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1. Introduction. In the past two decades, the study of differential equations
with time-varying coefficients (nonautonomous differential equations) has ben-
efited from the use of methods of the ergodic theory and topological dynamics.
The well-known paper of Oseledets [15] showed how basic methods of the er-
godic theory can be applied to the theory of the classical Lyapunov exponents
of linear and nonautonomous differential systems. Then, Sacker and Sell [17]
introduced the important concept of dichotomy spectrum for linear systems
with time-varying coefficients. Using the dichotomy spectrum, we can study the
basic notion of exponential dichotomy for such systems using the methods of
topological dynamics. In more recent years, the concepts of rotation number
[8] and pullback attractor [19] have been used with profit by workers in the field
of nonautonomous differential systems. In the study of rotation numbers and
exponential dichotomies, we use techniques of the ergodic theory and topo-
logical dynamics. It is, therefore, not surprising that such techniques have had
an increasing impact in the study of control-theoretic problems. To illustrate
this point, the work of Colonius and Kliemann [3] on the reachability theory for
an exposition of many results concerning their concept of control set. We also
mention the monograph [9], where it is shown how exponential dichotomies
and the rotation number for linear and nonautonomous Hamiltonian systems
can be used to a good effect to study the nonautonomous versions of the clas-
sical linear regulator problem and the classical feedback control problem.

In this paper, we study the absolute stability problem for linear control pro-
cesses with an integral quadratic constraint, when the coefficients are aperi-
odic and bounded functions of time. To orient the discussion, consider the
control system

x =A(t)x+B(1)E, (1.1)
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where x € R, £ € R™, and A and B are bounded and uniformly continuous
functions with values in the appropriate sets of matrices. Let m = 1 for the
time being. Let @ = @ (0,t) be a continuous and real-valued function of the
real variable o and of the time t. Suppose that @ satisfies a sector condition
of the form

—ki(t) < < ka(t), (1.2)

@(o,t)
o
where k;(t) and k> (t) are bounded and uniformly continuous real functions.
Further, put o = C(t)x, where C is a 1 x n matrix-valued function with the

same properties as A and B in (1.1).

Substitute E(t) = @ (C(t)x,t) for € on the right-hand side of (1.1). We wish
to determine conditions sufficient to guarantee that if x(t) is any solution of
(1.1), then x(t) — 0 as t — 0. This is one basic version of the absolute stabil-
ity problem. It amounts to a reformulation, in the context of nonautonomous
control processes, of a problem posed by Aizermann and Kalman ([1, 10]; see
[21] for a discussion). When the functions A, B, C, @, ki1, and k» do not depend
on time, satisfactory criteria for absolute stability based on the well-known
Kalman-Yakubovich lemma [11] have been found. Such one is the famous cir-
cle criterion; for a discussion, again see [21].

When the functions A, B, C, @, ki, and k; are all T-periodic functions of
time, Yakubovich [23, 25] has shown how the absolute stability of (1.1) rela-
tive to inputs £(t) = (C(t)x,t), satisfying the sector condition (1.2), may be
derived from hypotheses imposed on a certain Hamiltonian system of linear
differential equations with T-periodic coefficients. The Hamiltonian system is
obtained by formally applying the Pontryagin maximum principle [16] to (1.1),
together with a certain integral quadratic cost function.

We briefly explain the relevant constructions. Introduce the quadratic form

2(t,x,&) = (E+ki(t)o) (k2 (t) o —E) (1.3)

with o = C(t)x. Then, the condition of (1.2) can be expressed as the local
quadratic constraint

2(t,x,€) = 0. (1.4)

We wish to determine conditions sufficient to guarantee that if x(t) and &(t)
satisfy (1.1) and (1.4), then x(t) — 0 as t — . More generally, we can consider
the pairs (x, &) such that the following integral quadratic constraint is satisfied:

t
limsup 0§l(S,X(S),§(S))dS>—oo. (1.5)

t—o0

Clearly, pairs (x,&) which satisfy (1.4) also satisfy (1.5). Suppose that condi-
tions which have been found ensure that whenever the pair (x,&) satisfies
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(1.1) and (1.5), then, x(t) — 0 as t — co. Then, such conditions will certainly
be sufficient for the absolute stability of (1.1) relative to inputs &(t) satisfying
(1.4).

It is convenient to generalize the preceding considerations. Now, let m > 1
be an integer. Introduce the quadratic form

0(6,x (1), E(D) = 5 ((x,G(0X) +2(x,g(OE) + (ERWE),  (1.6)
where (-, -) denotes the Euclidean inner product on R” (R™), and where G, g,
and R are bounded and uniformly continuous matrix functions of appropriate
dimensions. Assume that R(t) is strictly negative definite for all t € R. We will
also assume that G(t) is positive semidefinite for all ¢ € R, as this gives rise
to the hardest case in the theory. Introduce the functional

$(x,€) =—J:81(s,x(s),§(s))ds. (1.7)

Although this functional is not, in the first instance, directly related to the ab-
solute stability problem, it turns out to be useful to study the problem of min-
imizing $ with respect to pairs (x,&) € L2([0,),R") x L2([0, c),R™), which
are solutions of (1.1), such that x(0) = xg for fixed xo € R™. This optimization
problem leads in a well-known way to the system of the Hamiltonian equations

dz _[G-gR'g* (A-BR 1g*)*
Jar =HWz= [A—BR-lg* _BR'B* |? (1.8)
Here, z = [xT,yT]T € R?" with y € R" being a variable dual to x, and
0o -Iy
[0

is the standard 27 x 2n antisymmetric matrix. Briefly, (1.8) is obtained by ap-
plying the Pontryagin maximum principle to the Hamiltonian

H(t,x,&) = (v, A(t)x +B()E) +2(t,x, &), (1.10)
which leads formally, via the relation 0%¢/0& = 0, to the feedback rule
&=-R(O)(B*()y +g* (t)x), (1.11)
and hence to (1.8).
Now, Yakubovich [23, 25] has shown that when A, B, G, g, and R are all

T-periodic functions of t, then the absolute stability of (1.1) relative to pairs
(x, &) satisfying (1.5) is equivalent to the validity of certain conditions on the
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Hamiltonian system (1.8); namely, the Frequency condition and the Nonoscilla-
tion condition. We generalize Yakubovich’s results to the case when A, B, G, g,
and R are bounded and uniformly continuous functions. To do this, it is, first,
necessary to reformulate the Frequency condition and the Nonoscillation con-
dition in a way appropriate for the study of the nonperiodic equation (1.8). As
was shown in [5], this can be done using the concept of exponential dichotomy
and of rotation number for linear and nonautonomous Hamiltonian systems.
We summarize part of the discussion of [5] in Section 2. In Section 3, we formu-
late, in a way appropriate to the study of nonautonomous control processes,
the concept of the absolute stability of (1.1) relative to pairs (x, &) satisfying
(1.5). We then prove that the absolute stability is equivalent to the validity
of the Frequency condition 2.5 and the Nonoscillation condition 2.6 for (1.8);
these are the nonautonomous versions of Yakubovich’s conditions. Thus, we
obtain a quite direct generalization of Yakubovich’s results for periodic con-
trol processes to the case when the coefficients A, B, G, g, and R are merely
bounded and uniformly continuous. Finally, in Section 4, we give examples il-
lustrating our results for control processes with almost periodic coefficients.
Such processes arise, for example, when the coefficient functions A, B, G, g,
and R are all periodic, but at least two among them have incommensurate
periods. The examples also illustrate the power of the roughness theorems
available for differential systems exhibiting an exponential dichotomy.

Our work was stimulated by the study of the paper [23] by Yakubovich, and
we wish to express our respect for that contribution to the theory of absolute
stability.

We finish this introduction by listing a notation used in this paper. As already
stated, the symbol (-, -) indicates the Euclidean inner product on R". Let | - |
indicate the Euclidean norm on R™ and also on finite-dimensional vector spaces
of matrices. For integers k > 1 and £ > 1, let

Myp = {M | M is a k x £ real matrix}. (1.12)

2. Preliminaries. Let G : R — Mupn, g : R — Mpum, and R : R — My be
uniformly-bounded and uniformly-continuous matrix functions. Consider the
corresponding quadratic form

2(t,x,8) = - ({(x,G(1)x) +2(x,g () E) + (E,R(1)E)) (2.1)

N | =

for x € R"™ and & € R™.

2.1. Hypotheses. Assume that G and R are symmetric matrix-valued func-
tions. Assume further that R(t) <0 and G(t) > 0 for each t € R.

Let A: R — My, and B : R — Uy, be bounded and uniformly continuous
matrix functions. If tp € R and xo € R", and if & : [tp,0) — R™ is a locally
integrable function, let x (t) be the solution of (1.1) which satisfies x (ty) = xp.
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We say that the pair (x,&) is admissible if there exist y > 0 and a sequence
ty — o such that

k—o0

t
lim k&z(s,x(s),ﬁ(s))dsz -y. (2.2)
to

We look for conditions necessary and sufficient for the validity of the following
criterion.

ABSOLUTE STABILITY CRITERION 2.1. There exists a constant k > 0 such
that, for each admissible pair (x, &), there holds

Lm<\x(s)|2+|§(5)lz)dSSK(|x(t0)|2+y), (2.3)

where y is the number in (2.2).

As stated in the Introduction, we formulate such necessary and sufficient
conditions in terms of properties of the solutions of the linear and nonau-
tonomous Hamiltonian system given previously in (1.8). The relevant proper-
ties of the solutions of (1.8) were stated by Yakubovich [22, 24| when the co-
efficients A, B, G, g, and R are T-periodic functions of time. Those properties
are summarized in Frequency condition 2.5 and Nonoscillation condition 2.6.
We state the versions of these conditions appropriate to the case when A, B, G,
g, and R are merely bounded and uniformly continuous. To do this, we need
to apply the well-known Bebutov construction to the matrix functions A, B, G,
g, and R.

Let k > 1 and £ = 1 be integers, and let

F=%Fp=1{f:R— M| fis bounded and continuous}. (2.4)

We endow & with the compact-open topology. We can define a topological flow,
called the Bebutov flow, on & using the natural time translations. Thus, if f € ¥
and t € R, define

T (f)(s) = f(t+5), (2.5)

where s € R. It is easy to check that {T; | t € R} satisfies the following three
conditions:
(i) To is the identity map on %,
(ii)) themap T: FXR — F: (f,t) — 1:(f) is jointly continuous,
(iii) T;oTs = Tt4s for all (t,s) € R.
Thus, (%, {T;}) is indeed a topological flow [13].
Now, let f € & be uniformly continuous. Then, the hull

Qf =closure {1, (f) |[te R} CF (2.6)

is a compact subset of F (the closure is taken in the compact-open topology).
Moreover, Qf is invariant in the sense that if f" € Q, then 7;(f’) € Qf for all
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t € R. Next, set
Fs = Fun X Frm X Fun X Frm X FPomm.- (2.7)

Then, wy = (A,B,G,g,R) € F,. We can define a Bebutov flow on %, by setting
(with various abuses of notation)

T (A",B',G',g',R") = (T:(A"), Tt (B"), T (G"), Tt (g"), Tt (R")) (2.8)

for all quintuples in %, and all t € R. Let Q = closure{T;(wg) | t € R}. Note
that there are continuous mappings A, B, G, g, and R defined on Q as follows:
if w = (w1,w2,ws3,ws,ws) €Q, then A(w) = w;(0), B(w) = w2(0), G(w) =
w3(0), §(w) = w4(0), and R(w) = ws(0). It is clear that A(T;(wg)) = A(t),
B(ti(wo)) = B(t), G(Tt(wo)) = G(t), g(Te(wo)) = g(t),and R(T¢ (wo)) = R(1),
where t € R. It is convenient to abuse the notation again, and to write A, B, G,
g, and R instead of A, B, G, §, and R, respectively. Introducing the family of
control systems

x =A(T(w))x +B(T(w))E, (2.9)

where w € Q, we see that system (1.1) coincides with system (2.9) for w = wy.
We also introduce the family of quadratic forms

90 (t,%,8) = 3 ((X,G (T (@)x) +2(x, (1 () E)
+(&R(Te(w))E)),

(2.10)

where w € Q. It is clear that for w = wy, this expression coincides with the
form 9 of (2.2).

Now, there is no particular reason to insist that the compact invariant subset
of Q of #, is the hull of a fixed quintuple wy. In what follows, we let Q denote
an arbitrary compact, translation-invariant subset of %.. We let A, B, G, g, and
R be the continuous functions on Q defined, respectively, by A(w) = w1 (0),
B(w) = w2(0), G(w) = w3(0), g(w) = w4(0), and R(w) = ws(0) for each
quintuple w = (wq,...,ws) € Q. Unless otherwise specified, we will always
assume that G and R have symmetric values, and that R(w) <0 and G(w) =0
for all w € Q.

If w € Qand xo € R", and if £:[0,0) — R™ is a locally integrable function,
let x(t) be the solution of (2.9), which satisfies x(0) = xo. We say that (x, &)
is an admissible pair for w if there is a number y > 0 and a sequence t; — oo
such that

t
lim Ok 9 (5,x(8),E(8))ds = —y. (2.11)

k—o0

Here, t; and y may depend on the pair (x, &), hence also on w € Q. Comparing
(2.11) with (2.2), we set ty = 0 because of the freedom in choosing w € Q.
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We now formulate our nonautonomous version of the absolute stability cri-
terion.

ABSOLUTE STABILITY CRITERION 2.2. There is a constant x such that, if
w € Q and if (x, &) is an admissible pair for w, then

L (Ix() [*+Es) | )ds < k(]x(0) > +y). (2.12)

The constant y is the one appearing in (2.11). The constant k is independent
of the admissible pair and of w € Q.
We also have a family of Hamiltonian equations

G-gRlg* (A—BR“g*)*} z

A—BR lg* —BR-1B* (2.13)

J92 — H(n(@)z = [
where, as indicated, each of the entries in the matrix function H has argument
T¢(w) with w € Q. We now formulate our nonautonomous version of the Fre-
quency condition and the Nonoscillation condition of Yakubovich. To do so,
we require some standard definitions and facts. Let &, (t) be the fundamental
matrix solution in t = 0 of (2.13) with w € Q. Also let ? be the set of all linear
projections P : R?" — R?"; we give % its natural topology.

DEFINITION 2.3. Say that (2.13) have an exponential dichotomy over Q if
there are positive constants K and k, and a continuous map P: Q — P : w — Py,
such that

| @ (£)Pp® ()| < Ke X9 (t=5),

2.14
| e (t) (I—Pyp) @, (s)| < Kekt=) (t <s). @19

DEFINITION 2.4. Let Q) be a compact metrizable space and let (Q, {1:}) be
a topological flow. The flow is said to be minimal if for each w € Q, the orbit
{1 (w) | t € R} is dense in Q. We usually speak, with a slight inaccuracy, of a
minimal set Q).

We now state the following condition.

FREQUENCY CONDITION 2.5. For each w € Q, the only solution z(t) of
(2.13) which is bounded on all of R is the identically zero solution z(t) = 0.

Next, let (Q, {T;:}) be a topological flow, not necessarily minimal. In [5], it is
explained how the Hamiltonian nature of (2.13) implies that if the Frequency
condition 2.5 is satisfied, (2.13) have an exponential dichotomy over all of
Q. The discussion in [5] is based on a basic result of Sacker and Sell [17]
and Selgrade [20]. The key point in the proof of this fact is the observation
that for each minimal subset M of Q, the dichotomy projection P,, satisfies
dim(Im[P,]) = n, where w € M and Im[-] denotes the image of its argument.
We then use another result of Sacker and Sell [18] to verify that the dichotomy
property extends from the minimal subsets of Q to all of Q.
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Suppose now that the family (2.13) satisfies the Frequency condition 2.5,
hence has an exponential dichotomy over all of Q) with family of projections
{Py | w € Q}. We formulate the Nonoscillation condition 2.6 in a geomet-
ric way. For this, recall that an n-dimensional vector subspace A C R?" is
called a Lagrange plane if (z1,Jz») = 0 for all (z1,z2) € A. The set A = {A}
of all Lagrange planes in R2" can be endowed in a natural way with the struc-
ture of a C*-smooth, n(n + 1)/2-dimensional manifold. The subspace A, =
Span{e,.1,...,eon} C R?" is a Lagrange plane. Define the (vertical) Maslov cy-
cle 6 to be {A € A | dim(A N A,) = 1}. It is known that € is two-sided and
Z,-cycle in A of codimension 1 [2].

It can be shown [14] that for each w € Q, Im[P,, ] is a Lagrange plane. Write
Aw =Im[Py ], where w € Q.

NONOSCILLATION CONDITION 2.6. For each w € Q, A, does not belong to
the vertical Maslov cycle 6.

According to this formulation, the Nonoscillation condition 2.6 automati-
cally implies the Frequency condition 2.5. In [5], it is explained how certain
hypotheses involving the rotation number [6, 7, 8, 14] of (2.13) permit the si-
multaneous verification of the Frequency condition 2.5 and the Nonoscillation
condition 2.6. As the rotation number has no direct role in the sequel, we do
not discuss it here.

3. Absolute stability. We begin the discussion with a simple observation.
Suppose that the Absolute stability criterion 2.2 is valid. Let wo € Q and x¢ €
R™, and set £(t) = 0 in (2.9) with w = wy, then let x(t) be the solution of (2.9)
with w = wy satisfying x(0) = x. Since G(w) > 0 for all w € Q, the pair (x,0)
is admissible for wg. It follows that x(t) — 0 as t — o. Thus, x(t) = 0 is an
asymptotically stable solution of

x=A(T(w))x (3.1)

for each w € Q.
The following result is well known (see, e.g., [5, 17]).

THEOREM 3.1. Let¥Y,,(t) be the fundamental matrix solution int = 0 of (3.1)
with w € Q. Then, there are positive constants K' and k', which do not depend
on w € Q) such that

| ¥ ()| <K'e ¥ (t=5) (3.2)

for all w € Q.

Clearly, (3.2) implies that x(t) = 0 is uniformly exponentially asymptotically
stable for each w € Q. When (3.2) holds for all w € Q, we say that the family
of (2.9), together with the family of constraints (2.11), are minimally stable (see
also Remark 3.3).
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We now formulate the main result of this paper.

THEOREM 3.2. The Absolute stability criterion 2.2 holds if and only if the
family of Hamiltonian systems (2.13) satisfies the Frequency condition 2.5 and
the Nonoscillation condition 2.6.

PROOF. First, assume that the Frequency condition 2.5 and the Nonoscil-
lation condition 2.6 are valid. We prove that the Absolute stability criterion 2.2
is valid. The arguments, which follow, generalize those given by Yakubovich
[23] in the case when the coefficients are T-periodic.

First, we apply [5, Theorem 4.3] to draw the following conclusion: for each
sufficiently small § > 0, there is a continuous function m? : Q — A, with the
values in the set of symmetric n X n matrices such that, if

Voo (t,x) = (x,m° (¢ (w))x), (3.3)

where x € R™ and w € Q, then

AV, =20, (6,x(0,E0) - 5(|x 0 2+ D7) G4
for each continuous function €: [0, o) — R". Here, x(t) is obtained by solving
(2.9) after the substitution of £(-) on the right-hand side.

Following Yakubovich [23], we prove that m® (w) is positive semidefinite for
each w € Q. Let xp € R", and set &(t) = 0. By Theorem 3.1, the solution x (t)
of (3.1) with x(0) = x( tends to zero as t — . Now, integrate (3.4) from O to t
to obtain

t
Vi (£,x (1)) =V (0,x0) < —ZJO 9 (s,x(5),0)ds <0. (3.5)

Letting t — oo, we see that Vi, (0,x0) = 0. This implies that m®(w) is positive
semidefinite for w € Q.

We now prove that the Absolute stability criterion 2.2 is valid. Let w € Q,
and let (x,&) be an admissible pair for w. Thus, there is a number y > 0 and
a sequence ty — oo such that (2.11) holds. Writing x(0) = x( and integrating
(3.4) from O to ty, we get

t
Veo (tix (t)) = Vo (0,0) < —ZJokszw (5,x(5), E(s))ds
(3.6)

—5[0”‘ (1x()| 2+ [E(s) |*)ds.
Since

liminf V (tg, x (tx)) = 0, (3.7)

k— o
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we obtain
{x0,m°(w)x0) = —2y+6J0 (!x(s) I°+]E(s) |2)d5. (3.8)

Hence,

1

6 (3.9)
K

where k does not depend on w, x, and &. This completes the proof of the
validity of the Absolute stability criterion 2.2.

Now, we prove that if the Absolute stability criterion 2.2 holds, then both
the Frequency condition 2.5 and the Nonoscillation condition 2.6 are valid. As-
sume, for contradiction, that at least one of the Frequency condition 2.5 and
the Nonoscillation condition 2.6 does not hold. By [5, Theorem 4.3], condition
(F) of that theorem is violated. That is, for each integer » > 1, there exist w, € Q
and a pair (x,,&,) € L2([0,0),R™) x L?([0,0),R™) with the following prop-
erties. First, if &, is substituted on the right-hand side of (2.9) with w = w,,
then x, (t) is the solution of (2.9) with w = w, satisfying x, (0) = 0. Second,
we have

h 1 (= 2 2
[ 2wt Enas= -1 [T (Ix@ P+ g0) )as, G0

where w = w,. Clearly, there is no loss of generality in assuming that

J: (Ix®)[*+]E)[*)ds =1 (3.11)
for each » > 1. Since
t
limsup [ 9. (5,x, (), & (5))ds = —=, (3.12)
t—oo 0 s

where w = w,. We have that (x,,&,) is an admissible pair for w, with y =
yr = 1/v, where r > 1. Clearly, if

1= L (Ix() 2+ 1Es)[*)ds = k(|x,(0) [* +yy), (3.13)

then k > . We conclude that the Absolute stability criterion 2.2 does not hold.
This is a contradiction, so the Absolute stability criterion 2.2 does indeed im-
ply both the Frequency condition 2.5 and the Nonoscillation condition 2.6.
This completes the proof of Theorem 3.2. |

REMARK 3.3. Itis sometimes convenient to relax the condition that G(w) >
0 for all w € Q (though not the condition that R(w) < 0 for all w € Q). A mod-
ified version of Theorem 3.2 is still true. We indicate the necessary changes in
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the statement and proof of Theorem 3.2 following the outline of Yakubovich’s
discussion in [23].

First of all, we generalize the definition of minimal stability in the following
way. We say that the family of (2.9), together with the family of constraints
(2.11), is minimally stable if, for each w € Q and each xy € R™, there are an ad-
missible pair (x™ (t, w, xo), &M (t,w, x0)), together with a sequence (¢} (w,x0))
and numbers yM(w,xq), such that x™(0,w,xq) = 0 and xM(tx,w,xo) — 0
as k — oo, and inf{A 2yM(w,Axg)} = 0. Next, we modify the statement of
Theorem 3.2 by restricting attention to families (2.9) and (2.11) which are mini-
mally stable. Finally, we modify that part of the proof of Theorem 3.2 regarding
the positive semidefiniteness of m? by using the pairs (x™, €M) in place of the
pairs (x,& =0).

4. Examples. The examples given below are intended to illustrate the strong
robustness properties enjoyed by the absolute stability concept.

To begin, let Q be a compact and translation-invariant subset of %,. Each
w € Q defines a quintuple (Ay,Bw,Gw,Jdw,Rw) of bounded and uniformly
continuous matrix-valued functions with corresponding control process (2.9)
and quadratic form 92,. Suppose that the family of Hamiltonian systems (2.13)
satisfies the Frequency condition 2.5 and the Nonoscillation condition 2.6.

Itis convenient to embed Q in a still-larger function space %, which contains
F,. For integers k > 1 and £ > 1, let

Gre={g:R — My | g is bounded and measurable}. 4.1)

Endow %, with the usual weak-* topology; this topology may be defined as
follows. A sequence (g,) C 9y converges to g € 9y if, for each ¢ € L'(R),
there holds

Jﬁ In(S)P(s)ds — L g yp(s)ds. (4.2)
Each norm-closed ball
{9.€ % 1191 =esssup g (1)] <a} 4.3)
S

is weak-* compact (a > 0). There is a Bebutov flow {T; | t € R} on %, defined
by

T:(g)(s) = g(t+5), (4.4)

where (t,s) € R and g € Gy.
Next, let

G = YGn X Gnm X Gnn X Gnm X Gmm. (4.5)
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Clearly, Q may be identified with a subset (again called Q) of 4. Let N be
a number such that, for each w = (w,...,ws) € Q, we have ||w;|l» < N for
1 <i<5. Let

Y={y=(1,-¥5) €4 |||Vills« <N, 1 <i<5}. (4.6)

Then, Y is a compact, connected, translation-invariant subset of 4., and Q C Y.
There is a metric d on Y, which is compatible with the weak-* topology. For
each € > 0, let

Qe ={@eY|d(®,w) <&} 4.7)

Now, by hypothesis, the family of Hamiltonian systems (2.13) has an exponen-
tial dichotomy over Q. Moreover, for each w € Q, the dichotomy projection P,,
has the property that the Lagrange plane A, = Im[P,, ] does not lie on the verti-
cal Maslov cycle € C A. By a basic perturbation theorem of Sacker and Sell [18],
there exists € > 0 such that the family of (2.13) with @ € Q; has an exponential
dichotomy over Q. Moreover, the dichotomy projections {Py | @ € Q;} have
sufficient continuity properties to ensure that Py, ¢ %6 for all @ € Q..

We can thus conclude that if Q c Q; is any weak-* compact and translation-
invariant set, then the families (2.9) and (2.11) with @ € Q satisfy the Absolute
stability criterion 2.2; there is a constant k > 0 such that, if (x, &) is an admis-
sible pair for some @ Q, then

JO (lx(s)*+ [E()|?)ds < k(|x(0) [* +y). (4.8)

For example, if € > 0 is sufficiently small and if
O={®=(d®1,...,05) € Qe | Iw=(wy,...,ws) €Q such that ||d; — w;||., <€},
(4.9)

then the families (2.9) and (2.11) with @ € O satisfy the Absolute stability
criterion 2.2. As a very special case, let wg = (A,B,G,g,R) be a quintuple
of T-periodic, bounded, and measurable matrix-valued functions of the ap-
propriate dimensions. Assume that the corresponding system (1.8) satisfies
the Frequency condition and the Nonoscillation condition as formulated by
Yakubovich in [23]. Then, there is an € > 0 such that, if Ay, By, G1, g1, and R,
are bounded and measurable matrix-valued functions of the appropriate di-
mensions satisfying [|A;llo < &,..., IR |lo < & and if A= A+ Aj,...,R = R+Ry,
then the control process

x=At)x+B(t)E, (4.10)
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together with the integral quadratic constraint corresponding to
9(t,x,8) = (x,G(t)x) + (x,d(1)E) + (E,R(1)E), (4.11)

is absolutely stable. As an even more special case, the functions Aq,...,R;
might be periodic with at least one period incommensurate with T.

The above results actually follow from standard roughness criteria for
exponential dichotomies relative to uniform perturbations [4, 12]. However,
since the definition of Q,; makes reference to the weak-* topology and not
to the norm topology on 4., absolute stability holds also for perturbed fam-
ilies O, which are not norm-close to Q. To illustrate this point, let TX be the
k-dimensional torus with angular variables (604,...,0) mod 2. Let «y,..., Xk
be real numbers. Write 0 = (01,...,0¢) and « = («y,...,&). Let A, B, G, g, and
R be matrix-valued functions, of the appropriate sizes, defined and continu-
ous on TX. For each 6 € T¥, the functions t — A(0 + «t),...,t — R(0 + «t) are
quasiperiodic functions.

Let H(-) be the matrix-valued function on T¥ obtained by substituting A(-),
...,R(-) on the right-hand side of (1.8):

(4.12)

H(O) - G-gR'g* (A*-BRlg*)*
" | A-BRlg* —BR-1B*

Here, all the entries in the matrix have an argument 6. Suppose that for some
fixed frequency vector & = (&y,...,Xy), the family of Hamiltonian equations

dz _
JazH(Gﬂxt)z (4.13)

has an exponential dichotomy over T¥. Further, suppose that for each 0 € T¥,
the projection Py does not lie on 6. We remark that, if the frequencies «, ..., &k
are independent over Q, then equations (4.13) have an exponential dichotomy
over T of the family (4.13) if and only if just one equation of (4.13) admits
an exponential dichotomy. However, we allow the frequencies «i,..., ® to be
dependent over Q; hence, we must explicitly assume that equations (4.13) have
an exponential dichotomy over all of Tk,

Now, the family (4.13) can be embedded in %, in the obvious way: with
each 0 € Tk, associate the quintuple w(t) = (A(0 + &t),...,t — R(0 + &t)).
We now vary the frequency vector &. Applying the result of Sacker and Sell,
we see that there exists € > 0 so that, if |&¢x — &| < ¢, then the family (4.13)
with 6 € T* obtained by substituting « for & has an exponential dichotomy
projection Py ¢ ¢ with @ € T*. Thus, we see that, for all frequency vectors
« near &, the families (1.1) and (1.5) to which (4.13) corresponds satisfy the
Absolute stability criterion 2.2.



1040

(11
[2]
(3]
(4]

[5]

(6]
[7]
[8]

(1

(10]
[11]
[12]

(13]

(14]

[15]

[16]

(17]
(18]
[19]
[20]

(21]
[22]

[23]

R. FABBRI ET AL.

REFERENCES

M. A. Aizerman and F. R. Gantmacher, Absolute Stability of Regulator Systems,
Translated by E. Polak, Holden-Day, California, 1964.

V. Arnold, On a characteristic class entering in a quantum condition, Funct. Anal.
Appl. 1 (1969), 1-14.

F. Colonius and W. Kliemann, The Dynamics of Control, Systems & Control: Foun-
dations & Applications, Birkhduser Boston, Massachusetts, 2000.

W. A. Coppel, Dichotomies in Stability Theory, Lecture Notes in Mathematics, vol.
629, Springer-Verlag, Berlin, 1978.

R. Fabbri, R. Johnson, and C. Nufiez, On the Yakubovich Frequency Theorem

for linear non-autonomous control processes, to appear in Discrete Contin.

Dynam. Systems.

, The rotation number for non-autonomous linear Hamiltonian systems I:

basic properties, to appear in Z. Angew. Math. Phys.

______, The rotation number for non-autonomous linear Hamiltonian systems II:
the Floquent coefficient, to appear in Z. Angew. Math. Phys.

R. Johnson, m-functions and Floquet exponents for linear differential systems,
Ann. Mat. Pura Appl. (4) 147 (1987), 211-248.

R. Johnson and M. Nerurkar, Controllability, stabilization and the regulator prob-
lem for random differential systems, Mem. Amer. Math. Soc. 136 (1998),
no. 646, 1-48.

R. E. Kalman, Lyapunov functions for the problem of Luré in automatic control,
Proc. Nat. Acad. Sci. U.S.A. 49 (1963), 201-205.

S. Lefschetz, Stability of Nonlinear Control Systems, Academic Press, New York,
1962.

J. L. Massera and J. J. Schaffer, Linear Differential Equations and Function Spaces,
Pure and Applied Mathematics, vol. 21, Academic Press, London, 1966.

V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations,
Princeton Mathematical Series, no. 22, Princeton University Press, New Jer-
sey, 1960.

S. Novo, C. Nufiez, and R. Obaya, Ergodic properties and rotation number for lin-
ear Hamiltonian systems, J. Differential Equations 148 (1998), no. 1, 148-
185.

V. Oseledets, A multiplicative ergodic theorem. Lyapunov characteristic numbers
for dynamical systems, Trans. Moscow Math. Soc. 19 (1968), 197-231.

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The
Mathematical Theory of Optimal Processes, Interscience Publishers, New
York, 1962 (Russian).

R. J. Sacker and G. R. Sell, Existence of dichotomies and invariant splittings for
linear differential systems. I, J. Differential Equations 15 (1974), 429-458.

_____, A spectral theory for linear differential systems, J. Differential Equations
27 (1978), no. 3, 320-358.

B. Schmalful®, The random attractor of the stochastic Lorenz system, Z. Angew.
Math. Phys. 48 (1997), no. 6, 951-975.

J. E. Selgrade, Isolated invariant sets for flows on vector bundles, Trans. Amer.
Math. Soc. 203 (1975), 359-390.

M. Vidyasagar, Nonlinear Systems Analysis, Prentice-Hall, New Jersey, 1978.

V. A. Yakubovich, A linear-quadratic problem of optimization and the frequency
theorem for periodic systems. I, Siberian Math. J. 27 (1986), no. 4, 614-630.

_____, Dichotomy and absolute stability of nonlinear systems with periodically
nonstationary linear part, Systems Control Lett. 11 (1988), no. 3, 221-228.




ON A CRITERION OF YAKUBOVICH TYPE ... 1041

[24] | A linear-quadratic problem of optimization and the frequency theorem
for periodic systems. II, Siberian Math. J. 31 (1990), no. 6, 1027-1039.

, Nonoscillation of linear periodic Hamiltonian equations and related prob-
lems, Algebra i Analiz 3 (1992), no. 5, 1165-1188 (Russian).

[25]

R. Fabbri: Dipartimento di Sistemi e Informatica, Universita di Firenze, Via di Santa
Marta 3, 50139 Firenze, Italy
E-mail address: fabbri@dsi.unifi.it

S. T. Impram: Dipartimento di Sistemi e Informatica, Universita di Firenze, Via di
Santa Marta 3, 50139 Firenze, Italy
E-mail address: impram@dsi.unifi.it

R. Johnson: Dipartimento di Sistemi e Informatica, Universita di Firenze, Via di Santa
Marta 3, 50139 Firenze, Italy
E-mail address: johnson@dsi.unifi.it


mailto:fabbri@dsi.unifi.it
mailto:impram@dsi.unifi.it
mailto:johnson@dsi.unifi.it

Mathematical Problems in Engineering

Special Issue on

Modeling Experimental Nonlinear Dynamics and

Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the
70s, was focused on intentionally built nonlinear parts in
order to improve the operational characteristics of a device
or system. Keying, saturation, hysteretic phenomena, and
dead zones were added to existing devices increasing their
behavior diversity and precision. In this context, an intrinsic
nonlinearity was treated just as a linear approximation,
around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear
and chaotic phenomena, engineers started using analytical
tools from “Qualitative Theory of Differential Equations,”
allowing more precise analysis and synthesis, in order to
produce new vital products and services. Bifurcation theory,
dynamical systems and chaos started to be part of the
mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Prob-
lems in Engineering aims to provide a picture of the impor-
tance of the bifurcation theory, relating it with nonlinear
and chaotic dynamics for natural and engineered systems.
Ideas of how this dynamics can be captured through precisely
tailored real and numerical experiments and understanding
by the combination of specific tools that associate dynamical
system theory and geometric tools in a very clever, sophis-
ticated, and at the same time simple and unique analytical
environment are the subject of this issue, allowing new
methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due February 1, 2009

First Round of Reviews | May 1, 2009

Publication Date August 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and
Control Engineering Department, Polytechnic School, The
University of Sdo Paulo, 05508-970 Sao Paulo, Brazil;
piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratério Associado de
Matemadtica Aplicada e Computagdo (LAC), Instituto
Nacional de Pesquisas Espaciais (INPE), Sdo Jose dos
Campos, 12227-010 Sao Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Department of Physics, King’s College,
University of Aberdeen, Aberdeen AB24 3UE, UK;
grebogi@abdn.ac.uk

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers4pt
	Guest Editors

