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We show the combinatorial structure of Z2 modulo sublattices similar to Z2. The
tool we use for dealing with this purpose is the notion of association scheme. We
classify when the scheme defined by the lattice is imprimitive and characterize its
decomposition in terms of the decomposition of the Gaussian integer defining the
lattice. This arises in the classification of different forms of tiling 72 by lattices of
this type. The main application of these structures is that they are closely related
to two-dimensional signal constellations with a Mannheim metric in the coding
theory.
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1. Introduction. A similarity o of a norm c is a map from R" to R" such
that ou-ov = cu-v, u,v € R". Let A be a two-dimensional lattice, then a
sublattice A" € A is similar to A if o(A) = A’. The map o is also called a
multiplier of the norm ¢ for A. We consider now the lattice A = Z[i] = 72 of
the Gaussian integers; it is a known result [5] that the lattice Z2 has multipliers
of norm c if and only if ¢ =%+ 52, v,s € Z.

In this paper, we study the combinatorial structure of sublattices similar to
Z[i] given by (v +si)Z[i] by studying the quotient Z[i]/ (v + si)Z[i]. From now
on, this lattice is denoted by Z[i](,+si) for short. Sublattices similar to Z% have
been found useful for recursive constructions of lattices (see [5, 6]), and quo-
tients of this lattices are used for coding two-dimensional signal constellations
in the coding theory (see [10, 12]). We define an association scheme over the
classes in the sublattice. This association scheme is defined by the orbitals of
a transitive action (see [3] for a primer on these constructions). This approach
is the same as defining the association scheme given by the Mannheim metric
(see [12]) and it is well known in the coding theory (see [14, “An all-purpose
construction”] or [4, 8]). This also arises to different ways of tiling Z? according
to the Gaussian integer we have chosen.

The organization of the paper is as follows. In Section 2, we state some of the
algebraic preliminaries underlying the paper and also develop a general setting
for dealing with schemes derived from quotient lattices. Section 3 shows the
construction of the scheme and some of its properties such as the expression
of relation matrices. Sections 4 and 5 are devoted to the concept of quotient
schemes and its relation with tiling the lattice Z2.
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2. Preliminaries on association schemes

DEFINITION 2.1. Let X be a finite set. A d-class association scheme is a pair
(X, (R;)ier), where I := {0,1,...,d}, such that

(1) (R;)ies is a partition of X x X,

(2) forall i € I, there exists j € I such that R! := {(,x) | (x,¥) €Ri} =R,

(3) Ro:={(x,x) | x X},

(4) there are numbers pfj such that for any pair (x,y) € Ry, the number of

z € X with (x,z) € R; and (z,) € R equals p};,
(5) pk = p¥ foralli,j,k el

DEFINITION 2.2. (i) The association scheme is symmetric if R; = R§ for all
iel.

(ii) Let I; = (X,R;) be the graph whose vertex and edge sets are X and R;,
respectively. An association scheme (X, (R;)ic) is said to be primitive if all the
I;, i €I, are connected. It is said to be imprimitive if it is not primitive.

A more convenient way to describe association schemes is in terms of adja-
cency matrices. From now on, we suppose that X has n-ordered elements:
X = {x1,...,xn}. If we have an association scheme (X, (R;);cr), the family
(A;)ier of nonzero n x n (0,1)-matrices will denote the adjacency matrices
of the corresponding relations (the rows and columns of A; and all matrices
of size n X n on what follows are indexed by X in the specified order). Now,
we can rewrite the following conditions in terms of matrices:

(1) ZieIAi = ],

(2) for all i €I, there exists j € I such that A§ =Aj,

(3) Ap =1y,

(4) AiAj = SkerPHAL (Lj €D,

(5) AiAj = AjA;.

By conditions (1) to (4), the set {A;};<s is a base (as a vector space over C) of
a subalgebra in M,, (C) (the set of n x n matrices over C), so the algebra has a
dimension d + 1. By (5), this subalgebra is commutative. The algebra « is called
the Bose-Mesner algebra of the association scheme.

In the following discussion, we need some notation on permutation groups
acting on finite sets. For a reference on this topic, see [3]. For a given permu-
tation group % of elements of a finite set X, we denote the orbit of an element
xeXas (9 (x)=1{xg|ge9}. Two orbits are either identical or disjoint. We
denote by 0(% | X) the set of all the orbits of the action. We denote the stabi-
lizers by 9, = {g € 9| x = xg}. The relation between orbits and stabilizers is
well known and given by

(9)(x) — 4/%x,

(2.1)
xg — 4xg.
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The action is transitive if there is just one orbit. If the action is transitive, a
congruence is a %-invariant equivalence relation on X. We say that the action
is imprimitive if it has a nontrivial equivalence.

We recall the following construction of association schemes later in the pa-
per. Let X be a finite abelian group and let G be a subgroup of the automor-
phism group Aut(X) of X. Denoting the G-orbits in X by Xy,..., Xy, define the
relations Ry,...,R; on X as follows:

Ri:={(x,y) e X’ |y x e X}, (2.2)
then (X, {Ro,...,R;}) is an association scheme.

3. Definition of the scheme. Consider the lattice of Gaussian integers Z[1]
and the sublattice L = Z[i]/xZ[i], the set of Gaussian integers modulo «Z[i]
which is similar to Z[i]. The norm of an element « € Z[i] is just N(x) = «x - &.
The units are the elements of norm 1. Clearly, multiplication in L by an element
on the group of units of the Gaussian integers % = (i) (i is the imaginary unit)
is an isometry fixing the origin (from now on, we refer to them as rotations),
and also we denote the group of translations by 7.

Consider now the semidirect product of both groups 7 = % x J. Roughly
speaking, we also denote by # the permutation group on L generated by the
permutation (« — ix) and the translations in 7. It is clear that ¥ acts transi-
tively on L.

Consider the orbits of the action

HX(LXL) — (LXL) (3.1

induced by the action of # on L. They are called orbitals and they are the rela-
tions of a symmetric association scheme [3]. Since ¥ is a transitive permutation
group, if we take % (i.e., those permutations that fix 0), it is well known that
we have the coset decomposition # = (9g) (po) U --- U (Gy)(pa), where p; is
the permutation transforming 0 in some complex number 8 belonging to the
coset. Therefore, orbits can be rewritten as

(x,¥) €Rx = x -y € ((%)(px))(0). (3.2)

In our case, Cs = 9§y = %, the cyclic group of four elements.

REMARK 3.1. Let A be alattice, the automorphism group of A, Aut(A), is the
set of distance-preserving transformations (or isometries) of the space that fix
the origin and take the lattice to itself. Let Auty (A’) denote the automorphism
group of A" with respect to A, that is, the subgroup of Aut(A) containing the op-
erations that preserve A’. Note that it is clear that C, is contained in Auty2 (A');
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FIGURE 3.1. Z[i](2+2i).

moreover,

. Dy ifa=0,orb=0, ora=+b,
Autz) ((a+bi)Z[i]) = ] (3.3)
C; otherwise.

ExXAMPLE 3.2. Consider the sublattice Z[i]>+2;. We can give a system of
representatives in the fundamental region given in Figure 3.1.
The orbitals of the previous action are given by the cosets (see (3.2))

Xo:= (%) - (0) = {0}, X1:= (%) - (1) = {£1, =i},

3.4
X5 := (%) - (2) = {2}, X3:=(%) - (1+1i) ={1+i,1—1i}, (34

which allows us to construct the relations in the association scheme as (x,y) €
Riex-yeX;,i=0,1,2,3.

THEOREM 3.3. The association scheme (X, (R;)ic;) with X = L and (R;)es
defined by the orbitals of the action above is primitive if and only if « is a prime
inZ[i].

PROOF. Suppose that « is not a prime in Z[i], that is, & = & - «2. Then, it
is clear that the equivalence in L given by the quotient L/[Z[i]/x1Z[i]] C L is
%-invariant, and therefore the action is imprimitive; hence by [2, Proposition
2.9.3], the association scheme is imprimitive.

Conversely, if o« is prime, then it is a well-known fact in number theory (see
[9]) that either it is 1 +i multiplied by a unit or

(1) N(x) = p = 1mod4, p an odd prime, and in this case the lattice L has

p points, and clearly J = 7,
(2) x=p €7 and p = 3mod4; in this case L can be represented by Z,[i]
and therefore has p? points and J = Z, X Zp,.
In the case 1+1, itis obvious that the scheme is primitive; in the other two cases,
we have that the stabilizer of any point f in the lattice is given by the group of
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rotations around the point (i.e., 9 = t34(tg) !, where t; is the translation of
vector p). It is clear that in both cases above, there is no group between %g < %
since the group generated by a single element in 7 and the group %g is ¥ (see
Remark 3.4 for a further explanation). Therefore, the stabilizer is maximal, and
by [3, Theorem 1.9], the action is primitive and so is the association scheme.

O

REMARK 3.4. Indeed, it is easy to check that if %4z are the rotations around
the point f and we add a new rotation, say i/ (j = 1,2, 3), around, another point
B’ # B, then the composition of that one with the one given by i*~/ around S
is a translation. So in the proof above, we can suppose that we always add one
translation.

When there is a prime number of points, it is clear that a single translation
generates the group J since it is cyclic of prime order. In the case J = 7, X Z,,
a translation t and the translation i ! ot o i are independent and generate
the whole group 7. In Remark 3.5, we show the relation of this facts with the

construction of constellations representing F, and [F,2, respectively.

The association scheme defined is a translation asociation scheme, and in

the case of a prime number of points, p = 1mod4 (i.e., |X| is a prime) is a
cyclotomic scheme (see [2] for the definitions).

REMARK 3.5. The two constructions we present below are used to construct
two-dimensional modulo metrics (in particular Mannheim distance) for the
coding theory (for further details, see [10, 11, 12]).

(a) Let 7t € Z[i] be an element whose norm is a prime integer p, and p =
1mod4. Itis well known (Fermat’s two square theorem) that p can be written as

p=a’+b’>=mm, T =a+ib (notunique). (3.5)

If we denote by Z[i], the set of Gaussian integers modulo 1, we define the
modulo function v : Z[i] — Z[i], associating to each class in Z[i] its repre-
sentant with a smallest norm:

v(E) =7, where E=qm+7, ||r||=min{| Bl | B =Emodrr}. (3.6)

This can be done because Z[i] is Euclidean domain. The quotient g can be
calculated as [«x7t/p], where [x] denotes the Gaussian integer with real and
imaginary part closest to x. The quotient g can be calculated as [x7t/p], where
[x] denotes the Gaussian integer with real and imaginary part closest to x.
Taking the carrier set of F, as {0,1,...,p — 1} C Z, we can restrict to [F, the
application v so that it induces an isomorphism v : F, — Z[i] given by

forgefF,, v(g) :g—[?]n. (3.7)
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FIGURE 3.2. F13 as Z[i]3,p; and F,2 as Z7[i].

So Fp, and Z[i], are mathematically equivalent, and we use, from now on, that
carrier set for a short notation.

(b) In the case p = 3mod4, m = p € Z and the isomorphism above does
not give any relevant information over [F,. For this type of primes, —1 is a
quadratic nonresidue of p, hence we get the following isomorphism between
F,2 and Z,[i] where

Z,li] = {k+il Ik le {— Q,...,—l,m,...,@}}. (3.8)
EXAMPLE 3.6. Consider Z[i]3,,; and Z7[i], given by the carrier sets defined
as in Remark 3.5. We have an alternative pictorial representation of them to a
usual one derived as in Example 3.2 given by Figure 3.2. This representation
is more suitable for showing the symmetries and rotations within the funda-
mental region. For the association scheme of this constellations of points, see
Example 3.9.

REMARK 3.7. Itis easy to check that the association schemes defined above
are weakly metric (see [14] for a definition) for the Mannheim metric.

3.1. Matrix expression of the algebra. In this section, we develop an easy
way for describing the matrices of the Bose-Mesner algebra associated with
these sublattices in terms of circulant matrices.

DEFINITION 3.8. Let M be an n x n matrix and let {a;}i—o..n_1 be the first

row of M. Then, M is circulant if

Mij = A(i-jymodn, 1,Jj=0,1,...,m. (3.9)

First, we insight in the case of a prime number of points p. In this case, we
have that the translations J are a acyclic group of a prime order. Hence, if we
choose an element generating (t) = 7, any element [ € L can be rewritten as
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1=1/(0),0 < j < p—1, and choosing the order given by j for the points in the
scheme, it is clear that the matrices R; are circulant since t is an isometry.

EXAMPLE 3.9. In the case L = Z[i]3,,; of the previous example, the orbits
can be described knowing the cosets
(Go) - (po) = {0}, (Go) - (p1) = {1,5,12,8},

3.10
(Go) - (p2) = {6,4,7,9}, (Go) - (p3) = {2,10,11, 3}. ( )

And if we choose the translation given by adding 1 to each point for ordering
the relations (the usual order for [,), then they are given by
DO = [1101010!050!010!010!0!0)0]1 Dl = [0! 1!010!01 1!0!0) 1!010101 1]!
D =10,0,9,0,1,0,1,1,0,1,0,0,0],  D3=[0,0,1,1,0,0,0,0,0,0,1,1,0].
(3.11)

Note that each matrix D is represented only by its first row since they are
circulant. Moreover, as usual we collect all the information in a single matrix as

[0,1,3,3,2,1,2,2,1,2,3,3,1]. (3.12)

REMARK 3.10. For checking many properties of codes defined over associa-
tion schemes, it is important to comput the eigenvalues associated with them
(see [7, 14]). The eigenvalues of a circulant matrix are easily computed (see [1])
as sums of roots of the unit. Hence, so are the eigenvalues of the scheme (see
[12]).

In the case of a nonprime number of points, we have a slightly modified
construction based on the decomposition of I as the direct product of cyclic
subgroups. The idea is the same as in Example 3.9, and now the matrices are
circulant in blocks given by the acyclic subgroups. We illustrate this idea with
an example.

ExAMPLE 3.11. Consider L = Z[i]»+24) as in Example 3.2. Consider the iso-
morphism given by

L=7[il+2i) — Zs X L
1— (1,0) (3.13)
1+i~— (0,1).

Consider now the elements in the order given by
(0,0),(1,0),...,(3,0),(0,1),(1,1),...,(3,1). (3.14)

The relation matrices can be expressed now as block-circulant matrices:

| Di1 Dz .
Dl—|:Di2 Di1:|' i=0,...,3, (3.15)
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where each block is a circulant matrix. The relations in Example 3.2 can be
represented in the same fashion as in the previous example

[0,1,2,113,1,3,1], (3.16)

where | means the division of the blocks.

REMARK 3.12. Suppose that we are given the sublattice Z[i],+si). The prob-
lem above can be solved explicitly by reducing the generator matrix of the
lattice

A:(Y S) (3.17)

to its Smith normal form. Denote d = gcd(r,s); by Bezout’s theorem, there are
integers p, q such that rp + sq = d. If we consider

r —-q 1 (rq—sp)
pP:= s o) Q:= d : (3.18)

Both P and Q are unimodular, and

2 2
d 0)’ GET (3.19)

S=PAQ = ( 0 i
Clearly, d divides e, and therefore S is the Smith normal form of A. Hence the
abelian group Z[i]+si) is isomorphic to Z; X Z,.

PROPOSITION 3.13. The relation matrices can be expressed as block-circulant
matrices, where each block is also a circulant matrix.

PROOF. It follows directly from the reasoning above, that is, the decompo-

sition of the group of translations in a product of cyclic groups. O

4. Quotient schemes. We introduce in this section the concept of a quotient
scheme. For an account on this topic see [2]. Suppose a set of indices 6, and let
us define the equivalence relation ~ among the set of indices of the relations
in the scheme (X,%) as follows:

a~b ifpl, +0 forsomeicO. 4.1)

As usual, 0 is the class of 0, and we write d for the relation containing a.

DEFINITION 4.1. We define a quotient scheme (X,%) of (X,%) with respect
to 0 as the association scheme whose point set is the set X of equivalence
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FIGURE 4.1. Quotients of Z[i](2j)-

classes on X and whose relations are R, with
R:={(%,7) |forx € X, y € ¥,(x,¥) € R; with i € i}. 4.2)

PROPOSITION 4.2. If the scheme defined on L is imprimitive, we can define a
quotient scheme where 0 is given by the classes of some of the elements divisors
of 0.

PROOF. It is obvious by the first part of the proof of Theorem 3.3. |

EXAMPLE 4.3. Consider L = Z[i]2+2;) as in Examples 3.2 and 3.11, and con-
sider the relation given by 0 = {0,2}. With the notation in Example 3.11, we
have

0,0) = {(0,0),(2,0)},  (1,0) = {(1,0),(3,0)},

— - (4.3)
0,1) = {(0,1),(2,1)}, (1,1) = {(1,1),(3,1)},
and the relation matrix in the order given by (/O\,O/), (/1,\0/), @Tl/), m is
[0,1,2,1]. (4.4)

REMARK 4.4. Indeed, the previous example gives the translations by the
group Z» X Z», this can be seen also because 2 = (1+1) (1 —1) is not a Gaussian
prime and admits a further quotient scheme given by

—~ —~

0,00 = {(0,0,(0,D},  (1,0) = {(1,0),(1,1)}. 4.5)

This corresponds with the identifications in Figure 4.1.

REMARK 4.5. Note that following [2, page 52] if we let A = {a | p9, = 1},
then for each a € A\ {0} we find an involution o, : x — X, (x,X) € R,, and
if we set 0y = 1, then 0,0p = 0,04 = 0, where c is determined by p¢, + 0.
Clearly, A has the structure of an elementary abelian 2-group.
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REMARK 4.6. Thereis a sort of Jordan-Holder theory relating the facts above
that for our example we can summarize the information in Figure 4.1 as fol-
lows:

Z1il2+2i0) : .
U Z[l](tx) T {01 | Paa = 1}
) (1] 2421y ZaXZ> 0,2
Z[i]2) ’ — 4.6)
U Z[ilx  ZxxZp (0,0),(0,1) :
Z[i]a+i) Z[i]1+i) 7, m

5. Relation with tilings. Up to now, we have shown that, we have three
types of primitive sublattices, depending on the Gaussian prime defining it;
this arises to three different forms of tiling the whole 72:

(i) with tiles of type Z[i]+i);

(ii) with tiles of type Z[i](az+pi) Where N(a+ bi) = p an odd prime = 1 mod4;

(iii) with tiles of type Z,[i]; p an odd prime = 3mod4.

Indeed, this has a close relationship with the well-known fact in the number
theory given by the criterion for representing a number N by the sum of two
squares, which says that any prime factor of N of the form 4k + 3 must divide
N to an even power exactly. In our setting, this means (as we have seen) that
the regions defined by an integer of norm p", p a prime of this type, must
have p?" points. This fact relates each prime in the factorization of the norm
N with a type of the primitive tiles above.

In the last two cases above, the boundary of the Voronoi cell of the sublattice
«Z[i] does not contain any points of Z2, so following notation in [2], we called
such sublattices clean. Also in the first two cases, we can find a complete set of
representatives of the nonzero classes within the fundamental parallelotope
defined by @ and i - «.

Moreover, the boundary of the Voronoi cell is clean if there is an odd number
of points [2], that is, there is no involution (see Remark 4.5), so the following
corollary follows directly (as expected).

COROLLARY 5.1. Any quotient of a clean sublattice L defined as in Section 3
is also clean.

REMARK 5.2. The primitive schemes above are the finest translation sch-
emes from our setting. Recall that in the schemes defined for an odd prime,
we have that in all cases all orbits are of size 4, but the schemes are not pseu-
docyclic (see [2] for a definition) since > ; pfi + 3. We can go a bit farther with
the following result of Rao et al. [2, page 52, (ii)] and [13]. They state that the
finest translation association scheme for a set of odd order is pseudocyclic and
the other translation schemes for the same set can be derived from this one by



ON THE STRUCTURE OF MULTIPLIERS OF 72 945

merging classes. In the case of the schemes in this paper, the scheme they re-
call is the one generated by the 1, i? rotations and the translations, and clearly
each relation of our scheme arises from the merging of two of its relations.

6. Conclusions. We have studied the combinatorial structure of the associ-
ation schemes derived from the sublattices given by Z[i]/ (v + si)Z[i]. As we
have seen, there are close connections of this type of lattices with the cod-
ing theory, the recursive construction of lattices, and the self-similar lattices
[2, 10, 11, 12]. In the study, the defined scheme plays a central role in the
factorization of the Gaussian integer (v + si) and also the factorization of the
order of the group of translations J (i.e., the number of points in the sublat-
tice). We have characterized the primitive cases and also identified the cases
where the Voronoi cell is clean, both from a combinatorial point of view and
from a number theoretical one. We can see the primitive case as the finest tiles
of the lattice 72, and they are useful in coding two-dimensional signal spaces
with the Mannheim metric [10]. We have also shown how to derive an easy
expression of the matrices defining the relations in the scheme based in their
circulant structure. A similar study can be done with hexagonal schemes and
hexagonal metrics based on Einsestein-Jacobi integers [12] and will be shown
elsewhere. Future trends of investigation point toward classifying the partition
designs derived from this type of association schemes.
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