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NONLINEAR PERISTALTIC TRANSPORT OF MHD FLOW
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In order to determine the characteristics of peristaltic transport of magnetohydro-
dynamic flow through a porous medium, the motion of a hydromagnetic (electri-
cally conducting), viscous, and incompressible fluid in planer channel filled with
a homogeneous porous medium and having electrically insulated walls that are
transversely displaced by an infinite, harmonic travelling wave of large wavelength
was analyzed using a perturbation expansion in terms of a variant wave number.
We obtain an explicit form for the velocity field, a relation between the pressure
rise and flow rate, in terms of Reynolds number, wave number, Hartmann num-
ber, permeability parameter, and the occlusion. The effects of all parameters of
the problem are numerically discussed and graphically explained.

2000 Mathematics Subject Classification: 76S05.

1. Introduction. Peristalsis is now well known to the physiologists as one
of the major mechanisms for fluid transport in many biological systems. In
particular, peristaltic mechanism may be involved in swallowing food through
the oesophagus, urine transport from kidney to bladder through the ureter,
movement of chyme in the gastrointestinal tract, transport of spermatozoa in
the ductus efferents of the male reproductive tracts and in the cervical canal,
movement of the ovum in the fallopian tubes, and in the vasomotion of small
blood vessels as well as blood flow in arteries. In addition, peristaltic pumping
occurs in many practical applications involving biomechanical systems. Also,
finger and roller pumps are frequently used for pumps corrosive or very pure
materials so as to prevent direct contact of the fluid with the pump’s internal
surfaces. A number of analytical [3, 5, 7, 9, 11, 12, 16, 23], numerical, and
experimental [2, 10, 19, 20, 21] studies of peristaltic flow of different fluids
have been reported. Several review articles have been written [8, 14]. Also a
summary of analytical papers up to 1984 has been presented in [18]. Most
of the analytical studies use perturbation series in a small parameter such
as Reynolds number or a dimensionless wave number, which, unfortunately,
limits the range of validity of the results. However, a perturbation method
does provide explicit information about the physical effects of that parameter.
Also, the analytical results can be used to check the calculations of wider-range
numerical methods.
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It has been established that the biological systems, in general, are greatly
addicted by the application of the external magnetic field. Moreover, the MHD
flow of a fluid in a channel with elastic rhythmically contracting walls (peri-
staltic flow) is of interest in connection with certain problems of the move-
ment of conductive physiological fluids, and with the need for theoretical re-
search on the operation of a peristaltic MHD compressor, also the principle of
magnetic field may be used in clinical application (magnetic resonance imag-
ing MRI). The effect of moving magnetic field on blood flow was studied by
Agrawal and Anwaruddin [1], they observed, for the flow of blood in arteries
with arterial disease like arterial stenosis or arteriosclerosis, that the influ-
ence of magnetic field may be utilized as a blood pump in carrying out cardiac
operations. Also, the magnetohydrodynamic flow with suspension has been
studied by Parsad and Ramacharyulu [6], and Srivastava and Agrawal [17] con-
sidered the blood as an electrically conducting fluid and that it constitutes a
suspension of red cells in plasma.

Flow through a porous medium has been studied by a number of work-
ers employing Darcy’s law [15]. Some studies about this point have been made
by Varshney [22], Raptis and Perdikis [13], and El-Dabe and El-Mohendis
[4].

Here, we are interested in the nonlinear peristaltic pumping of MHD flow
through a porous medium, and due to the complexity of the nonlinear equa-
tions of motion, we only consider the case: a symmetric, harmonic, infinite
wave train having a wavelength that is large relative to the gap between the
walls; transverse displacement only; and electrically conducting fluid. This
problem may be considered as a mathematical representation to the case of
gall bladder and bile duct with stones under a uniform magnetic field. The gall
stones cause fibrosis of the gall bladder, thus when a stone is later impacted
in the common bile duct, jaundice results and gall bladder cannot dilate as it
fibrosed as a result of the cholecystitis due to stones.

A regular perturbation series is used to solve the problem; variables are
expanded in a power series of the parameter §, which is defined as the ratio
of half width of the channel to the wavelength of the peristaltic wave. Closed
form solutions up to order 52 are presented.

2. Formulation of the problem. Consider the two-dimensional unsteady
hydromagnetic flow of a viscous, incompressible, and electrically conducting
fluid in an infinite channel having width 2a and filled with a homogeneous
porous medium. A uniform magnetic filed Bj, is acting along the Y-axis and
the induced magnetic field is assumed to be negligible. We assume an infinite
wave train travelling with velocity ¢ along an electrically insulated walls. We
choose arectangular coordinate system for the channel with X along the center
line in the direction of wave propagation, and Y transverse to it. The geometry
of the wall surface is defined as
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h(X,t) =a+losin<[2—1-r

; (X—ct)}, @.1)

where b is the wave amplitude and A is the wavelength.

We carry out this investigation in a coordinate system moving with the wave
speed, in which the boundary shape is stationary. The coordinates and veloci-
ties in the laboratory frame (X,Y) and the wave frame (X, y) are related by

x=X-ct, y=Y,
- - (2.2)
u=U-c, v=V,

where U, V and 1i, ¥ are the velocities components in the corresponding coor-
dinate systems.

Using these transformations and introducing the following dimensionless
variables:

2TX By u o
X =——, ==, u=—, v=—,
A a c c (2.3)
- h(x) _ 2ma? 3(%) L 2met 9 '
- a ) p_ A[JC p y - A ’ (.U—Ca,

we find that the equation which governs the MHD flow in terms of the stream
function @ (x,y) after eliminating the pressure gradient is
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where
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_p 0@

u ~0%x2 Ty

(2.5)

and the dimensionless parameters: Reynolds number Re = cap/u, wave num-
ber § = 21ra/A, Hartmann number M = /o' /uB,a (suitably greater than /2),
and permeability parameter K = k/a?, where p is the density, u the viscosity
of the fluid, o electrical conductivity of the fluid, and k the permeability of the
porous medium.

3. Rate of volume flow and boundary conditions. The instantaneous vol-
ume flow rate in the fixed frame is given by

’:" - - - -
Q= J U(X,Y,t)dy, (3.1)
0

where 1 is a function of X and t.
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The rate of volume flow in the wave frame is given by
h
qa= L u(x,y)dy, (3.2)

where /1 is a function of x alone. If we substitute (2.2) into (3.1) and make use
of (3.2), we find that the two rates of volume flow are related through

Q =q+ch. (3.3)

The time-mean flow over a period T at a fixed position X is defined as

-1 (T
0= aa (3.4)
T Jo
Substituting (3.3) into (3.4) and integrating, we get
Q=q+ac. (3.5)

On defining the dimensionless time-mean flows 6 and F, respectively, in the
fixed and wave frame as
-2 F-a (3.6)
a ac

[

one finds that (3.5) may be written as
0=F+1, 3.7)

where
h a(lj
F—JO @dy—w(h)—wm). (3.8)

We note that h represents the dimensionless form of the surface of the
peristaltic wall:

h(x) =1+ ¢sinx, (3.9)
where

¢ = (3.10)

QT

is the amplitude ratio or the occlusion.
If we select the zero value of the streamline at the streamline (y = 0):

w(0) =0, (3.11)
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then the wall (i = h) is a streamline of value
@(h)=F. (3.12)

The boundary conditions for the dimensionless stream function in the wave
frame are

2
Y =0, a—l’p=0, ony =0,

0y?
oy (3.13)
@:71, y=F, ony=h.

4. Perturbation solution. In order to solve the present problem, we expand
the flow quantities in a power series of the small parameter 6 as follows:

W=Wo+ Y1 +8°Wat- -,

F=Fy+06F +8°Fa+---, (4.1)
op _0po  s0P1  20P2
ax_ax+6ax+6 ax T

On substituting (4.1) into (2.4) and (3.13), collecting terms of equal powers
of §, and then equating the coefficients of like powers on both sides of the
equations, we obtain the following set of problems.

4.1. Zero-order problem. We need to solve

32 2 azlllo _
(63/2 -y > a2 - 0 (4.2)

subject to the boundary conditions:

2
Yo =0, o WZO =0, ony=0,
oy
oy (4.3)
— 0 = — =
Yo = Fo, 3y 1, ony=h,
where y = /1/K + M2.

The solution of (4.2) in terms of stream function is given by

Foy+tanhyh> ( sinhyy ) sinhyy
= (LTI - - . 4.4
Wo ( yh—tanhyh Y ycoshyh ycoshyh (4.4)

We point out that this problem is essentially the classical Poiseuille MHD flow.
It can be easily shown that [9]

N

. 3 193
yzréw():—i(lrﬁh){gm—%}—y. (4.5)
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4.2. First-order problem. On substituting the zero-order solution (4.4) into
the equation of motion obtained for first order in §, one finds that the latter
equation reduces to

0? 2\ Py <3(I/0 0 0yo 0 )321110}
(ayz R4 ) oy? —Re{ dy ox ox oy) oy )’ (4.6)
The solution of (4.6) subject to the first-order boundary conditions:

2

wi=0, ¥ _o ony-o,
0y?
oy 4.7)

_ i =
(I/l - Fl’ ay O’ on y hl

is given as

Y = cny2 sinhyy +cj2ycoshyy +ci3sinhyy

Fi(sinhyy —yycoshyy) D (4.8)
sinhyh —yhcoshyh Y

where the constants ci1, ¢12, €13, and D are listed in Appendix A.

4.3. Second-order problem. As before, we insert the zero- and first-order
solutions into the equations of motion obtained for §2 and find that

(&) 20 (2 22w 2 )2
02 Y oy? oy ox ox oy/) 0y?
(allJo 0 OJyo 0 )azilll} G

dy ox ox oy/) oy? § 8y28x2+K ox2 '’
(4.9)

Using the zero-order and the first-order solutions in (4.9) and then applying
the boundary conditions:

az
Y2 =0, aw; =0, ony=0,
ay (4.10)
Y2 = Fa, aiyz =0, ony=h,
we find that the stream function > turns out to be
W2 = c3ay*sinhyy + ¢35 coshyy +c36* sinhyy
+c37ycoshyy +c3gsinhyy + c39ycosh2yy + cyosinh2yy @.11)

_C9( 3 6_y>_£ F>(sinhyy —yycoshyy) )
yz( +y2 y2y+ sinhyh —yhcoshyh +Esinhyy.
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Here, the coefficients csq4, C35, C36, C37, €38, C39, C40, C29, A, and E are listed in
Appendix B.
Summing up, we write the perturbation solution through order 2 as follows:

_ (F0y+tanhyh)( _ sinhyy )_ sinhyy
~ \hy-tanhyh ycoshyh/ ycoshyh

+ 6{c11y2 sinhyy +ci2ycoshyy +ci3sinhyy

(Fysinhyy —yycoshyy)
sinhyh —yhcoshyh

+Dy}

+62 {C34y4 sinhyy +c35y3 coshyy +c36y?sinhyy (4.12)

+c37ycoshyy +csgsinhyy +c39y cosh2yy + cyosinh2yy
C29 3 6y A
(520 35) -G

. F>(sinhyy —yycoshyy)
sinhyh —yhcoshyh

+Esinhyy}.

5. Pressure gradient. When the flow is steady in the wave frame, one can
characterize the pumping performance by means of the pressure rise per wave-
length. On substituting (4.1) into the dimensionless equation of motion and
equating the coefficient of like powers of 6 on both sides of the equation, we
obtain a set of partial differential equations for opo/dx, 0p1/0x, and dp,/0x.

The nondimensional pressure rise and the nondimensional friction force per
wavelength in the wave frame are defined, respectively, as

27Ta2 B 21 d}’) 21 d}’]
ap= e on= | (G )ax me[on(GE)a

0

Since dp/dx is periodic in x, the pressure rise and the friction force per wave-
length in the longitudinal direction are independent of 7 [11], and the integrals
in (5.1) can be evaluated numerically on the axis at v = 0. Now,

Apr = Apro+0Apy +82Apje +- - -,

, (5.2)
F/\:F/\O+5FA1+(S FA2+' "ty

and we compute the pressure rise and friction force per wavelength at each
order for a wall shape of the sinusoidal form defined by (3.9). Using the zero-,
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first-, and second-order terms for the pressure gradient in (5.1), we obtain

(2) 2m y2 (F(Z) +y’1tanhyh)
Apy = - —
0 (h—y-1ltanhyh)

2(c14a—hc , ,
+6[— (ﬁy—(yﬁwl;)h) —y?c15s—Re (co1¢f; +c02c02)]

+6° [6C35 +6yc36+2y2csr + 11y?cso+6y3cao+ A+ (cop —Cp2)
—Re [(C12 —y?D+yci3)(ch —cpo)
+(co1 —co2) (¢, —y°D' + YC{3)”}dX'

F(g) _ JZW { hy2 (F(Z) + y‘l tanhyh)
A 0 (h—y-ltanhyh)

2(c14—hc , ,
+h6[% +y2c15 +Re (co1¢y +c02c02)]

—ho? [6635 +6ycss+2y2cs7 + 11y%cs9 + 6y cao + A+ (cop — Cg2)
—Re [(clz —y ?D+yci3)(co —Coz)
+ (cor = co2) (cf, —y 2D +wi3>]]}dx’

(5.3)

where Apf), F,(\Z), and F@® are the pressure rise, the friction force, and the
flow rate, respectively, in the wave frame to the second order in 9,

Ap)(\z) = APAO +5Ap/\1 +62Ap/\2,
F)(\Z) EF/\O+6FA1+62FA2, (54)

F<2) = F0+6F1 +62F2.

We note that the relation between the dimensionless flow rate in the frame F(?
and that in the time-mean flow rate in the lab frame 0@ is given by

0@ =F@ 41, (5.5)

We have here the second order of the pressure rise as a nonlinear function
of the time-mean flow. For completeness, we give the second-order expression
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of the stream function ¢? in terms of F?,

(F®+(1/y)tanhyh)y (F® +h)sinhyy
h-(1/y)tanhyh ycoshyh(h—(1/y)tanhyh)

W =
+68{c11y?sinhyy +c12y coshyy +ci3sinhyy + Dy}
+ 62{C34y4 sinhyy +c35y3 coshyy +c36y%sinhyy (5.6)

+c37ycoshyy +csgsinhyy +c3gycosh2yy

A
+cy0sinh2yy — Cyizg (y3 + ?/—32/) — 2 +Esinhyy}.

6. Discussion of results. The results of our analysis are presented as fol-
lows:
(1) pumping characteristics;
(2) the streamlines and trapping regions for the parameters {Re,®,9,y,
01,

6.1. Pumping characteristics. Figure 6.1 is a graph of the dimensionless
pressure change per wavelength (Apf)) versus the dimensionless flow rate
(0@) for the case {Re = 0,¢p = 0.5,M = 2.5 (MHD),K = 0.8,6 = 0,1,2,3}. The
graph is sectored so that the upper right-hand quadrant (I) denotes the region

of peristaltic pumping, where 0® > 0 (positive pumping) and Ap)(\Z) > 0 (ad-

verse pressure gradient). Quadrant (II), where Ap)(f) < 0 (favorable pressure
gradient) and 0® > 0 (positive pumping), is designated as augmented flow.
Quadrant (IV) such that Ap}®’ > 0 (adverse pressure gradient) and 0® < 0 is
called retrograde or backward pumping. The flow is opposite to the direction
of the peristaltic motion.

Figure 6.1(a) shows that the peristaltic pumping rate (0®)) increases (for the
same Ap,(\Z)) as 0(= 2ma/A) increases. Also shown in Figure 6.1(a) the case for
=0,y -0 (M - 0and K — o) which is the classical Poiseuille flow through
a two-dimensional channel. Figure 6.1(b) is similar to Figure 6.1(a) except that
Re =10 and 6 = 0, 0.05, 0.1, 0.15. It is clear that the relation between Apf\m
(pressure change per wavelength) and the flow rate 0@ is linear for Re = 0 and
nonlinear for Re # 0.

Figure 6.2(a) is a graph of the pressure change per wavelength (Apf)) ver-
sus the observer flow rate (8?) for {¢p = 0.3,Re = 1,8 = 0.06,K = 0.8, M =
2,4,6,8}. Figure 6.2(b) is a graph of the dimensionless friction force versus
the observer flow rate for {pp = 0.3,Re=1,6 =0.06,K = 0.8,M = 2,4,6,8}. We
observe that an increase in M results in an increase in the peristaltic pumping
rate (for the same (ApiZ))) and also in an increase in the pressure rise. Also
we observe that the friction force has the opposite behavior compared to the
pressure rise.
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FIGURE 6.1. The pressure gradient per wavelength A pf) versus the
dimensionless flow rate 02) for ¢ = 0.5, M = 2.5, K = 0.8, and
different values of 6, at (a) Re =0 and (b) Re =10 (p - 0, y - O
Poiseuille flow).
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(a) The pressure gradient per wavelength Ap ;\2) versus the
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6 = 0.06, and different values of M.

500 ¢

%

frrrrr
o {M

~1000 T T

-1.0 -0.5 0.0 0.5 1.0 1.5
0
—— M =2 —e— M =6
—— M=4 —— M =8

(b) The frictionless force per wavelength F/{Z) versus the
dimensionless flow rate 02) for Re = 1, = 0.3, K = 0.8,
6 = 0.06, and different values of M.

FIGURE 6.2
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Figure 6.3(a) is a graph of the pressure change per wavelength (Ap)(\‘?))
versus the observer flow rate (6®) for {@ = 0.3,6 = 0.06,M = 2,Re = 1,
K =0.2,0.4,1,3}. Figure 6.3(b) is a graph of the dimensionless friction force
versus the observer flow rate for {pp = 0.3,6 = 0.06,M = 2,Re =1,K =0.2,0.4,1, 3}.
We observe that an increase in K results in a decrease in the peristaltic pump-
ing rate (for the same (Apf))), and also, a decrease in the pressure rise.
Also the friction force has the opposite behavior compared to the pressure
rise.

We define the maximum pressure rise (Ap;(\z))max, which is obtained by
putting 6® = 0 and would occur in a channel, whose exit was shut off, as
(Ap((fz)o). Figure 6.4(a) is a graph of (Apf))max versus K for varying values of
M at 6 = 0.06, @ = 0.2, and Re = 1, which shows the effects of M and K on
the pumping rate, and we observe that for the same (Apf\Z))maX the affect of
magnetic field increases as permeability parameter increases. Figure 6.4(b) is
a graph of the maximum pressure rise (A]z)}f))maX versus the amplitude ratio
@ for different values of K at 6 = 0.06, M = 2.5, and Re = 1. It is clear that
the maximum pressure rise increases as @ and M increase and decrease as K
increases.

6.2. Streamlines and fluid trapping. The phenomenon of trapping, whereby
a bolus (defined as a volume of fluid bounded by a closed streamlines in the
wave frame) is transported at the wave speed, has been studied by several
investigators (Shapiro et al. [9], Jaffrin [7], and Siddiqui and Schwarz [16]). Fig-
ures 6.5(a), 6.5(b), and 6.5(c) are graphs of the streamlines for the conditions
{® =0.4,6 =0.06,M =1.5,K = 1,Re = 0}, and 0@ = 0.4,1.2, 1.8, respectively.
In Figure 6.5(a) the case of typical Stokes nontrapping region for peristaltic
pumping, the adverse pressure gradient (A pﬁ\z)) > 0 is almost large enough to
cause zero pumping. While Figure 6.5(b) shows the center line trapped eddy,
which was described by Jaffrin [7] and Siddiqui [16], the width of the eddy
(measured on the centerline) increases and the eddy lifts off the center line
and forms a torus-shaped eddy with flow through the center, in case of in-
creasing 0@, We also observe that a smaller trapped bolus in the crest of the
peristaltic wave (see Figure 6.5(c)), and as 02 becomes large, the flow has the
same form as the flow through a two-dimensional symmetric channel, having
an axial sinusoidal variation of its width.

The effect of the Hartmann number M on the peristaltic velocity is demon-
strated in Figures 6.6(a), 6.6(b), and 6.6(c) for {g = 0.4,5 = 0.06,Re = 1,0 =
0.8,K = 1,M = 2,5,7}, which shows that as the M increases the center line
trapped eddy disappears and the fluid moves like a block, and as M becomes
larger the rigidity of the fluid appears. The effect of the permeability parameter
on the peristaltic velocity is demonstrated in Figures 6.7(a), 6.7(b), and 6.7(c)
for {@ = 0.4,6 = 0.06,Re = 1.0,0® = 0.8,M = 2,K = 0.02,0.08,0.15}, which
shows that as the permeability parameter increases the center line trapped
eddy appears. Small values of K shows some sort of rigidity of fluid.
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6 = 0.06, and different values of K.

FIGURE 6.3
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FIGURE 6.5. The streamlines for M = 1.5, ¢ = 0.4, 6 = 0.06, K = 1.0,
and Re = 0 at (a) 0@ = 0.4, (b) 0® = 1.2, and (c) 0@ =1.8.



1678 KH. S. MEKHEIMER AND T. H. AL-ARABI

0.0 Ere/br v v e T e e B T b e b B g

-1.5 -1.0 -0.5 00 0.5 1.0 1.5 20 25 3.0 3.5 4.0 45
X

(a)

1.6
1.4¢
1.2+

1.0}

0.6 F

SR
0.4 RN
Bt /

0.2

0.0

-1.5 -1.0 -0.5 0.0 0.5 1.0 15 20 25 3.0 3.5 40 45
X
(b)

1.6
1.4
1.2
1.0
Y 0.8
0.6
0.4
0.2

0 T o b b e b b o T

15 -1.0 -05 00 05 1.0 1.5 2.0 25 3.0 35 40 45
X
(©)

FIGURE 6.6. The streamlines for K = 1, ¢ = 0.4, 6 = 0.06, 02 =0.8,
andRe=1,at(a)M =2, (b)M =5,and (c) M =7.
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1680 KH. S. MEKHEIMER AND T. H. AL-ARABI

APPENDICES

A. Constants of the first-order solution in § in terms of F(?

c :F<2)+(1/;Y)tanhyh o — co1 +1 o= vl
%~ "h—(1/y)tanhyh ’ 027 oshyh’ 03 = ¥€01€02,
cos = —(co1€0 + €01 €02) ciy = Re = o3 Ci2 = Re <C04 3C03)
’ 4y2 ’ 2 2v2 2 ’
c13 = &c03+ c1a—hcis Re Cos
8y4 sinhyh —yhcoshyh VYV A1)
c14 = —cith®sinhyh —ciohcoshyh — (zRfcog + 4};\/13 c04) sinhyh,

c15 = —c11 (yh?coshyh + 2hsinhyh) — c12 (yhsinhyh + coshyh)

3Recp; Re )
- — h D=
< 8y +4y2CO4 coshyh,

(cia—hcis) ‘e
(h—(1/y)tanhyh)

B. Constants of the second-order solution in § in terms of F®

B (heaz —c41) 2
E= ycoshyh(h—(1/y) tanhyh)’ A=y*(cyp+yEcoshyh), (B.1)

where,

c41 = c3ah*sinhyh + c35h® coshyh + c3gh? sinhyh + c37hcoshyh
+c3gsinhyh + csohcosh2yh + cao sinh 2y h — Cyﬁ (h3 ?f;)
c42 = yczah* coshyh + (434 + yc3s)h3sinhyh
+(3c35 + yc3g) h? coshyh + (2¢36 + ycsz) hsinhyh + (c37 + ycsg) coshyh

+2yhcsgsinh2yh + (c39 +2ycag) cosh2yh — ;9 (3112 ; )

Co7 C27  Co2g 3co7 28 C3:
C34 = =%, C35 = + = C36 = + ==
“= gy 35752 6y =8y " ay? T2y’
3co7 | €28 C31 | C33 3co7  C2 | €3 C30
c + = + =22 C3g = + ==, C39 = ,
TRyt Tays Tayz 2y BT 16y 8yt 8ys 7 3y2
4C30 C32 24C25 6C24 2C25 C22 2C(/)’2
Ca0 = - C33=— 42Ty ee T 02
0T T gys T3y . Y5yt yE Ty oy
(€20 +C23) 1 18ca  4cos4 | Co5
Cpp=——2—220 4~ o, C31 = =
8y3 gy2 ! Ty oy Ty
c: ZL(C' +C23) C<——i(c +C23), c —6—2+ic
0 = gz (Cotea), 29 17 (Ca0+C23 =5 Tl
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Co7 = %C%, c26 = —Rey3cyicly,
c25 =Re (dycoicyy +y2ciaco1 — D' cor —6¢h c11 — 3y2co c12 — Y3 ¢hic13),
c21 = Re (y%coicy; —6y2ch e —y3chic12),  c23 = —4.0Reycoacyy,
c22 =Re gcéz +2c01C] +2yCaCo1 + yzcmcia),
€21 =Re (6¢prc11 —2C02¢11 +2YC02C15 + 2YChaC12), €20 = 4Reyci1¢)p.
(B.2)
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