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1. Introduction and preliminaries. Let D be a nonempty subset of a real

Banach space X and T :D→D a nonlinear mapping. The mapping T is said to

be asymptotically quasi-nonexpansive (see [5]) if F(T) �= ∅ and there exists a

sequence {kn} in [0,∞) with limn→∞kn = 0 such that

∥∥Tnx−p∥∥≤ (1+kn)‖x−p‖ (1.1)

for all x ∈D, p ∈ F(T), and n∈N. The mapping T is said to be asymptotically

nonexpansive (see [3]) if there exists a sequence {kn} in [0,∞)with limn→∞kn =
0 such that

∥∥Tnx−Tny∥∥≤ (1+kn)‖x−y‖ (1.2)

for all x,y ∈D and n∈N. The mapping T is said to be a mapping of asymp-

totically nonexpansive type [4] if

limsup
n→∞

sup
x∈D

(∥∥Tnx−Tny∥∥−‖x−y‖)≤ 0 (1.3)

for any y ∈D.

In 1973, Petryshyn and Williamson [7] gave necessary and sufficient condi-

tions for Mann iterative sequence to converge to fixed points of quasi-non-

expansive mappings. In 1997, Ghosh and Debnath [2] extended the results of

[7] and gave the necessary and sufficient conditions for Ishikawa iterative se-

quence to converge to fixed points for quasi-nonexpansive mappings.

Recently, Liu [5] extended results of [2, 7] and gave the necessary and suffi-

cient conditions for Ishikawa iterative sequence to converge to fixed points of

asymptotically quasi-nonexpansive mappings.
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First, we introduce the concept of class of mappings of asymptotically quasi-

nonexpansive type: the mapping T is said to be a mapping of asymptotically

quasi-nonexpansive type if F(T) �= ∅ and

limsup
n→∞

sup
x∈D

(∥∥Tnx−p∥∥−‖x−p‖)≤ 0 for any p ∈ F(T). (1.4)

Remark 1.1. If T is a mapping of asymptotically nonexpansive type with

F(T) �= ∅, then T is a mapping of asymptotically quasi-nonexpansive type.

Remark 1.2. If D is bounded and T is an asymptotically quasi-nonexpan-

sive mapping, then T is a mapping of asymptotically quasi-nonexpansive type.

In fact, if T is an asymptotically quasi-nonexpansive mapping, then there exists

a sequence {kn} in [0,∞) with limn→∞kn = 0 such that

∥∥Tnx−p∥∥≤ (1+kn)‖x−p‖ (1.5)

for all x ∈D, p ∈ F(T), and n∈N, which implies

sup
x∈D

{∥∥Tnx−Tny∥∥−‖x−y‖}≤ kn ·diamD (1.6)

for any y ∈ F(T) and n∈N. Hence

limsup
n→∞

sup
x∈D

(∥∥Tnx−Tny∥∥−‖x−y‖)≤ 0 for any y ∈ F(T). (1.7)

We observe from Remarks 1.1 and 1.2 that the class of mappings of as-

ymptotically nonexpansive type is an intermediate class between the class of

mappings of asymptotically quasi-nonexpansive type and that of mappings of

asymptotically nonexpansive type with nonempty fixed-point sets. Let

C1 = {T : T :D �→D is a nonexpansive mapping},
C2 = {T : T :D �→D is a quasi-nonexpansive mapping},
C3 = {T : T :D �→D is an asymptotically nonexpansive mapping},
C4 = {T : T :D �→D is an asymptotically quasi-nonexpansive mapping},
C5 = {T : T :D �→D is a mapping of asymptotically nonexpansive type},
C6={T : T :D �→D is a mapping of asymptotically quasi-nonexpansive type}.

(1.8)

Then we have the following implications:

C1 C2

C3 C4

C5 C6.

(1.9)
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In this paper, we are mainly interested in the problem of approximation of

fixed points of the more general class of mappings of asymptotically quasi-

nonexpansive type than that of asymptotically quasi-nonexpansive mappings.

The purpose of this paper is to continue discussion concerning convergence of

Mann and Ishikawa iteration processes for mappings of asymptotically quasi-

nonexpansive type in Banach spaces. We give necessary and sufficient condi-

tions for the Mann and Ishikawa iteration processes to converge to fixed points

of mappings of asymptotically quasi-nonexpansive type. Further, we obtain

extensions of various results obtained quite recently by Deng [1], Ghosh and

Denath [2], Liu [5], and Tan and Xu [9, 10] to more general types of space as

well as families of operators.

We say that a Banach space X satisfies Opial’s condition [6] if, for each se-

quence {xn} in X weakly convergent to a point x and for all y �= x,

liminf
n→∞

∥∥xn−x∥∥< liminf
n→∞

∥∥xn−y∥∥. (1.10)

The examples of Banach spaces which satisfy Opial’s condition are Hilbert

spaces, and all Lp[0,2π] with 1<p �= 2 fail to satisfy Opial’s condition [6].

Let D be a nonempty closed convex subset of a Banach space X. Then I−T
is demiclosed at zero if, for any sequence {xn} in D, condition xn → x weakly

and limn→∞‖xn−Txn‖ = 0 implies (I−T)x = 0.

2. Main results. In this section, we establish some weak and strong con-

vergences for mappings of asymptotically quasi-nonexpansive type in Banach

spaces.

Lemma 2.1. Let D be a nonempty subset of a normed space X and let T :

D→ E be a mapping of asymptotically quasi-nonexpansive type. For two given

real sequences {αn} and {βn} in [0,1], let a sequence {xn} in D be defined by

xn+1 =
(
1−αn

)
xn+αnTyn,

yn =
(
1−βn

)
xn+βnTxn, n= 1,2, . . . .

(2.1)

If p is a fixed point of T , then

(a) ‖xn+1 −p‖ ≤ ‖xn −p‖+ (1+ βn)supx∈D(‖Tnx −p‖− ‖x −p‖), n =
1,2, . . . ,

(b) limn→∞‖xn−p‖ exists.

Proof. Let p be a fixed point of T .

(a) From (2.1), we have

∥∥xn+1−p
∥∥≤ (1−αn)∥∥xn−p∥∥+αn∥∥Tnyn−p∥∥
≤ (1−αn)∥∥xn−p∥∥+αn(∥∥Tnyn−p∥∥
−‖y−p‖)+αn∥∥yn−p∥∥
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≤ (1−αn)∥∥xn−p∥∥+(∥∥Tnyn−p∥∥−∥∥yn−p∥∥)
+αn

((
1−βn

)∥∥xn−p∥∥+βn∥∥Tnxn−p∥∥)
≤ ∥∥xn−p∥∥+(∥∥Tnyn−p∥∥−∥∥yn−p∥∥)
+βn

(∥∥Tnxn−p∥∥−∥∥xn−p∥∥)
≤ ∥∥xn−p∥∥+(1+βn)sup

x∈D

(∥∥Tnx−p∥∥−‖x−p‖).
(2.2)

(b) For m,n∈N, we have

∥∥xn+m−p∥∥≤ ∥∥xn+m−1−p
∥∥+2sup

x∈D

(∥∥Tn+m−1x−p∥∥−‖x−p‖)

≤ ∥∥xn+m−1−p
∥∥+2sup

x∈D

(∥∥Tmx−p∥∥−‖x−p‖)

≤ ∥∥xn+m−2−p
∥∥+4sup

x∈D

(∥∥Tmx−p∥∥−‖x−p‖)

≤ ··· ≤ ∥∥xn−p∥∥+2nsup
x∈D

(∥∥Tmx−p∥∥−‖x−p‖).

(2.3)

Hence, for n∈N,

limsup
m→∞

∥∥xm−p∥∥≤ ∥∥xn−p∥∥+2n limsup
m→∞

(∥∥Tmx−p∥∥−‖x−p‖)

≤ ∥∥xn−p∥∥.
(2.4)

It follows that

limsup
m→∞

∥∥xm−p∥∥≤ liminf
n→∞

∥∥xn−p∥∥. (2.5)

Thus limn→∞‖xn−p‖ exists.

Lemma 2.2. LetD and T be as in Lemma 2.1. For a given real sequence {αn}
in [0,1], let a sequence {xn} in D be defined by

xn+1 =
(
1−αn

)
xn+αnTnxn, n= 1,2, . . . . (2.6)

If p is a fixed point of T , then

(a) ‖xn+1−p‖ ≤ ‖xn−p‖+supx∈D(‖Tnx−p‖−‖x−p‖), n= 1,2, . . . ,
(b) limn→∞‖xn−p‖ exists.

Theorem 2.3. Let X be a Banach space which satisfies Opial’s condition and

let D be a weakly compact subset of X. Let T and {xn} be as in Lemma 2.1.

Suppose that T has a fixed point, I−T is demiclosed at zero, and {xn} is an

approximating fixed-point sequence for T , that is, limn→∞‖xn−Txn‖ = 0. Then

{xn} converges weakly to a fixed point of T .

Proof. First, we show that ωw(xn) ⊂ F(T). Let xnk → x weakly. By as-

sumption, we have limn→∞‖xn−Txn‖ = 0. Since I−T is demiclosed at zero,
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x ∈ F(T). By Opial’s condition, {xn} possesses only one weak limit point, that

is, {xn} converges weakly to a fixed point of T .

Theorem 2.4. Let X be a Banach space which satisfies Opial’s condition and

let D be a weakly compact subset of X. Let T and {xn} be as in Lemma 2.2.

Suppose that T has a fixed point, I−T is demiclosed at zero, and {xn} is an

approximating fixed-point sequence for T , that is, limn→∞‖xn−Txn‖ = 0. Then

{xn} converges weakly to a fixed point of T .

Remark 2.5. Theorem 2.3 improves Theorem 2 of Deng [1] for mappings

of asymptotically quasi-nonexpansive type. Theorem 2.4 generalizes Theorem

2.1 of Schu [8].

Theorem 2.6. Let D be a closed subset of Banach space, let T : D → D be

a mapping of asymptotically quasi-nonexpansive type, and F(T) be nonempty

closed set. For two given real sequences {αn} and {β} in [0,1], let the Ishikawa

iterative sequence {xn} in D be defined by (2.1). Then {xn} converges strongly

to a fixed point of T if and only if liminfnd(xn,F(T))= 0.

Proof. Let {xn} converge strongly to a point z ∈ F(T). Then limnd(xn,
F(T))= 0. Conversely, suppose liminfnd(xn,F(T))= 0. From Lemma 2.1(a),

∥∥xn+1−p
∥∥≤ ∥∥xn−p∥∥+2sup

x∈D

(∥∥Tnx−p∥∥−‖x−p‖) (2.7)

for any n ∈ N and p ∈ F(T). Since T is a mapping of asymptotically quasi-

nonexpansive type, we have

lim
n

sup
k≥n

{
sup
x∈D

(∥∥Tkx−p∥∥−‖x−p‖)
}
≤ 0. (2.8)

Hence, there exists a positive integer n0 and a sequence {an} of positive real

numbers with limnan = 0 such that

sup
k≥n

{
sup
x∈D

(∥∥Tkx−p∥∥−‖x−p‖)
}
≤ an (2.9)

for any n ≥ n0. Without loss of generality, we can assume that an = 1/2n2.

Hence,

sup
k≥n

{
sup
x∈D

(∥∥Tkx−p∥∥−‖x−p‖)
}
≤ 1

2n2
(2.10)

for any n≥n0. It follows from (2.7) that

∥∥xn+1−p
∥∥≤ ∥∥xn−p∥∥+ 1

n2
(2.11)
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for all n≥n0, that is,

d
(
xn+1,F(T)

)≤ d(xn,F(T))+ 1
n2

(2.12)

for all n≥n0. Hence for n,m≥n0, we have

d
(
xn+m,F(T)

)≤ d(xn,F(T))+
n+m−1∑
i=n

1
i2
. (2.13)

Using [10, Lemma 1, page 303], we obtain that limnd(xn,F(T)) exists, and

it follows from liminfnd(xn,F(T)) = 0 that limnd(xn,F(T)) = 0. Thus,

limnd(xn,F(T)) = 0. For each ε > 0, there exists a natural number m0 such

that

d
(
xn,F(T)

)
<
ε
3

(2.14)

for all n≥m0. Then there exists a p′ ∈ F(T) such that d(xn,p′) < ε/2 for all

n≥m0. If n,m≥m0, then

d
(
xn,xm

)≤ d(xn,p′)+d(p′,xm)≤ ε
2
+ ε

2
= ε. (2.15)

This shows that {xn} is a Cauchy sequence in D. Let limnxn = v ∈ D. Since

F(T)⊂D is closed and limnd(xn,F(T))= 0, we conclude that v ∈ F(T). This

completes the proof.

As a consequence of Theorem 2.6, we obtain the following result.

Theorem 2.7. Let D be a closed subset of Banach space, let T : D → D
be a mapping of asymptotically quasi-nonexpansive type, and let F(T) be a

nonempty closed set. For a given sequence {αn} in [0,1], let the Mann iterative

sequence {xn} in D be defined by (2.6). Then {xn} converges strongly to a fixed

point of T if and only if liminfnd(xn,F(T))= 0.

Remark 2.8. Theorems 2.6 and 2.7 extend corresponding results of Ghosh

and Debnath [2], Liu [5], and Petryshyn and Williamson [7] from quasi-non-

expansive or asymptotically quasi-nonexpansive mapping to large class of non-

Lipschitzian mappings.
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