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The present paper examines the contact problem related to shear punch through a
rigid strip bonded to a nonhomogeneous medium. The nonhomogeneous medium
is bonded to another nonhomogeneous medium. The strip is perpendicular to the
y-axis and parallel to the x-axis. It is assumed that there is perfect bonding at the
common plane surface of two nonhomogeneous media. Using Fourier cosine trans-
forms, the solution of the problem is reduced to dual integral equations involving
trigonometric cosine functions. Later on, the solution of the dual integral equa-
tions is transformed into the solution of a system of two simultaneous Fredholm
integral equations of the second kind. Solving numerically the Fredholm integral
equations of the second kind, the numerical results of resultant contact shear are
obtained and graphically displayed to demonstrate the effect of nonhomogeneity
of the elastic material.
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1. Introduction. In practical applications, the material nonhomogeneity be-

comes an important factor to be considered, particularly, in the certain class

of problems such as the foundation and contact problems in soil mechanics

and wave propagation problems in the mechanics. In solid mechanics, many of

the engineering materials, such as composites and large variety of bonded ma-

terial and structural components, are generally modeled as nonhomogeneous

continua. An example of a material with these properties is shale-sandstone.

There are some important applications in ceramic coating of metal substrates

and in metal-ceramic composites with graded properties. The advantages of

functionally gradient materials are that of the materials which can resist high

temperatures effectively and the thermal stresses in the material can be re-

duced significantly. Therefore, those materials cannot break easily and they

have important applications in engineering.

Related to the present work is the solution of the mixed boundary value

problems in nonhomogeneous medium discussed by Singh [4], Dhaliwal and

Singh [2], and Delale and Erdogan [1]. In these papers, the nonhomogeneity

vary in the two directions of the coordinate axes. It is important to mention

that Erdogan [3] discussed crack problems under antiplane shear loading in

bonded materials, where shear moduli vary exponentially as a function of

x. Even though, no systematic study of the problem discussed in this paper
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appears to have been made, it is reasonable to expect that, in nonhomogeneous

materials with continuous and continuously differentiable elastic constants,

the nature of stress singularity at the punch corner would be identical to that

of a homogeneous medium.

In this paper, we consider the finite antiplane shear punch on the nonhomo-

geneous medium 0 < x <∞ and 0 < y <∞. The medium has shear modulus

µ(x,y)=G1eα1x+βy and the medium is bonded by another nonhomogeneous

medium −∞ < x < 0 with shear modulus µ(x) = G2eα2x . The formulation

of the problem leads to the solution of dual integral equations with trigono-

metric cosine function. Finally, the solution of the problem is reduced to the

solution of two simultaneous system of Fredholm integral equations of the

second kind in two unknown functions. The expressions for shear stress and

resultant shear force under the punch are obtained. The simultaneous system

of Fredholm integral equations is numerically solved and numerical values for

resultant shear force under the punch and shear stress are graphed to demon-

strate the effect of nonhomogeneity of the elastic material.

This paper also contains a novel treatment of contact problems involving a

nonhomogeneous space and has practical value in soil mechanics and mining

engineering. This paper has importance for the study of some materials that

are nonhomogeneous in the x and y directions.

2. Solution of equilibrium equation in rectangular Cartesian coordinates.

We consider a solid under shear such that the displacement field is given by

ux(x,y,z)= 0, uy(x,y,z)= 0, uz(x,y,z)=w(x). (2.1)

The only nonzero stress components are given by

σxz(x,y)= µ ∂w∂x , σyz(x,y)= µ ∂w∂y , (2.2)

where µ, the modulus of rigidity of the material, is assumed to be continuous

and twice differentiable function of x and y . In this case, the equation of

equilibrium of an isotropic elastic material in the absence of body force is

given by

∂
∂x

(
µ
∂w
∂x

)
+ ∂
∂y

(
µ
∂w
∂y

)
= 0. (2.3)

If we take

w(x,y,z)= W(x,y)√
µ(x,y)

, (2.4)
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then making use of (2.4), (2.3) takes the following form:

µ∆2W + 1
2

[
1

2µ

{(
∂µ
∂x

)2

+
(
∂µ
∂y

)2
}
− ∂

2µ
∂x2

− ∂
2µ
∂y2

]
W = 0, (2.5)

where, in Cartesian coordinates, the Laplacian operator ∆2 takes the form

∆2 = ∂2

∂x2
+ ∂2

∂y2
. (2.6)

Now assume that W and µ can be taken in the form

W(x,y)=X(x)Y(y), µ = µ0p(x)q(y), (2.7)

where µ0 is a constant. Substituting (2.7) into (2.5) for W and µ, we find that X
and Y satisfy the following differential equations:

Xxx+
[
k2+ 1

4

(
px
p

)2

−
(
pxx
p

)]
X = 0,

Yyy+
[
−k2+ 1

4

(qy
q

)2

−
(qyy
q

)]
Y = 0,

(2.8)

where

px = ∂p∂x , pxx = ∂
2p
∂x2

, (2.9)

and k is a separating constant. If we assume that

pxx
2p

− 1
4

(
1
p
dp
dx

)2

= a0,
qyy
2p

− 1
4

(
1
q
dq
dy

)2

= b0, (2.10)

where a0 and b0 are constants, we find that (2.8) can be written in the form

Xxx+
(
k2−a0

)
X = 0,

Yyy−
(
k2+b0

)
Y = 0.

(2.11)

Making use of (2.4), (2.7), and (2.11), we find the displacement component.

To find the solution of (2.11), we take the variable separation constant in the

following form:

ξ2 = k2−a0, (2.12)
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and write (2.11) in the following form:

Xxx+ξ2X = 0,

Yyy−
[
ξ2+a0+b0

]
Y = 0.

(2.13)

The solution of (2.13) can be written as

A(ξ)cos(ξx)e−(ξ
2+a0+b0)1/2y, (2.14)

where A(ξ) is an arbitrary constant.

An alternative solution of (2.11) can be written if we write the variable sep-

arable constant in the form

ξ2 = k2+b0, (2.15)

then the solution of (2.11) can be taken as

B(ξ)cos(ξy)e−(ξ
2+a0+b0)1/2x, (2.16)

where B(ξ) is an arbitrary constant. In particular, we take the shear modulus

in the form

µ1 =G1eα1x+βy (2.17)

for the region 1 (0 < x <∞, 0 < y <∞), then comparing (2.17) with (2.7), we

find that

µ0 =G1, p(x)= eα1x, q(y)= eβy. (2.18)

We can easily find from (2.10) that

a0 = α
2
1

4
, b0 = β

2

4
. (2.19)

Making use of (2.4), (2.14), (2.16) and (2.19), we find the expression for dis-

placement component for the region (0 < x <∞, 0 < y <∞) in the following

form:

w1(x,y)= 1√
G1eα1x+βy

[∫∞
0

{
A(ξ)cos(ξx)e−(ξ

2+(α2
1+β2)/4)1/2y

−B(ξ)
(

sin(ξy)
ξ

+ 2
β

cos(ξy)
)

×e−(ξ2+(α2
1+β2)/4)1/2x

}
dξ
]
,

(2.20)
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where A(ξ) and B(ξ) are arbitrary functions of ξ. The corresponding shear

stress components for the region (0<x <∞, 0<y <∞) are as follows:

σ 1
yz(x,y)=−

√
G1eα1x+βy

[∫∞
0
A(ξ)

{(
ξ2+α

2
1+β2

4

)1/2

+β
2

}

×cos(ξx)e−(ξ
2+(α2

1+β2)/4)1/2y

−B(ξ)4ξ2+β2

2ξβ
sin(ξy)e−(ξ

2+(α2
1+β2)/4)1/2x

]
dξ

(2.21)

σ 1
xz(x,y)=−

√
G1eα1x+βy

[∫∞
0

{
A(ξ)

(
α1

2
cos(ξx)+ ξ

2
sin(ξx)

)

×e−(ξ2+(α2
1+β2)/4)1/2y

−
((
ξ2+ α

2
1+β2

4

)1/2

+ α1

2

)

×B(ξ)e−(ξ2+(α2
1+β2)/4)1/2x

×
(

sin(ξy)
ξ

+ 2
β

cos(ξy)
)}
dξ
]
.

(2.22)

For region 2, we assume that the shear modulus is as follows:

µ2 =G2eα2x (−∞<x < 0). (2.23)

For the solution of equilibrium equation (2.5) for the region 2, we can easily

write the displacement and shear stress components, for the region−∞<x<0,

0<y <∞, in the following integral form:

w2(x,y)= 1√
G2eα2x

[∫∞
0
C(ξ)e(ξ

2+(α2
2/4))

1/2x cos(ξy)dξ
]
, (2.24)

σ 2
yz(x,y)=−

√
G2eα2x

[∫∞
0
ξC(ξ)e(ξ

2+(α2
2+β2)/4)1/2x sin(ξy)dξ

]
, (2.25)

σ 2
xz(x,y)=

√
G2eα2x

[∫∞
0

[(
ξ2+ α

2
2+β2

4

)1/2

− α2

2

]
,

×C(ξ)e(ξ2+(α2
2/4))

1/2x cos(ξy)dξ
]
,

(2.26)

where C(ξ) are arbitrary functions of ξ.

3. Statement of problem and derivation of Fredholm integral equation

of the second kind. We consider the problem of the antiplane shear of a

nonhomogeneous half-space (0 < x < ∞, 0 < y < ∞) of a shear modulus

G1eα1x+βy bonded with a semi-infinite medium −∞ < x < 0, y > ∞ of shear

modulus G2eα2x , where G1, G2, α1, α2, and β are real constants and x and y
refer to Cartesian coordinates. Contact shear force is applied to the flat part
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x
a

µ1 =G1eα1x+βy

Region 1

µ2 =G2eα2x

Region 2

y

Figure 3.1. Contact problem for bonded nonhomogeneous materials.

of the surface y = 0, 0 < x < a, through a rigid strip bounded to a nonho-

mogeneous medium. The geometry of the problem is shown in Figure 3.1. The

boundary conditions of the problem may be taken as

w1(x,0)= f(x), 0<x <a,

σ 1
yz(x,0)= 0, a < x <∞, (3.1)

σ 2
yz(x,0)= 0, −∞<x < 0. (3.2)

We have the following continuity conditions along the plane surface x = 0:

w1(0,y)=w2(0,y), σ 1
xz(0,y)= σ 2

xz(0,y), 0<y <∞. (3.3)

It is required that w1(x,y) and w2(x,y) tend to zero as
√
x2+y2 →∞ and

f(−x)= f(x); f(x) is a known function of x.

We find that the boundary condition (3.2) is satisfied automatically at y = 0.

Making use of (2.20), (2.22), (2.24), and (2.26), we find, from the boundary

conditions (3.3), that

∫∞
0

[
C(ξ)+ 2

√
G
β

B(ξ)
]

cos(ξy)dξ+
√
G
∫∞

0

B(ξ)sin(ξy)dξ
ξ

=
√
G
∫∞

0

A1(ξ)e−ye1(ξ)dξ
e1(ξ)

, 0<y <∞,
√
G
∫∞

0
e3(ξ)C(ξ)cos(ξy)dξ− 2

β

∫∞
0
e4(ξ)B(ξ)cos(ξy)dξ

−
∫∞

0

e4(ξ)B(ξ)sin(ξy)dξ
ξ

=−α1

2

∫∞
0

e−ye2(ξ)A1(ξ)dξ
e1(ξ)

, 0<y <∞,

(3.4)
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where

e1 =
[(
ξ2+ α

2
1+β2

4

)1/2

+ β
2

]
,

e2 =
[(
ξ2+ α

2
1+β2

4

)1/2

− β
2

]
,

e3 =
[(
ξ2+ α

2
2

4

)1/2

− α2

2

]
,

e4 =
[(
ξ2+ α

2
1+β2

4

)1/2

+ α1

2

]
,

(3.5)

G = G2

G1
, A1(ξ)= e1A(ξ). (3.6)

Making use of Fourier cosine transforms to (3.4), we find that

C(ξ)+ 2
√
G
β

B(ξ)+ 2
√
G
π

∫∞
0

B(u)du
u2−ξ2

= 2
π

√
G
∫∞

0

A1(u)du[
ξ2+e2

1(u)
] , 0< ξ <∞,

√
GC(ξ)e3(ξ)− 2

β
e4(ξ)B(ξ)− 2

π

∫∞
0

e4(u)B(u)du
u2−ξ2

=−α1

π

∫∞
0

e2(u)A1(u)du
e1(u)

[
ξ2+e2

1(u)
] , 0< ξ <∞.

(3.7)

Equations (3.7) have been obtained by using the following integrals:

∫∞
0

sin(uy)cos(ξy)dy =
(

u
u2−ξ2

)
,

∫∞
0
e−e1(u)y cos(ξy)dy =

(
e1(u)

ξ2+e2
1(u)

)
.

(3.8)

Eliminating C(ξ) from (3.7), we get that

B(ξ)e5(ξ)+
∫∞

0

B(u)K1(u,ξ)du
u2−ξ2

=
∫∞

0
A1(u)R1(u,ξ)du, 0< ξ <∞, (3.9)

where

e5(ξ)= 2
β
[
e4(ξ)+Gc3(ξ)

]
,

R1(u,ξ)= 1
π

[
2Ge3(ξ)[
ξ2+e2

1(u)
] + α1e2(u)

e1(u)
[
ξ2+e2

2(u)
]
]
,

K1(u,ξ)= 2
π
[
e4(u)+Ge3(ξ)

]
.

(3.10)
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Making use of (2.20) and (2.21) in the boundary conditions (3.1), we find that

∫∞
0

A1(ξ)cos(ξx)dξ
ξ

+
∫∞

0
M1(ξ)A1(ξ)cos(ξx)dξ

−2
β

∫∞
0
B(ξ)exe6(ξ)dξ =

√
G1eα1x/2f(x), 0<x <a,

∫∞
0
A1(ξ)cos(ξx)dξ = 0, a < x,

(3.11)

where

M1(ξ)=
[

1
e1(ξ)

− 1
ξ

]
,

e6(ξ)=−
[
ξ2+ α

2
1+β2

4

]1/2

,
(3.12)

and A1(ξ) is defined by (3.6).

The solution of the dual integral equations (3.11) can be written as

A1(ξ)= ξ(G)1/2
∫ a

0
tφ(t)J1(ξt)dt, (3.13)

where φ(t) satisfies the following Fredholm integral equation of the second

kind:

φ(t)+
∫ a

0
φ(u)K2(u,t)du

+ 2
β

∫∞
0
e6(ξ)

[
2
π
+I1

(
e6t

)+L1
(
e6t

)]
B1(ξ)dξ

=−−α1

2

[
I1
(
α1t
2

)
+L1

(
α1t
2

)
+ 2
π

]
, 0< t < a,

(3.14)

and

K2(u,t)=u
∫∞

0
ξ2M1(ξ)J1(ξu)J1(ξt)dξ, (3.15)

√
G1B1(ξ)= B(ξ). (3.16)

For obtaining (3.14), we have taken f(x) = 1 and we have used the following

results:

d
dt

∫ t
0

cos(ξx)dx(
t2−x2

)1/2 =−
(
πξ
2

)
J1(ξt),

d
dt
[
L0
(
e6t

)]= e6

[
2
π
+L1

(
te6

)]
,

d
dt

∫ t
0

exe6dx(
t2−x2

)1/2 =
πe6

2

[
2
π
+I1

(
e6t

)+L1
(
e6t

)]
,

(3.17)
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Figure 3.2. Variation of σ1
yz(x,0)/G1 with x for different values of

β = −0.7,−0.5,−0.3,0.1,0.5,0.7, a = 1.3, G = 2, α1 = 0.2, and α2 =
0.1.
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Figure 3.3. Variation of σ1
yz(x,0)/G1 with x for different values of

α1 = 0.1,0.3,0.5,0.7, a= 1.3, G = 2, α2 = 0.1, and β= 1.

where J1() and I1() are, respectively, the Bessel functions of the first kind

and modified Bessel functions of the first kind, and L1() denotes the Struve

function of the first kind of order one.

Making use of (3.13) and (3.16), (3.9) can be written in the following form:

B1(ξ)e5(ξ)+
∫∞

0

B1(u)K1(u,ξ)du
u2−ξ2

=
∫ a

0
φ(t)N1(t,ξ)dt, 0< ξ <∞, (3.18)
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Figure 3.4. Variation of σ1
yz(x,0)/G1 with x for different values of

α2 = 0.1,0.3,0.5,0.7,0.9, a= 1.3, G = 2, α1 = 0.1, and β= 2.
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Figure 3.5. Variation of σ1
yz(x,0)/G1 with x for different values of

α2 = 3,5,7,9, a= 1.3, G = 2, α1 = 0.1, and β= 2.

where

N1(t,ξ)= t
∫∞

0
uJ1(u,t)R1(u,ξ)du. (3.19)

Equations (3.14) and (3.18) are simultaneous Fredholm equations of the sec-

ond kind.
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Figure 3.6. Variation of σ1
yz(x,0)/G1 with x for different values of

α2 = 3,5,7,9, a= 1.3, G = 2, α1 = 0.1, and β= 2.
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Figure 3.7. Variation of σ1
yz(x,0)/G1 with x for different values of

α1 = 0.1,0.3,0.5,0.7, a= 1.3, G = 5, α2 = 0.5, and β= 0.2.

Making use of (2.21) and (3.6), we find that

σ 1
yz(x,0)=−

√
G1eα1x/2

∫∞
0
A1(ξ)cos(ξx)dξ

=−
√
G1eα1x/2 d

dx

∫∞
0

A1(ξ)sin(ξx)dξ
ξ

, 0<x < a.
(3.20)
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Substituting the value of A1(ξ) from (3.13) into (3.20), we find that

σ 1
yz(x,0)
G1

=−eα1x/2 d
dx

[
x
∫ a
x

φ(t)dt(
t2−x2

)1/2

]
, 0<x < a. (3.21)

Solving numerically the simultaneous Fredholm integral equations (3.14) and

(3.18) to get the values of φ(t) and finally using expression (3.21), we get the

numerically results for σ 1
yz(x,0)/G1 which are plotted in Figures 3.2, 3.3, 3.4,

3.5, 3.6, and 3.7.

We notice from Figure 3.2 that the shear stress on the surface of the elastic

material under the rigid strip decreases with x. Also we notice the following

trend for the shear stress with the nonhomogeneity constants β, α1, and α2:

σ 1
yz(x,0)/G1 increases with β in Figure 3.2, increases with α1 in Figures 3.3,

3.7, decreases with α2 < 1 in Figures 3.4, 3.5, and increases with α2 > 1 in

Figure 3.6.
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