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We consider the generalized shift operator defined by (Shy, f)(g) = [ f (tut~1g)dt
on a compact group G, and by using this operator, we define “spherical” modulus
of smoothness. So, we prove Stechkin and Jackson-type theorems.
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1. Introduction. In this paper, we prove some theorems on absolutely con-
vergent Fourier series in the metric space L, (G), where G is a compact group.
The algebra of absolutely convergent Fourier series is a subject matter about
which a good deal, although far from everything, is known (see [5, page 328]).
Like many branches of harmonic analysis on T and R, the theory of absolutely
convergent Fourier series is a fruitful source of questions about the corre-
sponding entity for compact groups. By using some absolute convergence the-
orems of the classical Fourier series, (see[1, 11]), a generalized form of Stechkin
[6] and Szasz theorem [1, 11] of the Fourier series on compact groups is ob-
tained. Thus, we solve open problems formulated in [5, page 366] (see also [3,
Chapter I, page 9]).

2. Preliminaries and notation. Now, we explain some of the notation and
terminologies used throughout the paper.

Let G be a compact group with a dual space G, dg denote the Haar measure
on G normalized by the condition [,dg = 1, and [ f(g)dg denote the Haar
integral of a function f on G. Let Uy, & € G denotes the irreducible unitary
representation of G in the finite dimensional Hilbert space V. We reserve the
symbol d for the dimension of U,. Thus, d is a positive integer. Also, we de-
note by x, and tf‘j (i,j=1,2,...,ds), X E G the character and matrix elements
(coordinate functions) of Uy, respectively.

Let L, (G) be the space of all functions f equipped with the norm

11, =], |f<g>|"dg}”p. 2.1)

We write | - ||, instead of || - ||z, (c), and L. = C is the corresponding space of
continuous functions, and || f|| = max{|f(g)|: g € G}. As it is known (see [4]
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or [10, page 99]), the space L,(G) can be decomposed into the sum

Lo(G) = > ©Hy, (2.2)
aet
where
Hoy={f€C(G): f(g)=tr(Ux(g)C), C =Hom (Vy,Vqa)}. (2.3)

This theorem is one of the most important results of the harmonic analysis on
compact groups. The orthogonal projection Yy : L>(G) — Hy is given by

(Yof) (@) = da Lf(h)xa(gh’l)dh, (2.4)

where (Y4 f)(g) does not depend on the choice of a basis in L,. Carrying out
this construction for every space Hy, X € G, we obtain an orthonormal basis
in L, consisting of the functions \/@tf‘j, xeG, 1< i,j < dy. Any function
f € L2(G) can be expanded into a Fourier series with respect to this basis

da
fl@) =2 > aitdg), (2.5)

xeG i,j=1

where the Fourier coefficients a;’} are defined by the following relations:

ajj = da L f(@)t&(g)dg, (2.6)

such that t}(g) = tf‘j(g’l), where g~! is the inverse of g. Note that (2.5) is a

convergent series in the mean and that the Parseval’s equality

2

du
2 1 «
Llf(g)\ dg=73 -3 |af (2.7)

aeG i,j=1

holds. The aforementioned result of harmonic analysis on a compact group
can be found, for example, in [4, 5, 7, 10].

We denote by Sh,, the generalized translation operator on compact group G
defined by

(Sh f)(9) = Lf(tut*g)dt,
(Auf)(g) :f(g)_(Shuf)(g) = (E_Shu)fy

(2.8)



MODULUS OF SMOOTHNESS AND THEOREMS ... 1253

where u,g € G and E is the identity operator. We set

k
ARf =0y (A5 F) = (E-Shy)*f = X (-1 ICishl £, (2.9)
i=0

in which Sh? f = f and Sh, (Sh!, ! f) =Sh, f,i=1,2,...,k and k € N.

We note that « is a complicated index. Since G is a countable set, there are
only countably many « € G for which (xf‘j + 0 for some i and j; enumerate them
as {Xo, X1,...,&n,...}. SO, Ay < doy < Aoy < -+ <du,<---. Because of that,
the symbol “x < n” is interpreted as {xg, &1,...,0n_1} C G, and & = n denotes
the set G\ (x < n). Let dq, as usual, be the dimension of Uy. For typographical
convenience, we write d, for the dimension of the representation U%*", n =
1,2,.... (See [5, page 458].)

We denote by E;, (f), the approximation of the function f € L, (G) by “Spher-
ical” polynomials of degree not greater than n:

En(f)p:inf<|||f—Tan:Tne > @Ha]». (2.10)

a<n,ae@

The sequence of best approximations {E, (f )n}::o is a constructive charac-
teristic of the function f. In the capacity of structural characteristic of the
function f on a compact group G, we define its Spherical modulus of smooth-
ness of order k by

wk(f;T)p:sup{||(E—Shu)kf||p:ueWT}, (2.11)
where W- is a neighborhood of e in G. In other words,
W ={u:pu,e) <t, uecG}, (2.12)

where p is a pseudometric on G and T is any positive real number. It is easy
to show the following properties of wi (f,T):
(@) im0 wi(f,T)p =0;
(b) wi(f,7)p is a continuous monotonically increasing function with re-
spect to T;
@ wi(fi+fo,T)p < Wi (f1,T)p + Wi (f2,T)p;
(d) Wi (f,T)p < 2w (f,T)p, 1=1,2,....

3. Main results. We need the following simple but useful lemma.
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LEMMA 3.1. The following equality holds for allu,g € G:

Xo (1)
dy

(Shutd)(g) = 2 (g). (3.1)

PROOF. Using the orthogonality relations and other formulas for matrix
elements ;5 (g) (see [7, page 189]), we have

du da
JG L (tut ' g)dt = > > &, (u)t (g)J & (1), (D)dt
p=1qg=1
(3.2)
— 1 D( 24 o4 — 1 (o4
= >ty ti(g) = T Xa (W (g).
X p=1 104
This proves the lemma. O
The following formula is the particular event of the above lemma:
J xa(tut‘lg)dt _ Xo((u)ch(g) (3.3)
G dy
It can be called a Weyl formula.
We note that the expansion (2.5) is connected with the expansion
flg) = Z Yo(f)(g), Yo €Hy, (3.4)
xeG
which is defined by (2.4), that is, by the equality
Ya(f)(9) = Z agty(g). (3.5)

i,j=1

Thus, the coefficients a . are defined by (2.6). Using Lemma 3.1 and the defi-
nition of Yy, we obtain

Ya(Shy f) Z uj (tut~'g)dt

i,j=1

— Z D(XO((u)to(( ) (36)
i,j=1

_ Xo (1)
dy

Yo (f)(g).

The following are simple facts with frequent usage: if f € L, then
(1) 1IShy fllp < ILf ;s
) If =Shy fll, ~0asu —e;
3) (Ya(Shy f))(9) = (Xa(U)/Xa()) (Yo f)(g) for all x € G.
We note that xy(e) =d
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THEOREM 3.2. If f € L, and f is not constant, then

dn L _
En(f)2 < dn—kak<f’n)2’ n=12,.... (3.7)

PROOF. Let f € L, and S, (f,g) denote the nth partial sum of the Fourier
series (2.5), that is,

n dap
Sn(f29) = 2. Z afti(g) =Y D at;] (@) (3.8)
X<n i, j=1 p=01i,j=1

Using Parseval’s equality for the compact group G, we have

Er 2= If =PI = ¥ o 21 Jay | (3.9
az=n G
Using (3), it is not hard to see that
vaat @ = (12 @), wcé @

Consequently, (AKf)(g) = > jee(1 —x,x(u)/d(x)kau t;j- By another application
of Parseval’s equality, we obtain

||A fHZ Z Z th(u)‘ z Z 1— Xa(u)‘
X =1 az=n G i
1 o 2Rexq«(u) Xo (1) 2\ NE
=a§n—aijz::l (1— o +| =z | ’aij

(3.11)

Now, using Bernolly’s inequality (1 +x)¥ = 1+ kx for x = —1, we obtain

& 2kR k 2 2
Jatrl= 5 g, 3 (1- 20 g a2
x=n 0( (04
Consequently,
latrfe LS asfo s LS 2Rt iz 3
u 2 = d(x B 1y = d(x o d«x ij| .
therefore,
. de
B () = || akf]+2k Y Ly Re’;i“(”)]a;*j ’ (3.14)
azn G g «
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Let ®y, be a nonnegative integrable function vanishing outside W, and satisfy-
ing the condition [, ®w, (g)dg = 1. For example, we can take ®y, = Ew, /u(W7),
where p(W-) is the Haar measure of W+ and &y, is the characteristic function
of Wr. Multiplying both sides of (3.14) by &y, ,,, and integrating with respect
to u on G, and using the equality [, Ix«l?dg =1 (see [7, page 195]), we obtain

LE,%(f)Zq)WW (w)du < JG HAIL(lfHZCI)WU" du

+2k > d2 Z ‘au

1k @0y, 0du

oa>n N lJ 1 (31 5)
2k « 1 & 2
ssupllotsfn 25 LS
" a=n dl" i,j=1
Therefore, it is not hard to see that
1 2k
Eq(f)2 swi(f,a) Ez(f)z (3.16)
2
Finally, we obtain
dy, 1
which proves the theorem. |

This theorem is given without proof in [8] for the case where k = 1.
We note that the matrix elements of unitary representations t (g) satisfy
the relations

L 0 ifi=+k,
Zt () = D (@)t (9) = . (3.18)
iz if i = k.
In particular, we have
dx
S| t(g)] <1 (3.19)
j=1

for all x € G and i, Jj=1,2,...,d. Furthermore, it is obvious that |af{* t”‘ (g)l =<
laft \ therefore, according to the sufficient condition for absolutely convergent
Fourler series on the group G, the series > ¢ 2.f';_; laj;| is convergent. Let
AG) = {f 1 2gec 2¥ ij= 1Iav .| < +o0}. Using Theorem 3. 2 and repeating the
proof of analogous theorems (see [1, Chapter IX] or [6, Chapter II]) with some
changes, we obtain the following theorems.
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THEOREM 3.3. If f(g) € L2(G), then

[

f 1/1’1)2

M

<400 = f(g) € AG). (3.20)

This theorem is analogous to the Szasz theorem of the classical Fourier
series in the case where k=1and G=T.

THEOREM 3.4. If f(g) € L2(G), then

Z (f)z <+00 = f(g) € A(G). (3.21)

This theorem is also analogous to a theorem in trigonometric case proved
by Stechkin [9].

4. Applications to compact group SU(2). The group SU(2) consists of uni-
modular unitary matrices of the second order, that is, matrices of the form

u=(_"‘B g) 2+ 1812 = 1. 4.1)

Therefore, each element u of SU(2) is uniquely determined by a pair of com-
plex numbers « and 8 such that |x|? + |B]%2 = 1. We have (see [5]) the relation
“(o, B) — (¢p,0,p),” where & # 0, |x|% + |B]|? = 1, and the parameters ¢, 0,
and  are called Euler angles defined by

P+y o 4

0
lx| = cosE, Argo = o Argp = — 4.2)

Let ¢, 0, and  satisfy the conditions
0<d¢<2m, 0<0<m, =21 < P < 2. 4.3)

Also, we know that the dimension of the representation T! of SU(2) is equal
to 21+1, where I =0,1/2,1,... and the matrix elements of T' for group SU(2)
are defined by

th . (u) = e m¥rmeIpl (cos9)imm, (4.4)
Expressing t!,,, (1) in terms of P}, (cos @), we arrive at the following conclu-
sion:

Any function f(¢,0,y),0< ¢ <2m, 0< 60 <m,and -2 < ¢ < 27 belong-
ing to the space L?(SU(2)) such that

21 21 T 5
L L L | f(h,0,y)|°sin0dOdpdy < o (4.5)
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can be expanded into the mean-convergent series

Sl 00 =2 53 oyl L (cos0), (4.6)
m=—ln=-1
where
1 21+1 2m o1 imsny) pl .
mn = 162 Jo JO S, 0,y)e Pl (cos0)sin0doddpdy.

4.7)
In addition, we obtain from Parseval’s equality that

! ! 1 21T 2T T )
> 2 ST J:ZWJ’O JO | £($,0,0)|*sin0d0dpdy.

> Xy |* =
I me—ln-—1 1 1672
(4.8)
Using Theorem 3.2, we obtain the following theorem.
THEOREM 4.1. If f(¢,0,@) € Lo(SU(2)), then
2 1
En(f)ZSW/l"‘jwk(f'E)z’
1/2 (4.9)
l l 5 1
{lz S 3 gyl } \/“m‘“k(ﬁa) -
>nm=-ln= 2

Using the relation between the polynomial P (‘x A )(z) and P, (z), we con-
clude that

(I-m)'(l+m)!

1/2
_ >\(m-n)/2 (m+n)/2 p(m-—nm+n)
(l—n)!(l+n)!] (1-2) (1+2) Piom :

(4.10)
The Jacobi polynomials obtained here are characterized by the condition that
« and f are integers and n+«x+p € Z,.
Now, we consider the following case.
Let Lé"“m [-1,1] be the Hilbert space of the functions f defined on the seg-
ment [—1,1] with the scalar product

ha(2) =27

1
(fl,fz)=Iﬁlﬁ(x)fz(x)(l—x)"‘(1+x)3dx; (4.11)

then, any function f in this space is expanded into the mean-convergent series

F00 = 0P (x), (4.12)
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where the polynomials P{*"’ (x) are given by

1/2
PP (x) = 2—<a+B+1)/2[k’(k+°‘+3)!(°‘+ﬁ+2k+ 1)} PP (x),

k+ o)l (k+p)! (4.13)
1
0y = J FOOPEP (x) (1 -x)*(1 +x)Pdx. (4.14)
-1
The Parseval’s equality
1 o0
J : |FOO P A-x)%1+x)fdx = > ol (4.15)

n=0

holds. The formulas (4.12), (4.14), and (4.15) are proved for integral nonnega-
tive values of o and . We can show that they are valid for arbitrary real values
of « and B exceeding —1. Finally, we reach the following theorem.

THEOREM 4.2. If f(x) € Lo[—1,1], then the following hold for Jacobi series:

En(f)zﬁwl'f'yilwk(f.;)zy

- R 1
2

‘|l_zn|0‘l|]’ < 1+m‘”’<<f’ﬁ>2'

NOTE. For the ideas similar to this paper we refer to [2] and its references.

(4.16)

ACKNOWLEDGMENTS. This research was supported by Tabriz University.
We would like to thank the research office of Tabriz University for its support.

REFERENCES
[1]  W. K. Bari, Trigonometric Series, vol. II, Holt, Rinehart and Winston, New York,
1967.
[2]  G.Benke, Bernstein’s theorem for compact groups, J. Funct. Anal. 35 (1980), no. 3,
295-303.

[3] R. E. Edwards, Fourier series. A Modern Introduction. Vol. 1, 2nd ed., Graduate
Texts in Mathematics, vol. 64, Springer-Verlag, New York, 1979.

[4] S.Helgason, Groups and Geometric Analysis, Pure and Applied Mathematics, vol.
113, Academic Press, Florida, 1984.

[5] E.Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. II: Structure and Anal-
ysis for Compact Groups. Analysis on Locally Compact Abelian Groups,
Die Grundlehren der Mathematischen Wissenschaften, vol. 152, Springer-
Verlag, New York, 1970 (German).

[6] J.-P. Kahane, Séries de Fourier absolument convergentes, Ergebnisse der Math-
ematik und ihrer Grenzgebiete, vol. 50, Springer-Verlag, Berlin, 1970
(French).

[71 M. A. Naimark and A. I. Stern, Theory of Group Representations, Grundlehren
der Mathematischen Wissenschaften, vol. 246, Springer-Verlag, New York,
1982 (German).



1260 H. VAEZI AND S. F. RZAEV

[8] S.F.Rzaev, Ly-Approximation on compact groups, Proc. “Questions on Functional
Analysis and Mathematical Physics Conference”, Baku, 1999, pp. 418-419.
[9] S. B. Stechkin, On absolute convergence of orthogonal series, Dokl. Akad. Nauk.
SSSR 102 (1955), 37-40.
[10] N.Ja. Vilenkin and A. U. Klimyk, Representation of Lie groups and Special Func-
tions. Vol. 1, Mathematics and Its Applications, vol. 72, Kluwer Academic
Publishers, Dordrecht, 1991.
[11]  A. Zygmund, Trigonometric Series. 2nd ed. Vols. I, II, Cambridge University Press,
New York, 1959.

H. Vaezi: Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
E-mail address: hvaezi@tabrizu.ac.ir

S.F.Rzaev: Institute of Mathematics and Mechanics, Azerbaijan Academy of Sciences,

Baku, Azerbaijan
E-mail address: rzseymur@hotmail.com


mailto:hvaezi@tabrizu.ac.ir
mailto:rzseymur@hotmail.com

Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years
for one-, two-, and three-dimensional space. Additionally,
such dynamical systems can exhibit a very important and still
unexplained phenomenon, called as the Fermi acceleration
phenomenon. Basically, the phenomenon of Fermi accelera-
tion (FA) is a process in which a classical particle can acquire
unbounded energy from collisions with a heavy moving wall.
This phenomenon was originally proposed by Enrico Fermi
in 1949 as a possible explanation of the origin of the large
energies of the cosmic particles. His original model was
then modified and considered under different approaches
and using many versions. Moreover, applications of FA
have been of a large broad interest in many different fields
of science including plasma physics, astrophysics, atomic
physics, optics, and time-dependent billiard problems and
they are useful for controlling chaos in Engineering and
dynamical systems exhibiting chaos (both conservative and
dissipative chaos).

We intend to publish in this special issue papers reporting
research on time-dependent billiards. The topic includes
both conservative and dissipative dynamics. Papers dis-
cussing dynamical properties, statistical and mathematical
results, stability investigation of the phase space structure,
the phenomenon of Fermi acceleration, conditions for
having suppression of Fermi acceleration, and computational
and numerical methods for exploring these structures and
applications are welcome.

To be acceptable for publication in the special issue of
Mathematical Problems in Engineering, papers must make
significant, original, and correct contributions to one or
more of the topics above mentioned. Mathematical papers
regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

‘ Manuscript Due March 1, 2009

‘ First Round of Reviews | June 1, 2009

‘ Publication Date September 1, 2009

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied
Mathematics and Computing, Institute of Geosciences and
Exact Sciences, State University of Sdo Paulo at Rio Claro,
Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP,
Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State
University, Vorob’evy Gory, Moscow 119992, Russia;
loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers-4pt
	Guest Editors

