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Let H be a finite-dimensional Hopf algebra over a field k, B a left H-module algebra,
and H* the dual Hopf algebra of H. For an H*-Azumaya Galois extension B with
center C, it is shown that B is an H*-DeMeyer-Kanzaki Galois extension if and
only if C is a maximal commutative separable subalgebra of the smash product
B#H. Moreover, the characterization of a commutative Galois algebra as given by
S. Ikehata (1981) is generalized.

2000 Mathematics Subject Classification: 16W30, 16HO5.

1. Introduction. Let H be a finite-dimensional Hopf algebra over a field k,
B aleft H-module algebra, and H* the dual Hopf algebra of H. In [7], the class
of Azumaya Galois extensions of a ring as studied in [1, 2] was generalized to
H*-Azumaya Galois extensions. An H*-Azumaya Galois extension B was char-
acterized in terms of the smash product B#H see [7, Theorem 3.4]. Observing
that the commutator Vz(B™) of BH in B is also an H*-Azumaya Galois exten-
sion (see [7, Lemma 4.1]), in the present paper, we will give a characterization
of an H*-Azumaya Galois extension B in terms of Vi (B*). Moreover, we will in-
vestigate the class of H*-Azumaya Galois extensions B such that Vz(B") = C,
where C is the center of B. We note that when H = kG, where G is a finite
automorphism group of B, such a B is precisely a DeMeyer-Kanzaki Galois ex-
tension with Galois group G [3, 6, 8, 9]. Several equivalent conditions are then
given for an H*-Azumaya Galois extension being an H*-DeMeyer-Kanzaki Ga-
lois extension, and the characterization of a commutative Galois algebra as
given by Ikehata [5, Theorem 2] is generalized to an H*-DeMeyer-Kanzaki Ga-
lois extension.

2. Basic definitions and notation. Throughout, H denotes a finite-dimen-
sional Hopf algebra over a field k with comultiplication A and counit &, H* the
dual Hopf algebra of H, B a left H-module algebra, C the center of B, BH =
{beB|hb==¢(h)bforall h € H}, and B#H the smash product of B with H,
where B#H = B®y H such that, for all b#h and b’'#h’ in B#H, (b#h)(b'#h') =
>b(h1b")#hyh', where A(h) = > h ® ho.

For a subring A of B with the same identity 1, we denote the commutator
subring of A in B by Vz(A). We call B a separable extension of A if there
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exist {a;,b; in B, i = 1,2,...,m for some integer m} such that > a;b; = 1 and
>ba;®b; => a;®b;b for all b in B where ® is over A. An Azumaya algebra
is a separable extension of its center. A ring B is called a Hirata separable
extension of A if B® 4 B is isomorphic to a direct summand of a finite direct
sum of B as a B-bimodule. A ring B is called an H*-Galois extension of BY if B
is a right H*-comodule algebra with structure map p : B — B® H* such that
B:B®zu B — B®H* is a bijection where f(a®b) = (a®1)p(b). An H*-Galois
extension B is called an H*-Azumaya Galois extension if B is separable over
B¢ which is an Azumaya algebra over C¢, and an H*-DeMeyer-Kanzaki Galois
extension if B is an H*-Azumaya Galois extension and V(BH) = C.

Let P be a finitely generated and projective module over a commutative
ring R. Then for a prime ideal p of R, P, (= P ®¢ Rp) is a free module over
R, (= thelocal ring of R at p), and the rank of P, over R, is the number of
copies of R, in Pp, that is, rankg, (P,) = m for some integer m. It is known
that the rankg (P) is a continuous function (rankg (P)(p) = rankg, (Pp) = m)
from Spec(R) to the set of nonnegative integers with the discrete topology (see
[4, Corollary 4.11, page 31]). We will use the rankg (P)-function for a finitely
generated and projective module P over a commutative ring R.

3. H*-Azumaya Galois extensions. In this section, keeping all notations as
given in Section 2, we will characterize an H*-Azumaya Galois extension B in
terms of the commutator Vg (BY) of B in B.

THEOREM 3.1. IfB = BH-Vy(BH), then (Vy(BH))H = CH.

PROOF. Since C c Vz(BH), CH c (Vz(B"))H, Conversely, since Vz(B) C B,
(Vg(BH))H < BH, Hence (Vg (BH))H c BH nVy(BH) c the center of Vz(BH). But
B =B .V (BH), so the center of Vz(BH) is C. Thus, (Vg(B"))H c CH. O

THEOREM 3.2. Aring B is an H*-Azumaya Galois extension of BY if and only
if B=B" -Vy(B") such that Vg(BY) is an H*-Azumaya Galois extension of CH
and B is an Azumaya CH-algebra.

PROOF. (=) Since Bis an H*-Azumaya Galois extension of BH, then V (BH)
is an H*-Azumaya Galois extension of (Vz(BH))H (see [7, Lemma 4.1]) and
BH is an Azumaya CH-algebra (see [7, Theorem 3.4]). Moreover, by the proof
of [7, Lemma 4.1], B#H is an Azumaya CH-algebra such that B#H = B" @ n
(Ve (BT)#H) = BH (Vg (BH)#H), where BY and Vz(BH)#H are Azumaya CH-
algebras. But H is a finite-dimensional Hopf algebra over a field k, so B =
BH ®cu Vg(BH) from the isomorphism B#H = BY ®.n (Vz(BF)#H), and so
B = B . Vy(BM). Hence (Vy(B"))" = CH by Theorem 3.1. Thus Vz(BY) is an
H*-Azumaya Galois CH-algebra.

(<) Since Vi (BH) is an H*-Azumaya Galois algebra over C*, Vi (BH)#H is an
Azumaya CH-algebra [7, Theorem 3.4]. By hypothesis, B is an Azumaya C"-
algebra, so B" @ -u (Vp(BH)#H) = BHVy(B")#H = B#H which is an Azumaya
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CH-algebra. Thus B#H is a Hirata separable extension of B (see [5, Theorem 1]).
Moreover, Vi (BH) is a separable CH-algebra (see [7, Theorem 3.4]) and B¥ is
an Azumaya CH-algebra by hypothesis, so B” - Vg (BH) (= B) is also a separable
CH-algebra. Thus B is an H*-Azumaya Galois extension of BY [7, Theorem 3.4].

O

Next we generalize the characterization of a commutative Galois algebra as
given by Ikehata (see [5, Theorem 2]) to a commutative H*-Galois algebra.

LEMMA 3.3. If C is a commutative H*-Galois algebra over CH, then C is a
maximal commutative subalgebra of C#H.

PROOF. Since C is a commutative H*-Galois algebra over CH, C#H =
Homen (C,C) [6, Theorem 1.7]. Hence it suffices to show that VHomCU(C,C)(CL)
= CL where C; = {cg, the left multiplication map induced by ¢ € C}. In fact,
C. C VHomCH(C,C)(CL) is clear. Conversely, let f € VHomCH(C,C)(CL)- Then, for
each c € C, (c¢f)(x) = (fc)(x) for all x € C. Hence cf(x) = f(cx), and so
cf(1) = f(c)forall c € C. Thus f(c) =dy(c) forall c € C,where d; = f(1) €
C, thatis, f = (dy); € Cr. O

THEOREM 3.4. Let C be a commutative separable C"-algebra containing
CH as a direct summand as a C" -module. Then, C is a commutative H*-Galois
algebra over CH if and only if C ® cu (C#H) = M,,(C), the matrix algebra over
C of order n where n is the dimension of H over k.

PROOF. (=) Since C is an H*-Galois algebra over C, C#H = Hom¢u (C,C)
such that C is finitely generated and projective over C [6, Theorem 1.7]. Hence
C#H is an Azumaya CH-algebra and C is a maximal commutative subalgebra
of the Azumaya CH-algebra C#H by Lemma 3.3. By hypothesis, C is also a
separable CH-algebra, so C is a splitting ring for the Azumaya CH-algebra C#H
such that C®-n (C#H) = Hom¢(C#H,C#H) (see the proof of [4, Theorem 5.5,
page 64]). Noting that C#H = C ® H which is a free C-module of rank n where
n = dimy (H), we have that C®un (C#H) = M, (C).

(<) Since C®cn (C#H) = My (C), C®cn (C#H) is an Azumaya C-algebra.
By hypothesis, C¥ is a direct summand of C as a CH-module, so C#H is an
Azumaya CH-algebra [4, Corollary 1.10, page 45]. Hence C#H is a Hirata sep-
arable extension of C. But C is a separable CH-algebra by hypothesis, so C is
an H*-Galois algebra over C [7, Theorem 3.4].

We remark that the necessity does not need the hypothesis that C* is a
direct summand of C. ]

4. H*-DeMeyer-Kanzaki Galois extensions. We recall that B is an H*-
DeMeyer-Kanzaki Galois extension of B if B is an H*-Azumaya Galois exten-
sion of BF and V(BH) = C. In this section, we characterize an H*-DeMeyer-
Kanzaki Galois extension in terms of the smash product Vz(B")#H and prove
that C is a splitting ring for the Azumaya CH-algebras Vz(BH)#H and B#H.
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THEOREM 4.1. Let B be an H*-Azumaya Galois extension of B". Then the
following statements are equivalent:

(1) B is an H*-DeMeyer-Kanzaki Galois extension of BY;

(2) rankcw (Vg(BT)) = rankcu (C);

(3) C is a maximal commutative separable subalgebra of Vg(B")#H.

PROOF. (1)=(2). It is clear.

(2)=(1). Since B is an H*-Azumaya Galois extension of B, Vz(B") is an
H*-Azumaya Galois algebra over CH by Theorem 3.2 such that Vz(BH) is a
separable and finitely generated projective module over CH (see [7, Theorem
3.4]). Hence the rank function rank = (Vz(B")) is defined and V(B¥) is an
Azumaya algebra over its center [4, Theorem 3.8, page 55]. But B = BY - V3 (BH)
by Theorem 3.2, so the center of Vz(B¥) is C. Thus V3 (B¥) is an Azumaya C-
algebra; and so C is a direct summand V(B™) as a C-module. This implies that
C is a direct summand Vz(B¥) as a C”-module. Therefore the rank function
rankcn (C) is also defined. Now by hypothesis, rankqu (Vg (Bf)) = rankcu (C),
so Vg(BH) = C, that is, B is an H*-DeMeyer-Kanzaki Galois extension of B,

(1)=(3). Since B is an H*-DeMeyer-Kanzaki Galois extension of B, B is an
H*-Azumaya Galois extension such that V3 (BH) = C. Hence B = BH - V3 (BH) =
B" @ n C such that C is an H*-Galois algebra over C* by Theorem 3.2, and so C
is a separable CH-algebra containing C as a direct summand as a C’-module
[7, Theorem 3.4]. Hence C is a maximal commutative separable subalgebra of
C#H where C = Vg(B") by Lemma 3.3.

(3)=(2). Since B is an H*-Azumaya Galois extension of B, B = B . V3 (BH) =
BH @ Vg(BM) such that Vz(BH) is an H*-Azumaya Galois algebra over C* by
Theorem 3.2. Hence Vg (B¥)#H is an Azumaya CH-algebra and Vz(BH) is an
Azumaya C-algebra [7, Theorem 3.4]. By hypothesis, C is a maximal commu-
tative separable subalgebra of Vg (B")#H, so

Cocu (Vg(BH)#H) = Homc (V (BH)#H, Vg (B¥)#H) 4.1)

(see [4, Theorem 5.5, page 64]). On the other hand, V3 (B7)#H =Homx (V3 (BH),
Vs (BM)) (see [7, Theorem 3.4]). Thus

Cocu (Vg(BH)#H) = C ®cu Homen (V3 (BT), Vp (BH))

=Homc¢ (C®cn Vg (BT),Cocn Vg (BT)); 42

and so Homc (Vp (BM)#H,Vy(BM)#H) = Homc(C ®cu Vg(BY),C ®cn Vz(BH)).
This implies that Vz(B")#H = P ®¢ (C ®cn Vg(BM)) for some finitely gener-
ated projective C-module P of rank 1, that is, V3 (B¥)#H = P ® -1 Vz(BH). Tak-
ing rank.u () both sides, we have that n - rankx (V(BY)) = (rankcu (P)) -
(rankcx (Vg(BT))) where n = dimy(H). But rankeu (Vz(BH)) is also n, so
rankc# (C) = ranken (P) = n = ranku (V (BH)). |
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Theorem 4.1 implies that the Azumaya CH-algebras Vz(BH)#H and B#H
have a nice splitting ring C which is an H*-Galois algebra over CH and separa-
ble over CH such that C®cx (Vg(BT)#H) and C ® -1 (B#H) are matrix algebras.

COROLLARY 4.2. IfB is an H*-DeMeyer-Kanzaki Galois extension of B, then
C®cu (Vg(BM)#H) = M, (C), the matrix algebra over C of order n where n =
dimy (H).

PROOF. By hypothesis, B is an H*-DeMeyer-Kanzaki Galois extension of BH,
so C (= Vz(BH)) is an H*-Galois algebra over C* by Theorem 3.2. Hence C is
a separable CH-algebra and C#H is an Azumaya C-algebra [7, Theorem 3.4].
Thus CH is a direct summand of C as a C¥-module. Therefore, C®u (C#H) =
M,,(C) by Theorem 3.4. O

COROLLARY 4.3. IfB is an H*-DeMeyer-Kanzaki Galois extension of B, then
C®cn (B#H) = M, (B), the matrix algebra over B of order n wheren = dimy (H).

PROOF. By Corollary 4.2, C®cn (C#H) = M, (C), so
B ®@cn Cocn (C#H) = B ©cn My (C). (4.3)
Since B = B - V3 (BH) = BH @ - Vp(BM) = B¥ @ - C, we have that

Cocu (B#H) = C®cn (B ©cn C)#H)
= Co®cn BT ®cn (C#H)

=BT @cn Cocn (C#H) (4.4)
=BH @ M,(C) =M, (B ®cuC)
= M, (B). O
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