=f(p)g(p®)-f(p*1gp*")f(p) '
2 ( 2

)9 (P) fa(p).

By (1.7), we obtain

(faxh 1) (p°) =f(p)g(p®)—f(p)g(pe ') =F(p°)(g*xu(p°). (2.7)

Thus we have proved (2.5).
To prove the converse, we write (2.3) in the form

(fgxmw)n) =(fgxatxbH(n). (2.8)

We write n = p®*! (e = 1) and, after some simplifications, obtain

F(p™) = F(pO) f(p) = f(p* Hk(p). (2.9)

Therefore, by (1.7), it remains to prove that f is multiplicative. Denote n =
Pil DY Pri1- - Pris, Where e; > 1 (i = 1,2,...,7). We proceed by induction
onej+---+e,+s to prove that

fn) = f(pil) () f(Pran) - F(Pras). (2.10)

If ey +---+e,+5 =1, then (2.10) holds. Suppose that (2.10) holds when e; +
---+er+s <m.Thenfore; +- - -+e, +5s = m, we have after some manipulation

Sfm)(g*xp)(n)
=(fgxa'xb ') (n)
=fngmn)+ > f(g)g(%)(a’l *b~')(d)

din
a>1

=fmgm) -] fp9)agp®)+ ] (fgxa'xb™")(p°)

pelin pelin
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=fmgm) - [] f(p®)a(p®)

pelin

[F(pi)a(pi) = £(pi ") Fo)a (i) + £ (07 )k (pi)a (PP 7))

+

e

1

X

(f(Pr+i)g(Prei) = F(Prei))-
i-1
(2.11)

Using (2.9), we obtain

f)(g*xwn) =fmgm) —gmn) [| f(p°)+@xmw)n) [ f(p°).
péln peln

(2.12)

This gives (2.10). O

REMARK 2.2. The converse part of Theorem 2.1 can also be written as fol-
lows. If f(1) = 1 and there exist completely multiplicative functions g and k,
and a specially multiplicative function h such that

hxf(g*xu) =fg, (2.13)
where
hip) = f(p), ha(p) =g(p)k(p), (gxp)(n) #gn) (2.14)

for all prime numbers p and integers n (> 2), then f is a specially multiplicative
function with f4 = k.

COROLLARY 2.3. If f is a specially multiplicative function, then
hx f¢ =fN, (2.15)
where h is the specially multiplicative function such that
h(p)=f(p),  halp)=pfalp) (2.16)

for all prime numbers p. Conversely, if f(1) = 1 and if there exist completely
multiplicative functions a, b, and k such that

axbxf¢=fN, (2.17)
where
a(p)+b(p) =f(p), alp)b(p)=pk(p) (2.18)

for all prime numbers p, then f is a specially multiplicative function with f = k.
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COROLLARY 2.4. If f and g are completely multiplicative functions, then

Sfxflgxup) =fg. (2.19)

Conversely, if f(1) = 1 and if there exists a completely multiplicative function
g such that

fxflg*u) =rg, (2.20)
where

(g*(n) #gn) (2.21)
for all integers n (= 2), then f is a completely multiplicative function.

COROLLARY 2.5 (Sivaramakrishnan [5]). If f(1) = 1, then f is a completely
multiplicative function if and only if

f*fé=fN. (2.22)
EXAMPLE 2.6. We have
Oatpp = 0uNP xR 71, (2.23)
where h is the specially multiplicative function such that
h(p)=0a(p) =p*+1,  ha(p)=pPp*=p**F (2.24)
for all prime numbers p.

THEOREM 2.7. If f is a specially multiplicative function and g is a completely
multiplicative function, then

Fg*u) =fa*(uf o (1 fag)). (2.25)

Conversely, if f(1) # 0 and if there exist completely multiplicative functions g
and k such that

flgxp) = fg*(ufeQ(u’kyg)), (2.26)

where

(gxm)(n) #gn) (2.27)
for all n, then f is a specially multiplicative function with fs = k.
PROOF. We observe that
(uf & Q2 (1 fa9)) (p) = —f (p),

(uf @ (12 f49)) (P%) = fap)g(p), (2.28)
(uf@Q(u’fag))(p") =0
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for all prime numbers p and integers n (= 3). Therefore pf ® Qy (U2 fag) = h™1,
where h is the specially multiplicative function in Theorem 2.1. Thus (2.25)

follows from (2.1).
The converse follows from Theorem 2.1 since pf ® Q> (u2gk) =a ' x b1,
where a and b are completely multiplicative functions as given in Theorem 2.1.
O

THEOREM 2.8. If f is a specially multiplicative function and g is a completely
multiplicative function, then

flgxp) =fax(froQ(u’falgow)). (2.29)

Conversely, if f(1) = 1 and there exist completely multiplicative functions c, d,
and g such that

faxp) =fg*((cxd) " oQ(pu’cd(gap))), (2.30)

where

c(p)+d(p) = f(p), (gxu)(n) #gn) (2.31)

for all prime numbers p and integers n (= 2), then f is the specially multiplica-
tive function given as f = c x d.
PROOEF. Proof of Theorem 2.8 is similar to that of Theorem 2.7. O
EXAMPLE 2.9. We have
Oatpp = TuNP % (o ® Qo (WNHF)),

2.32
Tapp = 0aNP % (03 @ Qo (PN (NP o p))). (2:32)

LEMMA 2.10. Suppose that f is an arithmetical function such that f(1) = 1
and f~1(p') =0 for3 <i<k (k=4). Then

FP*) =) f(p* ) =) f(p*2) -1 (pY). (2.33)
PROOF. Lemma 2.10 follows from the equation

> S PO f () =0 (2.34)
O

THEOREM 2.11. If f is a specially multiplicative function and g is a com-
pletely multiplicative function, then

F@*C) = fg* f*Qa(fag) " (2.35)
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Conversely, if f is a multiplicative function such that

F@*8) =fa*fxQ(hg), (2.36)
where g is a completely multiplicative function with g(p)(g*TC)(p®) # 0 for all

prime powers p¢ and where h is a completely multiplicative function, then f is
a specially multiplicative function with f = h.

PROOF. Let f = a * b, where a and b are completely multiplicative func-
tions. It is known [7] that

F(g*C) =(axb)(g*C) =ag*alxbg*bC+Q(abgl)". (2.37)
Using elementary properties of arithmetical functions, we obtain
f(@*T0) = (@*xb) g (a*b)«Q(fa9) " = fgxf*Q(fr9)". (2.38)

This proves (2.35).
Assume that (2.36) holds. Then (2.36) at p? gives

h(p) = f(p)* - f(p). (2.39)
Since f~1(p?) = f(p)? — f(p?) for all multiplicative functions, we obtain
h(p)=f"(p*). (2.40)
We next prove that
fYp')=0 Vi=3. (2.41)
We proceed by induction on i. Calculating (2.36) at p? and using (2.40) gives
f@?) = £ f(P?) - f(p)f ' (PP). (2.42)
Since
L) = f(P*)f o)+ fo)fH(p?) +f ' (p?) =0, (2.43)

we see that f~1(p3) = 0.
Suppose that f~!(p?) =0 for all 3 <1i < k (k > 3). We write (2.36) as

Ff@*xC)xf1=fg*xQ(hg) . (2.44)
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Suppose that k is even, say k = 2e (e > 1). At p?¢, the left-hand side of (2.44)
becomes

2e

%f(pi)(g*C>(vi)f‘1(v29‘i)
=P+ (P 2) (g0 (p* ) fH(p?)
+f( 2“)(9*0( NP + F(p*) (g D) (p*)
p*) - (p*) (g x O (p*7?)
—f(;o)f(lﬂ26 Nap* )+ f(p*)g(p* ")+ f(p*)a(p*)
L) - T (p*) (g x0) (p*)
—f’l(pz)f(vze g(p* )+ f(p*)a(p*),

(2.45)

where the last two equations are derived by Lemma 2.10. Further, at p?¢, the
right-hand side of (2.44) becomes

2e

> f(p*)g(p* )02 (hg) " (p!)
= Zf(pz(e—i))g(pz(e—i))u(pi)h(pi)g(pi) (2.46)

=f(p*)a(p**) - f (P> ) g(p*“ )hp)g(p).

Now, we see that f~!(p2¢) =0, thatis, f~'(p*) =0
If k is odd, a similar argument applies. Thus (2.41) holds and therefore, by
(1.6), f is a specially multiplicative function with f, = h. O

COROLLARY 2.12. If f is a specially multiplicative function, then
foo=fxfxQ(fa) . (2.47)
Conversely, if f is a multiplicative function such that
foo=f*fxQa(h), (2.48)

where h is a completely multiplicative function, then f is a specially multiplica-
tive function with fa = h

COROLLARY 2.13 (Apostol [1]). If f and g are completely multiplicative
functions, then

f@*xC)=fg*f. (2.49)

Conversely, if f is a multiplicative function such that

f@*xC)=fg*f, (2.50)
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where g is a completely multiplicative function with g(p)(g *TC)(p®) # 0 for all
prime powers p°, then f is a completely multiplicative function.

COROLLARY 2.14 (Carlitz [2]). Suppose that f is a multiplicative function.
Then f is a completely multiplicative function if and only if

foo=f*f. (2.51)
COROLLARY 2.15. There exist

TOw = TN T % Qo (N*¥H11) 7
» (2.52)
a0 = OuNP x 0o % Qo (N*TF) .
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