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ON SOME BK SPACES
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We characterize the spaces sy (A), sg(A), and s&c) (A) and we deal with some sets
generalizing the well-known sets wg(A), We (A), W(A), co(A), € (A), and c(A).
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1. Notations and preliminary results. For a given infinite matrix A =
(@nm)nm=1, the operators Ay, for any integer n > 1, are defined by

00

An(X) = Z AnmXm, (1.1)

m=1

where X = (x;,)n>1 is the series intervening in the second member being con-
vergent. So, we are led to the study of the infinite linear system

An(X) =by, mn=1,2,..., (1.2)

where B=(b,) =1 is a one-column matrix and X the unknown, see [2, 3, 5,6, 7, 9].
Equation (1.2) can be written in the form AX = B, where AX = (A, (X))n>1.In
this paper, we will also consider A as an operator from a sequence space into
another sequence space.

A Banach space E of complex sequences with the norm ||| ¢ is a BK space if
each projection P, : X — P, X is continuous. A BK space E is said to have AK
(see [8]) if for every B = (by)n>1, B=>_1 bmem, that is,

— 0 (n— ). (1.3)
E

> Dbmem

m=N+1

We shall write s, ¢, co, and [l for the sets of all complex, convergent sequences,
sequences convergent to zero, and bounded sequences, respectively. We shall
write cs and [; for the sets of convergent and absolutely convergent series,
respectively. We will use the set

Ut* = {(Un)yoq €S un >0 Vn}. (1.4)
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Using Wilansky’s notations [12], we define, for any sequence & = (&X,)n=1 €
U** and for any set of sequences E, the set

a*E={(Xn)n21€S| <%) GE}' (1.5)

n
Writing

sa If E=co,

a*xE=1s ifE=c, (1.6)
Sa I E=ly,
we have for instance
ko =Su={(Xn)ps1 €51 xn=0(xtn) n — oo}. (1.7)

Each of the spaces o E, where E € {co,c,l}, is a BK space normed by

nx=1 n

X
[ X]l5, = sup (—' ] ) (1.8)
X

and s; has AK.
Now, let & = (&n)n=1 and B = (Bn)n=1 € UT*. We shall write Sy g for the set
of infinite matrices A = (anm)n,m=1 such that

[

(AnmOm) sy €11 Y21, D Janm|om =0(Bn) (m—o0). (1.9)

m=1

The set S, is a Banach space with the norm

> I
IAlls, s = sup( > | anm| —’") (1.10)
nzl \ ;=1 Bn

Let E and F be any subsets of s. When A maps E into F, we write A € (E,F),
see [10]. So, for every X € E, AX € F (AX € F will mean that for each n > 1,
the series defined by ¥y, = > 1 AnmXm is convergent and ()y)n>1 € F). It has
been proved in [8] that A € (s«,sg) if and only if A € Sy. So, we can write
(SxsSB) = Sw,-

When s, = sg, we obtain the unital Banach algebra Sy = Sy, (see [2, 3, 9])
normed by [[Alls, = [[Allsy -

We also have A € (sq,S«) if and only if A € S. If [[I - Alls, < 1, we say that
A €Ty. The set S, being a unital algebra, we have the useful result: if A € I,
A is bijective from s, into itself.
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If x=(r")y>1, then Ty, S«, S«, Sg, and S&C) are replaced by I, S;, sy, Sy, and

sﬁc), respectively, (see [2, 3, 5, 6, 7, 8, 9]). When r = 1, we obtain §; = L., $] = Co,

and s{c) = ¢, and putting e = (1,1,...), we have §; = S,. It is well known, see
[10], that
(s1,51) = (co,51) = (c,51) = S1. (1.11)

We write e, = (0,...,1,...) (where 1 is in the nth position).
For any subset E of s, we put

AE={Yes|3IXeEY =AX}. (1.12)
If F is a subset of s, we denote
F(A)=Fs={Xes|Y=AXeF}. (1.13)
We can see that F(A) = A~'F.
2. Sets sy (A), s5(A), and Sfxc) (A). In this section, we will give necessary and
sufficient conditions permitting us to write the sets sy (A), sg(A), and sfxc) (A)

by means of the spaces sg, Sg, or séc). For this, we need to study the sequence
C(x)cx.

2.1. Properties of the sequence C(«x)x. Here, we will deal with the opera-
tors represented by C(A) and A(A), see [2, 5, 7, 8, 9].
Let
U= {(Un)ys1 €S U =0 Vnl. (2.1)

We define C(A) = (cum)nm=1, for A = (Ay)n=1 € U, by

1 .

— ifm=<n,

Cnm = An (22)
0 otherwise.

It can be proved that the matrix A(A) = (¢;;0)nm=1, With

An if m=mn,
Com=1-An1 ifm=n-1,n=2, (2.3)
0 otherwise,

is the inverse of C(A), see [8]. If A = e, we get the well-known operator of first
difference represented by A(e) = A and it is usually written = = C(e). Note that
A =371 and A and X belong to any given space Sz with R > 1.
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We use the following sets:

C= O(€U+*|C((X)(X_(1(Z(Xk)) ecp,
&n \ x5y n=1

Ci={xeU™|Cla)xes =lu}, (2.4)
F—<|o<eU** | im (O‘"’l) < 1}.
n-o \ Ny

Note that A € T, implies « € T. It can be easily seen that « € T if and only if
there is an integer g > 1 such that

Ya(o) = sup (%) <1. (2.5)
n=q+1 \ On

See [7].

In order to express the following results, we will denote by [C(«x)«], (in-
stead of [C ()], (ex)) the nth coordinate of C () x. We get the following propo-
sition.

PROPOSITION 2.1. Let x € U™*. Then
(i) axp-1/6n — 0 ifandonlyif [C(x)x], — 1;
(i@ xeC implies that (0ty-1/0n)n=1 € C,
(b) [C(0) ]y, — | implies that ¢, 1/, — 1—=1/1;
(iii) Ifx € a, there are K > 0 and y > 1 such that

oy = Ky"™ Vn; (2.6)

(iv) the condition x € T implies that x € 6‘\1 and there exists a real b > 0 such
that

[C(a)a]nsﬁ+bx" form=q+1, x =ys(x) €10,1[. (2.7)

PROOF. (i) Assume that o, -1/, — 0. Then there is an integer N such that

n=N+1— St L (2.8)
oy 2
So, there exists a real K > 0 such that «; > K2" for all n and
n-k
ﬁ:&---%s(l> for N<k<n-1. (2.9)
On Okl Oy 2
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Then
1 n-1 1 N-1 n-1 0(
n \ k2 &n \ k21 k=N Xn
v . (2.10)
1 - n-lop\n-k
<— ok |+ > (—) ;
K2n (k—l ) kv V2
and since
n-1 1 n-k 1 n-N
> (—) =17(—) —1 (n— o), (2.11)
P 2 2
we deduce that
1 n-1
a(zak> =0(1), ([C(x®)«],) € L. (2.12)
n\ k=1
Using the identity
[C(o0a], = o+ + &n-1 0(11—1+1
Kn-1 Kn
(2.13)
Kn-1
=[C((x)o<]n_1< >+1,
n
we get [C(x)a], — 1. This proves the necessity.
Conversely, if [C(x)«],; — 1, then
Kn-1 [C(O()o‘]n_l
= — 0. 2.14
% [Claal, (19
Assertion (ii) is a direct consequence of identity (2.14).
(iii) We put 3, = >'}'_; &. Then for areal M > 1,
Zn
[C(Xa],=c——=<M Vn. (2.15)

DT

S0, %, = (M/(M—-1))2,_1 and =, = (M/(M—1))"1; for all n. Therefore,
from

(Xl M n-1 B Zl
a(m) < [C(O()(X]n = p <M, (216)

we conclude that &, = Ky" for all n, with K = (M —-1)x;/M? and y = M/ (M —
1)>1.
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(iv) If x €T, then there is an integer g > 1 for which

k>g+1= k-1

<=x <1 with x = ys(x).

So, there is a real M’ > 0 for which

oy =

Vn=q+1.

Writing g = 1/ 0t (X 1_; o) and dy, = [C () ]y — Ongq, We get

(Sl 2 )

j=a+1 \k=1 Kn-k+1

And using (2.18), we get

1 q
Unqu,x"<Z¢Xk>.

k=1

So
[C()x],, <a+Dbx"

witha=1/(1-x) and b = (1/M") (S}, o).

REMARK 2.2. Note that x € a does not imply that x € T.

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

2.2. New properties of the operator represented by A. Throughout this
paper, we will denote by Dg the infinite diagonal matrix (£, 6nm)n,m>1 for any

given sequence & = (&, )n>1. Now, we require some lemmas.

LEMMA 2.3. The condition A € (s,sg) is equivalent to Ay = D1;xADy €

(co,co) and A € (s, s5) implies Ay = Dy;aADy € (c,c).

PROOE. First, D is bijective from ¢y into s. In fact, the equation Dy X = B,
for every B = (by)y € Sg, admits a unique solution X = Dy ,«B = (by/&n)n € Co.
Suppose now that A € (s&,sa)- Then for every X € ¢y, we get successively X' =
DX € 55, AX' € sg, and Ay = D1,oADy € (co,co). Conversely, assume that
Ax € (co,00) and let X € s;. Then X = DX’ with X’ € ¢g. So, AX € Dxco = S5

(c) ()

and A € (s3,85). By a similar reasoning, we get A € (s«’,5«" ) = Ax € (c,0).

We need to recall here the following well-known results given in [12].

O
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LEMMA 2.4. The condition A € (c,c) is equivalent to the following conditions:
i) AeSyy;

(ii) (anpm)n=1 € ¢ foreachm = 1;

(i) (X1 Anm)n=1 € C.

If for any given sequence X = (x, ), € ¢, with lim, x,, = [, A,,(X) is conver-
gent for all n and lim,, A,,(X) = [, it is written that

limX = A-limX, (2.22)

and A is called a Toeplitz matrix. We also have the next result.

LEMMA 2.5. The operator A € (c,c) is a Toeplitz matrix if and only if
i) AeSy;

(ii) limy aum =0 for each m = 1;

(iii) limy, (X1 anm) = 1.

Now, we can assert the following theorem.

THEOREM 2.6. We have successively
(i) sa(A) = sy if and only if x € Cy;
(i) s5(A) = sg if and only if x € Cy;
(i) s(A) = s& if and only if x € C;
(iv) Ax =D1,xADy is bijective from c into itself withlim X = Ay —lim X if and
only if

— 0. (2.23)

PROOF. (i) We have s4(A) = sy if and only if A, 2 € (54, S«). This means that
A, 2 € Sy, that is,

IAlls, = sup (1 + "‘"*1> <o, IZls, = sup[C(@a], <. (2.24)
n=1 [ n=1

n

Since 0 < &p—1 /&y < [C(e) &y, we deduce that A, X € Sy if and only if |25, <
oo, that is, x € CAl

(ii) From Lemma 2.3, if s3(A) = s, then Ay = D1,oAD« € (co,¢0). SO, Ay €
(co,le) = S1 and since Ay = (dpm)nm=1 With

1 if m =n,

ifm=n-1, (2.25)

Kn-1

dnnlz
n

0 otherwise,
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we deduce that ay—1/xy = O(1), n — co. Further, s3(A) = sg implies Xy =
D1,4ZEDy € (co,¢0) and 2y € (o, 1) = S1. Since Zy = (Tpm)n,m>1 With

O .
™ ifm < n,

Onm =1 &n (2.26)
0 if m > n,

sup (1<Z (xk)) < o, (2.27)
n=1 \ &n \ 5}

thatis, x € CAl Conversely, assume that x € CA’l First, A € (s&,5&)- Indeed, from
the inequality

we deduce that

&n-l  sup ([Cle)a],) < o, (2.28)

we deduce that for every X € 55, xn/&n = 0(1),

Xn—Xn-1 _Xn Xn-1 &n-1
Xn Ky  OKp-1 &n

=o0(1) (2.29)

and AX € s;. Further, take B = (by)n>1 € 4. Then there exists v = (Vi )n=1 € Co
such that b,, = &, vy,. We must prove that the equation AX = B admits a unique
solution in the space sg,. First, we obtain

X=3B= ( > (xkvk> : (2.30)
k=1

nx1

In order to show that X = (x,)n>1 € 5&, we will consider any given € > 0. From
Proposition 2.1(iii), the condition « € C; implies that «;,, — . So, there exists
an integer N such that

N
1
Sn=—1]> v s% for n > N,
&n | k=1 (2.31)
sup (|vkl) < £
n=N+1 K= 28Upy,;; ([C(O()O(]n) '
Writing Ry, = 1/ 0| X3 —n+1 Xk Vkl, we conclude that
£
R, < ( sup (|vk|)>[C(0()cx]n5§. (2.32)
N+1<k<n
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N n
1 v | + — > v
&n \ k=1 )T o k=N+1 o (2.33)

<S,+R,<¢e forn=N,

Finally, we obtain

E _
Xn

and X € s9.

(iii) As above, Sff) (A) = s&c) ifand onlyif Ay, 2« € (c¢,c); and from Lemma 2.4,
we have Ay € (c,c) if and only if (;,,—1/ ) € c. In fact, we have Ay € S1 and
Z;Z:l Apym = 1+ 0t_1/ %y tends to a limit as n — . Afterwards, X4 € (c,c) is
equivalent to

(a) 24 €8y, thatis, x e CAI;

(b) limy, (/) = 0 for all m > 1;

(c) xe C.

From Proposition 2.1(iii), (c) implies that o, tends to infinity, so (c) implies
(a) and (b). Finally, from Proposition 2.1(ii), we conclude that « € c implies
(0t—1/ 0 )pn € c. This completes the proof of (iii).

(iv) From Lemma 2.5, it can be easily verified that Ay € (¢,c) and limX =
Ay —lim X if and only if &, 1/, — 0. We conclude, using (iii), since o1/, =
0(1) implies that x € C. O

REMARK 2.7. In Theorem 2.6(iv), we see that X4 € (¢,c¢) and limX = X, —
lim X if and only if o,-1/ &, — 0. In fact, we must have for each m > 1, oy, =
Om/&n =0(1) (N — o) and

n n-1
lim( S anm) ~lim (1+ S ‘X—m) -1, (2.34)
" m=1 " m=1 "1

and from Proposition 2.1(i), the previous property is satisfied if and only if
Op-1/0y — 0.

REMARK 2.8. It can be seen that the condition (&,_1/&n)n € ¢ does not
imply that x € 6\1 It is enough to consider C(e)e = (n), ¢ co.

The next corollary is a direct consequence of the previous results.

COROLLARY 2.9. Consider the following properties:

(i) xeC;

(i) s&(A) =585
(i) xeT;
(iv) xeCy;

(V) sa(A) = 5q;
(Vi) s5(A) =s5.
Then (i)< (ii)= (iii)= (iv)< (v)< (Vi).

We obtain from the precedent the following corollary.
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COROLLARY 2.10. (i) (s,x —Se)(A) =sx—sg if and only if x € a,
(i) (s& —55)(A) = s =55 if and only if x € C,

(iii) & € C implies (s —s(c))(A) = 5o — 8.

PROOEF. (i) If A is bijective from s, — s into itself, then for every B € sy — s,
we have X = 3B € 54— s&. Since « € sy — s5, we conclude that 2« € s, that is,
C(x)x € l. Conversely, from Theorem 2.6(i) and (ii), it can be easily seen that
A is bijective from s, to s and from s to sg, since & € CA1 So, A is bijective
from sy — 55 10 Sy — Sg-

(ii) Suppose that A is bijective from s - sg into itself. Reasoning as above,
we have « € 5§ — 55 and S € 5&, 50 Dy /oS = C(x) € c. Conversely, using
Theorem 2.6(i) and (111) we see that A is bijective from s8& to 5§ and from S
to sg since x € Cand Cc Cl So, (s —Sa)(A) —sfx — Sq-

Similarly, (iii) comes from the fact that A is bijective from 5 ) into itself and

from s, into itself, since x € C. O

REMARK 2.11. Assume that lim,,_..[C(x)«];, = L. Then

Xno_p implies Xn—Xn-1 | ]1 (2.35)
oy n l
Indeed, from Proposition 2.1(ii) (b), &1/, — 1 —(1/1) and
XnZdnot _Xn XS gop(og)=L (2.36)
Xn Ky OKp-1 &n l l

3. Generalization to the sets s, (A") and s, (A") for h real. In this section,
we consider the operator A", where h is a real, and give among other things a
necessary and sufficient condition to have sy (A") = s4.

First, recall that we can associate to any power series f(z) = > p_oaxzX, de-
fined in the open disk |z| < R, the upper triangular infinite matrix A = @ (f) €
Uo<r<r Sr defined by

ap ar a;
ap ai
0 ao

(see [3, 4, 5]). Practically, we will write @[ f(z)] instead of @ (f). We have the
following lemma.

LEMMA 3.1. (i) The map @ : f — A is an isomorphism from the algebra of the
power series defined in |z| < R into the algebra of the corresponding matrices
A.
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(i) Let f(z) = Yx_oaxzk, with ag + 0, and assume that 1/ f(z) = Y.x_oa,z*
admits R' > 0 as radius of convergence. Then

m(l) Al e U s (3.2)

f 0<r<R’

Now, for h € R — N, we define (see [13])

~h+k-1\ -h(-h+1)---(-h+k-1) .
( K )— X if k>0,

(3.3)
<_h+kk_1>=1 if k =0,

and putting AT = A, we get for any h € R,

(A" = @[(1-2)"] {2( h+kk 1)%} for |z <1.  (3.4)

Then if A" = (Tpm) nms

(—h+n—m—1) )
if m <n,
Typm = n-m (3.5)

0 if m > n.
Using the isomorphism @, we get the following proposition.

PROPOSITION 3.2 (see [5]). (i) The operator represented by A is bijective from
sy into itself for every v > 1, and A" is bijective from s, into itself for all r,
0<r<l.

(ii) The operator A* is surjective and not injective from s, into itself for all
r>1.

(ili) For all ¥ = 1 and for every integer pu = 1, (A*)"s, = s,.

(iv) We have successively

(x) if h is a real greater than O and h ¢ N, then A" maps s, into itself
when v = 1, but not for 0 <v < 1; if =1 < h < 0, then A" maps s,
into itself when v > 1, but not forv =1;

(B) ifh>0 and h ¢ N, then (A*)" maps s, into itself when 0 < r < 1,
but not if v > 1; if =1 < h < 0, then (A*)" maps s, into itself for
0 <7 <1, but not forv =1.

(V) Let h be any given integer > 1, Then

Ac (s, (AM),s)) = sup( > \anm|rm"> <o Vr>1,

nz=l \ ;=1

(3.6)
Ae (SV(A““)h,sy) = sup( Z | anm |rm‘") <o Vrel]ol].

nz=l \ ;=1
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(vi) For every integer h > 1,

sy Csi(AM) Csgny, € () s (3.7)

r>1

(vii) If h > 0 and h ¢ N, then q is the greatest integer strictly less than (h+1).
Forallv > 1,

Ker((A*)h)ﬂsr = span (V1,Va,...,V,), (3.8)
where
Vi=el, Vy=(ALAL..),
t 1 1 -1 t (3.9)
Vs=(0,43,43,...) ..., Vg=(0,0,...,407 A0 Al L)

A{ =1i!/(i—j)!, with 0 < j < i, being the number of permutations of i things
taken j at a time.

We give here an extension of the previous results, where s, is replaced by s.

PROPOSITION 3.3. Let h be a real greater than 0. The condition s, (A") = s,
is equivalent to

Pl n-k

n-1
yn(h):ai[z (h+”_k_1)ak]=0(1) (n — o). (3.10)

PROOF. The operator A" is bijective from s, into itself if and only if A",
Sh e (s, Sx). We have A € (s4,54) if and only if

D1,xA"Dy € Sy, (3.11)

and using (3.5), we deduce that A" € (s, S4) if and only if

n
Ly <_h+"_k_1) o = 0(1). (3.12)
on (5 n-k
Further, ()" = [ (1-2z)""], where
p@) =1+ (h+:l‘_1)z" with |z| < 1. (3.13)
n=1
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So, Dl/aZhD,x € §; if and only if (3.10) holds. Finally, since h > 0, we have

“heamok=d) | (hame k) k12,1, (3.14)
n-—k n—k
and we conclude since (3.10) implies (3.12). |

We deduce immediately the next result.

COROLLARY 3.4. Leth be an integer greater than or equal to 1. The following
properties are equivalent:
i) oeCy;
(i) sa(A) = Sq;
(iii) so(A") = sq;
(iv) C(0)(E" 1) € L.

PROOF. From the proof of Proposition 3.3, s4(A") = s, is equivalent to
D1/oZ"Dy = C(x)ZP 1Dy € Sy, that is, C(x) (E"1ot) € L. So, (iii) and (iv) are
equivalent. It remains to prove that (ii)< (iii). If s4(A) = s«, A and consequently
A" are bijective from s into itself and condition (iii) holds. Conversely, assume
that sy (A") = s, holds. Then (3.10) holds, and since

<h+"_k_l)>1 fork=1,2,...n-1, (3.15)
n-k
we deduce that

[Clea], <yn(h)=0(1), n— co. (3.16)
So, (i) holds and (ii) is satisfied. O

4. Generalization of well-known sets. In this section, we see that under
some conditions, the spaces Wy (A), wa(A), wE(A), Cx(A,u), cx(A,u), and
cx (A, p) can be written by means of the sets sg or sg.

4.1. Sets wx(A), 175(2\), and ﬁ(?\). We recall some definitions and prop-
erties of some spaces. For every sequence X = (x5 )y, we define | X| = (|x,])n
and

Wa(d) = (X 5| CA)(IX]) € sal,
wad) = (X es| CA)(IX]) €53, 4.1)

wi(A) = {X es|X—let € wx(A) for some L € C}.
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For instance, we see that

1’(7&(7\)=<=X=(xn)nes|sglla(m o Z|xk|) ]» (4.2)

Cn o

If there exist A, B > 0 such that A < «,, < B for all n, we get the well-
known spaces Wy (A) = W (A), {;&,(A) = wy(A), and L,TZ‘:(/\) =w(A) (see [12]).
It has been proved that if A is a strictly increasing sequence of reals tending
to infinity, wo(A) and we (A) are BK spaces and wg(A) has AK, with respect to
the norm

X1 =[|CA) (IXD)|],~ = sup ()\1 > lxk|) (4.3)
n n =1

(see [1]).
We have the next result.

THEOREM 4.1. Let «x and A be any sequences of U**.
(i) Consider the following properties:
(@) Gp—1An-1/0pdy = 0;
(b) s (CA)) =5
(© aAeCy;
(@) Wa(A) = e
(e) %(A) = Seas
) wa(A) = s,
Then (a)= (b) (c)=(d), and (c)=(e) and ).
(i) If xA € Cl, Wx(A), wo((i\) and w,x (A) are BK spaces with respect to the
norm

X1l = sup( [ xn | ) (4.4)

Kndy

and wg(A) = wg (A) has AK.
PROOF. (i) First, we prove that (a)=(b). We have
sE(CA) = AA)sO = ADys©O = As'S, (4.5)
and from Proposition 2.1(1) and Theorem 2.6(iii), we get successively xA € c ,
AS(CA) = Sw\, and (b) holds.

(c)e(d). Assume that (c) holds. Then

Wa(A) = (X ] 1X] € AA)sa}. (4.6)
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Since A(A) = AD,, we get A(A)sy = Asqa. Now, using (c), we see that A is
bijective from sy, intoitself and wy(A) = s4a. Conversely, assume that wy(A) =
Sxa- Then aA € sy implies that C(A) (xA) € sy, and since D1« C(A) (xA) € 51 =
l«, we conclude that C(xA)(xA) € L. The proof of (c)=(e) follows on the same
lines of the proof of (c)=(d) replacing s« by sg»-

We prove that (c) implies (f). Take X € {UE (A). There is a complex number [
such that

CA)(|X—-let|) e s 4.7)
So

| X —le'| € A(A)s, = As? (4.8)

oA’

and from Theorem 2.6(ii), As;, = sa,. Now, since (c) holds, we deduce from
Proposition 2.1(iii) that &,A,, — o and let € s;,. We conclude that X 175 (A)
if and only if X € le! + 55, = s5-

Assertion (ii) is a direct consequence of (i). |

4.2. Sets Cx(A, 1), Ca(A, ), and 82“:(7\,;1). Let @ = (&n)n € UT* be a given
sequence, we consider now for A € U, u € s the space

Ca(A, ) = (Wa(A)) 5 = (X €S TAWX € wa(A)]. (4.9)
It is easy to see that
CxA, ) ={Xes|CAQ)(|AWX]) € sal, (4.10)

that is,

~ 1 &
CalA,p) = {X = (xn), €5 sup( D | MkxXk — k-1 X1 I) < oo},
k=2

n=2 |/\n | Xn
(4.11)
see [1]. Similarly, we define the following sets:
A = {Xes|cCA)(|awX]) e s,
(4.12)

%(A,u) ={Xes|X-le' €ci(A,u) for some | € C}.
Recall that if A = p, it is written that co(A) = (wo(A))an),

c(Ad) ={Xes|X-let €cq(A) for some | € C}, (4.13)
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and ¢« (A) = (W (A))a(r), see [11]. It can be easily seen that
co(A) = c(A,A), Co(A) =C5(A,N), c(A) = é\f(?\,/\)- (4.14)

These sets of sequences are called strongly convergent to 0, strongly conver-
gent, and strongly bounded. If A € U** is a sequence strictly increasing to
infinity, c(A) is a Banach space with respect to

1 n
[IX e a) = sup (z\_ D | Akxi — A1 X1 |) (4.15)
nx=1 ng_q

with the convention xy = 0. Each of the spaces co(A), ¢(A), and ¢ (A) is a BK
space, relatively to the previous norm (see [1]). The set cy(A) has AK and every
X € ¢(A) has a unique representation given by

X=1le'+> (xk—1)el, (4.16)
k=1

where X — let € ¢g. The scalar [ is called the strong c(A)-limit of the sequence
X.
We obtain the next result.

THEOREM 4.2. Let &, A, and u be sequences of U™*.
(i) Consider the following properties:
@ oA el
(b) CE(A,H) = Sa(A/u)s
(©) cal(A, 1) = Saa/ws
(d) ciApu) ={Xes|X—lete Sy for somel € C}.
Then (a)< (b) and (a)=(c) and (d).
(ii) If xA € a, then cx (A, ), CN&(A,[J), and CNZ.“( (A, u) are BK spaces with respect
to the norm

| Xn |
HX”SO((/\/”) = ?/Jili) (un()(n?\n . (4.17)

The set cN&(A,u) has AK and every X € E;(A,u) has a unique representation
given by (4.16), where X —let € SeA/)-

PrROOF. We show that (a)=(b). Take X € cy(A,u). We have A(u)X € wy(A),
which is equivalent to

X e C(u)sar = Dy/pZsaa, (4.18)

and using Theorem 2.6(1), A and consequently X are bijective from s, into
itself. So, Zsaa = Sap and X € D1/uZ5aa = Sx(a/u)- We conclude that (b) holds.
We prove that (b) implies (a). First, put &, = ((—=1)"(Ap/tn) &n)n=1. We have
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Cay € Saa/w) = Ca(A ) = Sxa/w, and since A(u) = AD, and Dy&yy, =
((=D)"Aptn)n=1, We get |A(U)&7\,u‘ = (&n)n=1, with

En:

2\] (04 ifn: 1,
(4.19)

Ap_10p-1+A oy, ifn>2.

From (b), we deduce that Z|A(p) &y | € sqa. This means that

n
C,’,L = 1 /\1 X1+ z (Ak_l(xk_l +/\k0(k) = 0(1), n — oo. (4.20)
OnAn k=2

From the inequality
[Claxd) ()], <C,, (4.21)

we obtain (a). The proof of (a)=(c) follows on the same lines of the proof of
(a)=(b) with s replaced by sg.
We show that (a) implies (d). Take X € c& (A, u). There exists | € C such that

A (X - le') € wa(d), (4.22)
and from (c)=(e) in Theorem 4.1, we have wg(A) = Sar- SO
X—le' € C(u)s3p = D1ju=sen,s (4.23)

and from Theorem 2.6(ii), Zsq, = Sqp, and D1 /pZsq, = Sy, We conclude that
Xe cNi.i(A,u) if and only if X € let+5;()\/u) for some [ € C.

Assertion (ii) is a direct consequence of (i) and of the fact that for every
Xe c~§(2\), we have

N
X—let = > (xk—1)e}
k=1

|xn_l|>
= su =0(1), N— oo.
nszrl (Un XAy

Sx(A/p)
(4.24)
O
We deduce immediately the following corollary.

COROLLARY 4.3. Assume that o, A, p € Ut*.
(i) IfxA € C, and u € Lo, then

A ) = S5 (4.25)
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(ii) Then
AeT=2AeC=co(Ad) =55, Cw(A) =sn. (4.26)

PROOF. (i) Since u € L., we deduce, using Proposition 2.1(iii), that there are
K >0 and y > 1 such that

XAy
Hn

>Ky" Vn. 4.27)

So, le' € sy, and (4.25) holds. (ii) comes from Theorem 4.2 since I' C Ci.
O

EXAMPLE 4.4. We denote by & the base of the natural system of logarithms.
From the well-known Stirling formula, we have

LAe VA |
~en—, 4.28
n ¢ om (4.28)
SO S(yn+(1/2) ), = Se- Further, A = (n"/n!), €T since
An1 = g-(n=-DIn(1+1/(n-1)) _, l <1. (4.29)
An e
We conclude that
~((n" 1 o ~((n" 1 _
Ce((m);(ﬁ)n) =Sk Ce((m)n’(ﬁ)) = 5z (@30
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